
PHYSICAL REVIEW B VO LUME 12, NUMBER 11 1 DECEMBER 1975

Proton-spin —lattice relaxation in the antiferromagnetic state of CsMnCl3 2H20
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The spin-lattice relaxation times of protons in the nearly one-dimensional Heisenberg system CsMnCl, 2H, O
were measured between 1.1 and 3.9 K in the antiferrornagnetic state, From the comparison of the ratio of the
relaxation rates of two nonequivalent protons with the calculated ratio, it was concluded that the two-magnon
process dominates at low temperatures and the exchange-enhanced three-magnon process at high
temperatures. A quantitative calculation of these contributions, without the restriction of a small- k
approximation, based on the values for the exchange constants available in the literature, gives a fair

agreement with the experimental results. The relaxation time is very sensitive to the interchain coupling and a
fitting procedure to our experimental data yields an interchain coupling of (5 ~1)%%uo of the intrachain coupling.

I. INTRODUCTION

Nuc«ar-spin-lattice relaxation in the ordered
state of magnetic insulators has been the subject
of a number of experimental as well as theoretical
publications. ' ' A theoretical review of the most
important processes has been given by Beeman and
Pincus. ' In the majority of papers a qualitative
agreement with the behavior of one or more dom-
inating processes was concluded. Quantitative
agreement between the experimental data and the
calculated relaxation rates has been obtained in
only a few cases. The two-magnon (Raman) pro-
cess, which is allowed if the interaction contains
terms like I S', was shown to be effective in the
relaxation of "F in the three-dimensional Heisen-
berg antiferromagnet MnF, .' In the two-dimen-
sional ferromagnetic layers in CrCl„ the rel.ax-
ation of "Cr was found to be in quantitative agree-
ment with the exchange-enhanced three-magnon
process. '

Recently, the spin dynamics of the nearly-one-
dimensional Heisenberg system (CH, )4N MnC1,
has received considerable attention. "'" The
relaxation of the protons in the paramagnetic state
was interpreted on the basis of a direct process,
which was possible because of the vanishingly
small energy gap and the characteristic one-di-
mensional dispersion relation. " In the ordered
state of such a system one might anticipate a dra-
matic influence of the small interchain interactions
on the density of states, because in the (nonphysi-
cal) limit of the (ordered) purely one-dimensional
case the density of states diverges in the origin
of the k space.

In view of this we thought it worthwhile to study
the relaxation mechanism of the nearly-one-di-
mensional. antiferromagnet CsMnC13 2H,O in the
ordered state. This system is particularly at-
tractive because its crystallographic and mag-

netic properties, including the spin-wave exci-
tations of the electron system, are well estab.-
lished, as will be reviewed in Sec. II. Moreover,
the presence of two magnetically nonequivalent
hydrogen nuclei, coupled to the electron-spin
system through dipole-dipole interaction, en-
abled us to apply a new technique of assignment
of the relaxation mechanisms, which uses the
ratio of the relaxation times of the two inequiva-
lent nuclei. This will be discussed in Sec. III
together with the theoretical treatment of the re-
laxation processes. In Sec. IV the results will
be summarized and discussed.

II. CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES

OF CsMnC13 2H20

The crystallographic structure of CsMnCl, .2H, O

is orthorhombic with space-group Pcca. '3 The
unit cell contains four molecular units and has the
dimensions a = 9.060, b = 7.285, and c = 11.455 A.
A detailed structure is shown in Fig. 1(a), where
H(1) and H(2) mark the two inequivalent hydrogen
sites in the unit cell. Slightly staggered chains
-Cl -Mn"-Cl -Mn"- extend in the a direction,
the Cl ions providing the intrachain superex-
change coupling between the Mn2' spins. The
Mn" ions on neighboring chains are linked by
indirect paths involving at least two intermediate
atoms. CsMnCl, 2H, O exhibits three-dimensional
long-range order below T„=4.89 K,""and the
spin structure is shown in Fig. 1(b)." The mag-
netic space group is P»c'ca' and the preferred
direction of the spin alignment is the b axis. The
paths of the exchange interactions are also de-
picted, J, is the intrachain interaction and J„J,
are interchain interactions.

The pronounced one-dimensional antiferromag-
netic character was observed in many experiments.
Inelastic neutron scattering on CsMnCl, 2D,O
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FIG. 1. (a) Schematic crystal structure of
CsMnC13 2H20. A set of nonequivalent protons H(1) and
H(2) is shown. (b) Spin structure in CsMnC13 2H20. J&

denotes the intrachain exchange interaction along the
a axis, J2 and J3 are the interchain interactions.

III. THEORY

Theoretical treatments on nuclear-spin-lattice
relaxation in three-dimensional ferromagnetic
or antiferromagnetic insulators can be found in a
number of publications. ' " In this section we
will restrict ourselves to the characteristics of
a nearly-one-dimensional case, a situation which
applies to CsMnCl, .2H,O. The available experi-
mental data show that the. spin-wave spectrum has
an energy gap and that the spin structure is col-
linear. The interactions between the electron-
spin system and the nuclear spins on the hydrogens
of the water molecules are mainly dipolar. In
that case the relaxation processes which can be
effective are the two-magnon process and the ex-
change-enhanced three-magnon process. We will
treat these processes in Secs. IIIB and IIIC to-
gether with the spin-wave spectrum and the den-
sity of states. Apart from the temperature de-
pendence of the anisotropy energy gap in the spin-
wave spectrum and the magnon-magnon interaction
perturbation used in the calculations of the ex-
change-enhanced three-magnon process, this treat-
ment is based on linear spin-wave theory and no
other renormalization effects are considered.
This approximation is certainly correct as far as
the magnon energies associated with wave propa-
gating in the chain direction is concerned. Skalyo
et al. "already showed that the energy renormali-
zation for this branch is only detectable far above
T„. For the out-of-chain excitations, however, a
10% energy normalization for the zone-boundary
magnons was observed. The influence of this
renormalization on the calculated magnon density
and relaxation rates may be qualitatively estimated
from the order of the change in these quantities
when the interchain exchange parameters are
slightly altered, as will be shown.

revealed that the spin-wave spectrum below T~
is highly anisotropic and the short-wavelength
magnon modes in the chains persist even at 2T~."
The line shape of the paramagnetic-e1. ectron-spin
resonance and the proton relaxation time in the
paramagnetic state were also explained with a
nearly-one-dimensional Heisenberg model, ' ' "
but there is a difference of a factor of 5 among the
estimated magnitudes of the interchain couplings
obtained from different experimental techniques,
as tabulated in Table I. The energy gap of the
spin-wave spectrum at zero wave vector e,/z =1.7
K at T = 4.2 K and 2.2 K at T = 1.5 K,"' and the
two values are consistent if the energy gap re-
normalizes proportional. ly to the sublattice mag-
netization. "

A. Spin-wave spectrum

We assume that the electron-spin system in
CsMnCI 2H,O can be described by the following
Hamiltonian:

K=-2Q J, (S, S„)
&t, m&

™2

—gp~II~ 8,' — $ ',
where the indices l, m refer to the plus and minus
sublattices, respectively, g is the g factor, p.~
is the Bohr magneton, and II& is the anisotropy
field. The exchange constant J, for a nearest-
neighbor pair (L, m) in the a, b, and c directions
is different and the slight zigzag of the chains
will be ignored. '
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TABLE I. Values of exchange constants in CsMnC13 2H)O obtained from different experi-
mental techniques.

Experiment Exchange constants (K) Reference

Paramagnetic
sus ceptibility

Neutron diff raction

J&/K = -3.0

J&/K = -3.53

J2+J3 =0.7x 10 J]

Line shift of ESR J&/K = -3.57 21

Perpendicular
susceptibility

J,/I( = —3.39

Specific heat

Line shape of ESR

NMR in the paramagnetic
state

J,/K = —3.3

between
= IJ31 =2x IO 'la&

I
»d

z, =zoo/J,
f
=2.sxio '/z,

/

1~21=3»&io 'I&)I »1~31

24

17

After diagonalization the spin-wave energy can
be expressed as

dipolar with the Hamiltonian for the jth proton

c(k) = Ie' —[2SJ(k)]'j'k,

where

(2)
-3

&N = —'Ye@I ~
' H gj"a

&&[S —3r((ri ' Si)'Fi ]

e„=4S(-O', —O', —J,) +g psH„,

J(k) =g&~e '~"'

=2(J, cos—,
' k„a+8, cos-, k, c+J, cosk, b),

and & equals the maximum energy of the spin-
wave spectrum. The minimum energy (energy
gap) &0 is given by c(k =0) and we have taken this
as a temperature-dependent parameter instead
of H„. The two modes of spin waves are degene-
rate in zero external field. This dispersion re-
lation is essentially different from that in the
paramagnetic state" due to the change of mag-
netic symmetry and the existence of long-range
correlations, in particular, perpendicular to the
chains.

B. Two-magnon process

The hyperfine interaction between the electron-
spin system and a proton is assumed to be purely

—gv, g~ 'js —Br„(r sJr„*j),
where y„ is the gyromagnetic ratio of the proton,
Ho is the external field, and r, is the position
vector of the lth electron spin with respect to the
position of the jth proton.

The calculation of the transition probability for
the process in which a spin wave of wave vector
k is scattered to that of k' accompanied by a nu-
clear-spin flip gives the relaxation rate of the
two-magnon process for the jth proton'.

(3)

1 2n
~(,), ., ——

@. (g psy„k)'G, ( j')I, ,

In this expression G, (j) is a "geometrical factor"
which is the part of the matrix element that de-
pends only on the difference of the quantization
axes of the electron spins and the nuclear spin
I, and on the geometrical positions of the electron
spins with respect to the position of the jth pro-
ton. It can be written as ""

G,h') =$~, "~I+,.~I'+ Q~„"~I &
I

',
m

~ k, ~

' = 4 sin 8[(1—3 cos'8, )' —9 cos (Q —Q, ) sin 6, cos 8, ]+ a, sin'8, cos 8,

+ —,
' sin8 cos8(1 —3cos'6, ) cos(Q —Q, ) sin8, cos8„
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where 8„$,are the angular parts of the spherical
coordinates of r„and 8, Q those of the total field
vector acting on the jth proton. Both are mea-
sured from a coordinate axis fixed to the crystal-
lographic axis. It should be noted that G,(j) is not
proportional to sin'6 and depends on &f&

—Q, . This
is not the case when one deals with hyperfine inter-
actions of the type AI. S.

I, is an integral which depends on the tempera-
ture and the spin-wave dispersion and is given by

&m &/ KT

I, = J,q,r, [(c /e)'+ I] [N(c)]'de. (6)

In this expression Ep and E are the minimum and
maximum spin-wave energy, ~ is the Boltzman
constant, N(e) is the normalized density of states:

1 V
" dS,

N, (»)' ~ J
I v;&(k)I '

which satisfies

FIG. 2. Examples of the magnon density of states
N(~) vs & for different sets of exchange constants. The
labels refer to (see Table Q: ESR: J~/f( =-3.0 K, J2
= J3=2x10 J&. 1d: one-dimensional limit with the
same minimum and maximum energies as ESR. ESH,
small k: the density in the small-k approximation for
ESR. ND1: Jg/~ =-3.53 K, J2 = J3 =0.35 x10 Jg. NMR:
J&/~ =-3.0 K, J2 =3.5x10 J~, J3=0. Only the shape
around a peak is depicted for each of the last two cases.

(8)

N, is the total number of spins in each sublattice
or the total number of states in each branch of the
spin wave and V is the volume of the sample. In
the actual calculation of I„ the small-0 approxi-
mation has widely been used. However, it cannot
be applied to a nearly-one-dimensional case be-
cause the density of states N(&) exhibits a peak
in the small-energy region which is of great in-
fluence and cannot be produced with the small-4'
approximation. In fact, N(&o) diverges in a purely
one-dimensional case. This forced us to calculate
N(&) numerically for given sets of exchange para-
meters. Examples are shown in Fig. 2 together
with the density of the purely one-dimensional
case, which can be written as

N(e) —(2/p)g(/2 P) ~~ (P P)
and that of the small-k approximation '

N(e) =(8v2 HS') '(J Z J ) '+to+(e- e,)'~ (10)

The calculated densities have large values in the
high-energy region which resemble the density in
the purely one-dimensional case. However, the
contribution of this part is not significant because
of the Bose exponential factor in Eq. (6). In gene-
ral. , one may safely state that whereas E in near-
ly-one-dimensional systems is mainly determined
by the strong intrachain interaction and T~ is
determined by the interplay of the inter and intra-
chain interactions, zone-boundary effects in the
relaxation times of these systems in the anti-
ferromagnetic state (T& T~) will. not be significant.

C. Three-magnon process and its exchange enhancement

in CsMnC13 2H20

The three-magnon relaxation rate is calculated
from the first-order transition probability in
which one magnon is annihilated and two are cre-
ated or two magnons are annihilated and one is
created when a nuclear spin flips. ~' ' ' The re-
laxation rate for the jth proton in our spin struc-
ture is

where G,(j) is the geometrical factor for the jth
proton in the case of the three-magnon process
and can be written as' "

+ V (12)

with

Thus, by measuring the proton relaxation time
we are dealing with the low-energy part of the
density of states and this strongly depends on the
degree of one dimensionality. Information about
the interchain coupling can thus be obtained from
the absolute value of T, . The method of numerical
calculation of the density of states used in this
paper is sketched in the Appendix.
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v,
' = —,

'
[6 sin8sin8, cos8,

+( I + cos 8)(1 —3 cos'8, ) e '( e

+3(lacos8}sin'8, e' ~ ~~ ]. (13)

I, is a summation over wave vectors or a double
integral, which depends on the temperature and
the magnon dispersion relation

I, = N, 'P P " [(n, +1)(n, +l)(n, )6(e, +e, —e,)+ (n, +1)(n,)(n, )6(e„-c, —e )] (14a)

(6m ~6]g &( ~1+ ~2)/K T

~&1/KT y &&2/KT y &( 1+ 2)/KT y & & & +~ 1 2 1 2 1 2&

0 0 1 2 1 2
(14b)

where &, means &(k, ) and (n, ) is the Bose distri-
bution function

In the derivation of (14) we used the approximation

[e„ie(k)]' » 1. (16)

Especially in the nearly-one-dimensional case
this approximation should be quite good as dis-
cussed in Sec. IIIB.

This type of calculation of the three-magnon
process has been shown, however, to underesti-
mate the three-magnon process, because there
are other transitions that involve identical initial
and final states." This process, which is called
the exchange-enhanced three-magnon process, is
calculated from the probability of second-order

transitions via the four-magnon terms in the ex-
change interaction plus the one-magnon terms in
the hyperfine interaction. The effect was observed
in the ferromagnetic layers in CrCl„' and was
also predicted in the antiferromagnetic case. The
prediction based on the Dyson-Maleev represen-
tation~ was different from the original prediction
based on the Holstein-Primakoff formalism. '
Here we recalculate the process in the case of
dipole-dipole hyperfine interaction and our spin
arrangement, using the Holstein-Primakoff forma-
lism which is easier to understand. "

Expanding the Hamiltonian (1) with the spin-wave
operators in the Holstein-Primakoff representation
and keeping terms down to order S, we obtain
the magnon-magnon interaction (or exchange-
scattering) term

R',„=(2') 'g gg g 6(k, +k, —k, —k4)(& e„)'(e,e, use~)
u,

x [2/(k, -k )+2J(k, - k~) -J (k, ) -J(k, ) -J(ks) -J(k~)](a,*a,*a,a4-2a,*p,a3a,

2a,*a.*—a.P.*+4a,*P.a.P,* —2~*P.P.*P,* 2P, P.a—.P.*+P,P.P.*P,*),

where a&, a,*, P; and P&* are t. he creation and an-
nihilation operators of spin waves of wave vectors
k,. in the a and P branch of the spin-wave spectrum.
In the evaluation of (17) the "small-energy" ap-
proximation (16) is used. No use has been made
of the small-k approximation.

With approximation (16) the one-magnon term
of the dipole-dipole hyperfine interaction (3) will
be

1/2

&', =I+ Q &g'(-~&~ goer~@)Ne' Z
2&(k)

x[v,'e '"'(a-„—&)+v, e'"'(ag- p„-)]

+I', ( ~ ~ ),

where I+ is a nuclear-spin operator in the co-
ordinate system whose z' axis is parallel to the
total field on the jth proton. Calculation of the
second-order transition probability, in which
X1 +X',„ is taken as a perturbation, gives the re-
laxation rate for the jth proton that can be written
as

2w
(„) (j) = —Q))ey„k}'G,(j)I„
1

(19)

G,(j) is the same geometrical factor as in the
case of the first-order three-magnon process.
I„is a summation over wave vectors and is given
by
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(M') [(n, + l)(n, + 1) (ns) 6(s, + e, —s, ) +(n, + 1)(n,)(n, 6 e, —e, - s,16$ ~ ~ ~ g g g j. 2 3 1 2
ky k2 k3

(20)

where

(M'] = —([M(k„k„k,)] + [M(k2, k„k,)] + [M(k3$ kJ j k2 (21)

with

+ 2 3 ~
— —k —2J k~ —k2) —2 J(k~ —ks)] s~/[e(k~ —k2 — 3)M k k k ) =4~[&(k )+&(k,)+J(k,)+J(k, —k, —k, )—]s 2~ 1 (22)

' f t f om I by a wave-vector-dependent
factor y q inyM'j~ the summation. It is rather trou e-

1t I the nearly-one-dimensionasome to calculate 3g ln
case because wewe cannot take the angular average

in the isotropic three-dimensional case. e
therefore calculated the averages o nu

ically for such values of ] 2 3,k k and k„correspond-
sk) anding o cert ertain sets of energies & k, , &

a M( ) that satisfy a 6 function. In this way (
is calculated as a function of &(k, ) and s, »

me double in-that I„can be reduced to the same
tegral that occurs in equation (14b), except for
the multiplication by the energy- per -de endent factor
(M'] ' the integrand. A typical functional form
of (M') is shown in Fig. 3. The enhancement it-

f d ot diverge for vanishing energy gap
of M'as is seen from the low-energy limit o

where the numerator of Eq. (22) is a small quan-
tor whichof hi her order than the denomina o

sed on theis in agreement with the theory base on
D son-Maleev representation. 'ys

If the structure contains nonequiva ylent h drogen
positions, e eth ffective fields at these sites will

lbe differen . ist This will affect the geometrica
on of the ef-factor G„as it contains the direction of the e-

f' ld with respect to the el.ectron-spin-
uantization axis and the position of the pro on.quan iza ion

The temperature-dependent integra, , wral I . however,
is eth same for inequivalent proo ons. From in-

] fac-spection i can e't be seen that the geometrica
tors of the two-magnon and the three-magnon
processes are different. Therefore, the ratio
of the relaxation rates at inequivalent positions
ma ive an. indication of the effective process.may give an .in ica i
The temperature dependence o e rof the relaxation
rates is mainly determined by the Bose distribu-
tion functions in the integrands 2 3e.of I and I,. Apart
from the numerical values of the rerelaxation rates,
the temperature dependence ten s o vends to favor the two-
magnon process a owt l temperatures and the three-
magnon process at higher temperatures.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The measurements reported in this article were
performe wid th an ordinary incoherent, frequency-
variable pulsed NMR spectrometer (Matec Model-
6600 with homemade timing system). The same
single crys a sl tais were used as in the steady-state
experiments. The spin-lattice relaxation time
f th rotons was measured by observing the re-

covery of a free decay or a spin-echo signal,
saturation with a comb of rf pulses. The recovery
was exponen iat' l over at least one decade. Echo
signals in zero app ie il' d field were observed in some
of the crystals, but the values of T, were repro-
ducible. Conventional cryogenic techniques were
used to cover a measuring temperature range of

1 and H(2) were
1.1-3.9 K.

The relaxation times for both H( ) an
i . 4. Themeasured and the results are shown in Fig.

values o, incref T ' ase sharply with decreasing
1temperature. The absolute value of T, of H

(M

/ / / / /
Co

0

. 3. T ' al form of a wave-dependent factor M2)(FIG. 3. ypica
as a function of e (ki) and e(Q).
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Cs Mn Cl3 2H20

on time T1

ature 2 magnon

3 magnon

1 2 3
T(KI

FIG. 5. Ratio of the experimental relaxation rate of
H(2) to that of H(l) versus temperature. The calculated
ratio of the geometrical factors for the two-magnon pro-
cess and that of the three-magnon process are also
shown with broken lines. The solid line represents the
theoretical estimate based on the numerical calculations
with J&/x=-3. 53 K; J&=5x10 J&, and J3=0.

10

10 I

3

T(K)

TN

ti
5

FIG. 4. Experimental spin-lattice relaxation times of
H(1) (circles) and H(2) (triangles) versus temperature.
The solid lines are "eyeball" fits to the data.

mill be discussed later. First, we will sketch
experimental trials to assign the relaxation mech-
anism. The ratio of the measured relaxation rates
of H(2) and H(1) is shown in Fig. 5. This ratio
must be constant if one relaxation mechanism is
dominant in the whole temperature range because
the difference of the relaxation rate for H(1) and

B(2) originates from the difference in the geo-
metrical factor as discussed before, whereas a
change of the positions of the protons with tem-
perature is improbable. Fortunately, the direc-
tions of the dipole fields at the sites of H(1) and

H(2) are quite different. " The calculated ratio of
the geometrical factors for the two-magnon pro-
cess G,[H(2)]/G, [H(1)] and for the three-magnon
process G,[H(2)]jG,[H(1)] are shown in the same
figure. These ratios can be considered as the
ratios of the relaxation rates for both processes,
because both temperature-dependent integrals I,

and I„are the same for H(1) and H(2). The ex-
perimental ratio changes from a value close to
the two-magnon value to that close to the three-
magnon value with increasing temperature. The
drawn curve in Fig. 5 represents an estimate
based on numerical calculations, which will be
discussed later.

The angular dependence of relaxation rates with
changing direction of the applied field were re-
ported in some cases. '"'" In Figs. 6(a) and 6(b)
the angular dependence of T ' of proton H(1) is
shown for the temperatures 1.50 and 3.21 K. The
applied field was rotated in the bc plane and its
magnitude was adjusted in order to observe the
same resonance line at fixed frequency. In the
same figures the angular dependences of the cal-
culated geometrical factors, which are normalized
to the values in zero field, are also shown. These
figures reveal that the situations are quite dif-
ferent at T = 1.50 and 3.21 K. The external field
seems to have a strong effect on the spin-wave
dispersion and not only on the geometrical factors.
These figures, however, indicate that we really
are measuring the relaxation time of the proton
system and not the relaxation time of the electron
spins, because the experimental patterns have no
symmetry around the & or c axis.

To simplify the interpretation, we also measured
the relaxation rates as a function of the external
field in the b direction. We only present data of
those symmetry-related protons whose internal
fields made the largest angle with this direction,
in order to obtain a larger directional change of
the total field at the proton site. The effect of the
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FIG. 6. Angular dependence of the experimental relax-
ation rates for H(1) at 1.50 K and 10.0 MHz (a), and at
3.21 K and 11.02 MHz (b), where the applied field was
rotated in the bc plane. The broken lines show the cal-
culated angular dependence of the geometrical factors
which are normalized to the values in zero field (right
scale).

external field is only to lower and raise the n, P
branches of the spin-wave spectrum. No additional
mechanisms have to be considered and the expres-
sions for the geometrical factors (5) and (13) will
remain the same. The experimental results of
this field dependence for H(1) are shown in Fig. 7.
The ratio T, '[H(2)J/T, '[H(1)J is plotted in Figs.
8(a) and 8(b), at the same temperatures as before,
together with the calculated field dependence of the
ratios of the geometrical factors. The experimen-
tal data points are close to the calculated ratio for
the two-magnon process at 1.50 K and close to the
calculated ratio for the three-magnon process at
3.21 K. This again is a strong indication that the
two-magnon process is dominant at low tempera-
tures and the three-magnon process dominates at
high temperatur es.

Now let us turn to the actual calculation of the
relaxation rate as a function of temperature. The
geometrical factors are given in Eqs. (5) and (12).
The relevant parameters such as the spin struc-
ture, the magnitude and direction of the effective
field, and the position of the protons were taken

3 (Tlag

I I

2 3

Hp (kOe)

FIG. 7. Field dependence of the experimental relaxation
rates for H(1) at 1.50 and 3.21 K, where the direction of
the applied field was fixed to the b axis and the operating
frequencies were changed. The dotted and broken lines
denote the calculated geometrical factors normalized to
those in zero field.

from Spence, De Jonge, and Rama Rao." The
summation was carried out over 24 Mn" ions
within a distance of 10 A from the proton site. The
resulting values are

G2[H(1)] = 1.69 x10 cm 6

(23)

G~[H(1)J
= 9.02 x 10 cm 6 .

The temperature-dependent integrals I, and I3,
are given by Eqs. (6) and (14). The relevant pa-
rameters are E'p Jy Jz and J,. For E'p we took
the values and temperature dependence quoted by
Skalyo et al." In Table I several sets of exchange
parameters obtained from different experiments
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FIG. 8. Field dependence of the ratios of the experi-
mental relaxation rates for H(2) to that of H(1) at 1.50 and
at 3.21 K, where the applied field is parallel to the b

axis. The calculated ratios of the geometrical factors for
the two-magnon and three-magnon processes are also
depicted.
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N01'

ND2

F1

are tabulated. For each set of parameters the
relaxation time was calculated. Results are shown
in Fig. 9. The contributions from the two-magnon
process and the exchange-enhanced three-magnon
process are plotted separately. Generally, the
calculated curves are slightly higher than the ex-
perimental data points. However, it should be
emphasized that no adjustable parameters have
been used in the calculations. In view of this we
feel that the agreement with the experimental data
is rather satisfactory. Figure 9 also shows that
the temperature at which the relaxation rates from
the two calculated processes become equal is
around 2.5 K for all the different sets of param-
eters. This fact agrees well with the evidence
obtained from the experiments discussed before.

The values for the interchain coupling found in
different experiments display a considerable scat-
ter. Probably, however, J,»J„a conclusion
which agrees with the conjectured relative mag-
nitudes of the interchain coupling based on the
crystallographic structure. " In view of this, we
tried to fit the data with J, as an adjustable pa-
rameter and J, = —3.53 K and J, =0. A best over-
all fit on the sum of the two processes was ob-
tained for J, =5x10 ' J,. The results of this calcu-
lation were also used in the construction of the
estimate of the ratio T, '[H(2)J/T, '[H(1)J plotted
for comparison in Fig. 5. Also shown in Fig. 9
is the calculated relaxation rate of the first-order
three-magnon process for the same set of exchange
constants. From the comparison with the ex-
change-enhanced three-magnon relaxation rate the
enhancement factor was found to be approximately

ESR

0.1
0

0 I

I

l
F'

I

1

) I
2 3

T (K)

FIG. 9. Examples of the calculated relaxation rates
versus temperature for different sets of exchange con-
stants. The dotted lines denote the two-magnon relaxa-
tion rates and the broken lines denote rates of the ex-
changed-enhanced three-magnon process. The lables refer
to.

ND1: Jg/K =-3.53 K, J2 = J3=0.35x10 J&.

ND2: J&/g =-3.53 K, J2 =0.7x10 J&, J3=0.
ESR: J&/~ =-3.0 K, J2 -—2, 6x10 Jfa J3 0.

F: J&/K =-3.53 K, J2=5x10 J&, J3=0.
The two sets ND1 and ND2 fit with the neutron-diffraction
result (see Table I). ESR is a sample of the range for
J2 and J3 indicated by line-shape ESR experiments. The
values for the exchange constants that result in a best
fit to the experimental data points are marked F. The
sum of the rates of the two- and three-magnon process
for F is denoted with the solid line. The rate of the
first-order three-magnon process for F is also shown
with the label F1.
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40 in this case.
Concluding, we would like to note that, to our

knowledge, this is the first example in which the
interplay of the two relaxation mechanisms is
demonstrated both experimentally and from basic
calculations. Experimentally, the use of the ratio
of the relaxation rates at nonequivalent nuclei has
been shown to be very helpful in the assignment
of the effective mechanisms. The calculations
showed that, within the framework of existing the-
ory and without adjusting parameters, a satis-
factory agreement between experiment and the-
ory could be obtained.

ACKNOWLEDGMENTS

The authors would like to acknowledge Professor
P. van der Leeden for his encouraging interest.
We thank Dr. C. H. W. Swuste, K. Kopinga, and
J. P. A. M. Hijmans for their helpful discussions
and for the critical reading of the manuscript.
The assistance of M. C. K. Gruyters and
J. G. H. M. van Amstel is also gratefully acknowl-
edged. One of the authors (H. N. ) wishes to ex-
press his deep thanks to the Magnetism Group,
Eindhoven University of Technology for their warm
hospitality during his stay.

APPENDIX: NUMERICAL CALCULATION OF
DENSITY OF STATES OF MAGNON

IN CsMnC13 2H20

N(e, k„kg) = (2/w) e(e~ —e') ' '((4Sj,)'
[Q+(ea ~ )

/ j2) 1/2

with

(24)

A =4S (J, cos&k, c+ Z, cosk, b) .

The density of states N(e) is now calculated by
averaging N(s, k„k,) over an array of points in
the k, —k, plane.

A direct numerical calculation of the surface
integral for the density of states (7) is complicated
and extremely time consuming. It can also be done

by taking a large number of points uniformly in
the first Brillouin zone of the k space, calculating
the energy s(k) for each point, and counting the
number of points whose energy falls into a certain
interval around e." This method also takes a long
time. We used the following modified way in the
case of our spin structure. For fixed k„k„ the
distribution of the number of points as a function
of c can be written as
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