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Recently considerable interest has focused upon materials which change spatial dimensionality as the
anisotropy parameter R is varied. Here we calculate the high-temperature series of the two-spin correlation
function for the classical Heisenberg (D = 3) and planar (D = 2) models with lattice anisotropy. The
Hamiltonian is
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where S&,. ~ is a classical spin of D dimensions, the first summation is over a11 nearest-neighbor pairs in the xy
plane, and the second sum is over pairs of spins coupling adjacent planes. The two-spin correlation functions
are used to obtain the susceptibility (X), specific heat (CH) and spherical moments (j(L, ) as double power series
in J,y/k~ T and J,/k~ T on both the simple-cubic apd face-centered-cubic lattices. All series are to tenth order
except for the Heisenberg model on the simple-cubic lattice which is to ninth order. The family of nth
derivatives with respect to R are analyzed for the susceptibility and the spherical moments. By considering
these functions in the limit R = 0, we obtain evidence concerning the possibility of a phase transition for the
two-dimensional (d = 2) lattice. Our evidence rests upon standard methods, as well as on two new sequences
(based on scaling in the parameter R): 5„ i

=—p„, —p„, , —q T,/l T, " and 5„ i
—n p„ 1 i

—(n —1) p„ i

(T~/T~ )[(&p —1)/I+1]. Here p„ I
—=

(aI+fg fg/a(~„ l„)/ai p, where a«are the coefficients in
~« =- a"X//aR ~ Z,"„aI„(J&y /kT). Much of the evidence for the cases considered in this work (D = 2,3) is
strengthened by comparison with the exactly known situations D = 1 (Ising model) and D = ~ (spherical
model). Subject to the assumption that scaling in R holds, we estimate that the susceptibility exponent for the
classical planar model is yp(D = 2) = 2.53+p'28. The evidence for the Heisenberg model is not as convincing, but
if a phase transition does exist, then our methods suggest a susceptibility exponent of' yo(D= 3)= 3.5.

I. INTRODUCTION

Onsager's' quadratic-lattice Ising model, which
concerns a one-dimensional (D= 1) spin space, has
a critical point located at T,/T", r =0.6667, where
T", is the mean-field-theory critical temperature.
Yet the quadratic-lattice spherical model, ~' which
has been shown to be equivalent to an infinite-di-
mensional (D = ~) spin space, 3" exhibits no phase
transition, i.e. , T, =0. Hence the natural question
arises: At what value of D does the phase transi-
'tion disappear?

Since D & 3 has not been shown to correspond to
any real material, we will concern ourselves only
with the question: Does the phase transition exist
only for D = 1or does it persist for D = 2 or D = 3?
The value of D = 3, corresponding to the classical
Heisenberg model, is of particular interest, since
as isotropic three dimensional spin space has been
used for many years to describe magnetic systems.
Also of importance is the D=2 case, the classical
planar model, which corresponds to helium near
the X point. '

Mermin and %hgner adopted a technique of Hohen-
berg, ' which uses the Bogoliubov inequality, to

show rigorously that there cannot be any spontane-
ous magnetization for D = 2 and D = 3 for a two-di-
mensional (d=2) lattice. This naturally leads one
to doubt that the phase transition could occur at all.
But as Stanley and Kaplan' pointed out, this behav-
ior does not preclude the existence of a phase tran-
sition. Perhaps other physical quantities will show
a singularity at T ) 0 even though the spontaneous
magnetization does not. After analyzing high-tem-
perature series of the susceptibility of various two-
dimensional lattices for the classical Heisenberg (D
=3)and, later, the planar8 (D=2) models, itwas pro-
posed that the susceptibility diverged at a nonzero
critical temperature. Moore obtained additional
evidence for the plane triangular lattice by extend-
ing the series and by analyzing the spherical mo-
ments

jtL]—= r (~ r (1.1)
r

where Ca(r) is the spatial two-spin correlation
function. He reasoned that p, , especially for t & 0,
might be a better quantity to study than the suscep-
tibility (t =0), since the two-spin correlation func-
tions far from the origin weight the lattice counting
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more strongly than the effects of the Hamiltonian.

Further evidence for the existence of a phase
transition was put forth by Mubayi and Lange. ' '
Developing a Green's-function decoupling to de-
scribe the thermodynamic behavior of the spin- —,

'
Heisenberg model, they found that not only did the
static susceptibility diverge [as 1/(T —T,), where
T, =27/k~], but that the spontaneous magnetization
remained zero for all T ) 0 (consistent with Mermin
and Wagner' ). Still one might have doubts that the
transition actually occurs, especially in light of
how much the divergence looks like mean-field be-
havior. (In mean-field theory a transition exists
for all spatial dimensions. ) To overcome the fact
that some decouplings appear to give a transition
and others do not, Oguchi' " has recently applied
a variational technique to the antiferromagnet and
reproduced analogs of the Mubayi-Lange results.
Additional support of a phase transition has been
put forth by Berezinskii" by considering low-tem-
perature expansions with an external field.

In the present study we investigate the planar
(D = 2) and the classical Heisenberg (D = 3) models
using high-temperature series for the two-spin
correlation functions. We employ the concepts of
"scaling" and "crossover" when a system with
lattice anisotropy (different coupling strengths
in different lattice directions) changes universality
classes. In Sec. II we describe the Hamiltonian
which is used to study the two-dimensional behav-
ior. Also discussed are the predictions of scaling
and the consequences they have on this problem.
In Sec. III we describe the series expansions and
comment on their accuracy. Contained in Sec. IV
is a discussion of the methods of analysis used to
study the high-temperature series presented in the
Appendix. Here we propose two new methods of
obtaining the critical indices. Included with the
methods of analysis are discussions pertinent to
the results of each method. Finally, in Sec. V we
present our conclusions.

II. MODELS AND SCALING PREDICTIONS

T, (R) —7', (0) -R"' (2. 2)

where Q is the crossover exponent and T, (0) is the
critical temperature for the two-dimensional lat-
tice. Furthermore, physical quantities such as
the susceptibility

X =+C, (r) (2. 3)

can be expanded as a power series in'A

n=0

where the coefficients f„are given by

(2.4)

(2. 5)

and

y„=y +own() (2. 6)

where yo is the two-di, mensional susceptibility ex-
ponent. Hence by differentiating X with respect
to 8 and allowing R to go to zero, we obtain

s"& T,(o))
""

aR" ~ 0 T (2.7)

This functional form is easily derived using
the generalized homogeneous function approach to
scaling. "' It is important to point out that other
quantities (such as p, , and specific heat) show simi-
lar crossover behavior when derivatives with re-
spect to A are taken. Of particular interest for
this paper are the spherical moments, Eq. (1.1),
for which

of spins whose relative displacement vector has a
z component. The quantity R=- J,/J~ is the ratio
of interplanar to intraplanar coupling strengths and
is referred to as the anisotropy parameter.

As R- 0 in the Hamiltonian (2.1), the critical be-
havior crosses over from that of a three-dimen-
sional lattice to that of a two-dimensional lattice.
Scaling theory' '" predicts that the critical tem-
perature T,(R) varies with R for small R as

We define the Hamiltonian for a d =3 lattice with
anisotropy as

Q S&(». S(D) g Q S &D) S(&))

8 p, T (0)'(-('n&)&
c

BR" ~0 T )
where

v„(t) = tvo+yo+n(I)

(2. 3)

(2. 9)

S' '
~ S~ '+R S,' '

~ S' ', 2 1

where S,~' is the D-dimensional classical spin
(D =1, 2, 3, and ~ are the Ising, classical planar,
classical Heisenberg, and spherical models, re-
spectively) located at the ith site of the lattice.
The first summation is restricted to nearest-neigh-
bor (nn) pairs of spins which lie in a common xy
plane while the second summation is over nn pairs

and where po is the two-dimensional correlation-
length exponent.

For the spin--,' Ising model (D = 1), where T,(0)
is known exactly, ' various other studies' ' have
been performed on X, p,~, and the reduced specific
heat C~. After some initial disagreement, ' '7 it
is now believed that scaling with a parameter holds
for lattice dimensionality crossover. ' Further-
more, it is believed that the crossover exponent (f)
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is equal to the two-dimensional susceptibility ex-
ponent yo. In fact, Liu and Stanley have shown

X ~ [~(0)]2
~R z=o

for all values of the spin dimensionality D. Hence
they have demonstrated that y, = 2yo. They have also
shown for the Ising model that the n = 2 and n = 3
derivatives of X and p,,are bounded on both sides by the
two-dimensional quantities y(0) and p, 2(0) raised to
powers. For example, on the simple cubic lattice,

(2. 10)

.(2. 11)

Using the renormalized linked-cluster expansion
theory of Wortis, Jasnow, and Moore, the two-
spin correlation functions C2(r) were obtained as
power series in inverse temperature for a judi-
ciously chosen set of J~ and J, values. The per-
tinent physical quantities were found for each of the
(J~, J,) values. These quantities were then ob-
tained as double power series in J~/k~T and R —= J,/
J~ by solving a system of simultaneous equations
using the set of expansions for particular J and

J, values as knowns. From C2(r) the reduced sus-
ceptibility

)(.'(J, J,) -=~,"=Q C, (r)
r

(3.1)

various spherical moments p,„and the reduced
specific heat

C„(J,J ) =— "= ——,
' T—P Jg C2(5)

5

(3.2)

are obtained. Here J; corresponds to the nn inter-
actions J~ and J,.

The general-R expansions take the form

and

(=P Pa„,( ) R.',
p, = Q Q 5„~(R( )

R'

C„=k TQ Qc„,( ) R'

(3.3)

(3.4)

(3.6)

Since the specific heat has contributions only from
the nn correlation functions, a large number of the
double-power-series coefficients c„& are identically

This clearly indicates that, at the very least, one
can expect the derivatives to have the same critical
temperature. Although the inequality necessary to
derive the bounding relationships has been derived
only for the D =1 case, "one should not conclude
that similar inequalities for the higher spin dimen-
sions will not eventually be proved.

III. SERIES

zero. For the sc lattice c„&=—0 if j or n is odd,
while the fcc lattice requires c„,. =-0 only for j odd.
Because CH involves a derivative with respect to
temperature, the effective order of the expansion
in 1/kaT is one larger than the order of )(. Hence
if it were not for the fact that c„&=—0 for j odd, an
extra set of (J~, J,') values would be required in
order to solve the system of simultaneous equa-
tions.

Tables I-III and the Appendix contain the general-
R series coefficients for ~y", g ', p, ',", p, t', C„'",
and C~' for D=1, 2, 3, and ~.

There are some interesting tests that can be
performed on the general-R polynomials to check
their accuracy. (a) As R approaches zero, the co-
efficients must take on their two-dimensional val-
ues. While these expansions are to a higher order
than previously calculated for the square (quadratic;
lattice, the known coefficients agree with our re-
sults. '0 (b) When R=~ (i. e. , J, =1 and J~ =0) the
diagonal elements of the simple cubic polynomials
are the linear chain coefficients while the diagonal
elements of the face-centered-cubic polynomials
are the body-centered-cubic coefficients. " (e) The
isotropic three-dimensional coefficients are ob-
tained by setting R =1, that is, by summing the co-
efficients in the tables horizontally for the sc and
fcc lattices result.

Additional checks that measure the accuracy of
the coefficients utilize rigorousproofs developed
by I iu and Stanl

X"'=a(J /kBT) (X"')' (3.6)

and

~(1& g(J /k T) [(~(0&)2 ~2X(0& ~(0&] (3.7)

where the superscript again equals the number of
derivatives with respect to R, and where g is the
number of out-of-plane nn bonds (g = 2 and g = 8 for
the sc and fce, respectively). These relationships
are true for any two-sublattiee structure which is
connected by an aniaotropy parameter. Hence
there is a similar set of equations for the linear
chain limit of the sc problem. The difference is
that g = 4 and the derivatives are taken with respect
to 1/R. (We have also found these relationships
useful in checking series involving second-nearest
neighbors. 22)

We have solved the simultaneous equations both
with and without the use of (3.6) and (3.7). Hence
by comparing the two sets of solutions we have an
estimate of the accuracy of the coefficients. We
believe that due to computer roundoff and the gen-
eral approach of obtaining polynomials by solving
simultaneous equations, the number of accurate
significant digits is approximately

(number significant digits) = 19 n- D . (3-. 8)
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TABLE III. Coefficients c„& in the reduced specific-heat series for. the classical Heisenberg model
on the sc lattice. Note that c& ——0 for j odd or n odd.

n=2 /=0

2
4
6
8

10

2
84

—6. 857 142 857
—55. 024

—204. 517403

1
24 —1.8

468 —12
3 985. 92 18gg. 072

29 099.725 71 55 231.817 5

2. 571 428 571
—1.28
453. 394 281 3

10

—3.24
13.371 429 95 3.787 012 794

Here n is the corresponding order of the high-tem-
perature series coefficient. Hence for a tenth-
order coefficient of the Heisenberg model (D= 3)
the number of significant digits is approximately
six. As there are variations in the accuracy of the
coefficients depending on the lattice and on the
power of R, Eq. (3.8) should not be relied upon
too strongly.

In Sec. IV the coefficients will be used to test
the concept of scaling and whether or not there is
a nonzero T, for R =0. Furthermore, the numbers
may be used to shed light upon certain antiferro-
magnetic structures. " Also, it is hoped that the
Heisenberg series will be of some help in under-
standing layered magnetic compounds (R small),
especially with respect to specific-heat data, ~' and
that the planar model series will be of some use to
the thin-film liquid-helium experimentalist.

IV. SERIES ANALYSIS AND RESULTS

In the Appendix ~ high-temperature series for
the susceptibility, second moment, and specific
heat for the planar and classical Heisenberg mod-
els on both the sc and the fcc lattices are pre-
sented. In addition, the same series for the spin--,'
Ising model37 have been published. All of these se-
ries, along with various spherical moments p, ,
(t &0) for all three models (D =1, 2, and 3), have
been analyzed using the traditional methods of ratio
tests~8 and Pads approximants (PA's). 2' '0 In addi-
tion, two new sequences applicable to the cross-
over problems are developed and discussed.

With the large number of series and methods of
analysis available, more information has been ac-
cumulated than can be presented here. In the fol-
lowing paragraphs we show representative results
and discuss other pertinent analysis.

A. Ratio tests

Consider a finite series, e. g. , the susceptibility

(4.1)

with

l

A) =—~a, R

then the nth derivative with respect to R, evaluated
at R = 0, is given by

(4. 3)

The ratios p„, are defined by

pn, l Q~+n, n/og o a~+n-g, n ~
I = 1, . . . , 2 -n . (4.4)

Assuming that

(4. 5)

and performing the customary Taylor series ex-
pansion on Eq. (4. 5), we find

(4.8)

Here the mean-field critical temperature for the
d=2 lattice is given by T, =J~/k~a~ ~. Byplot-
ting the ratios versus 1/l, a set of curves that
should, for all n, intercept at T,/T, is obtained.
Furthermore, since the scaling hypothesis predicts
that y„[Eg. (2.8)] should increase with n in con-
stant increments of Q, the slopes of each of these
curves should increase by PT,/T,"F.

In Fig. 1, ratio plots for the Ising, planar, and
classical Heisenberg models for the first five R
derivatives to the y"' series" are presented. The
similarities between the sets of ratios are consis-
tent with the scaling predictions. There are a few
differences, though. For the zeroth and the first
R derivatives of the Ising-model series, a consid-
erable amount of oscillation occurs in the ratios.
This is in contrast to the ratios of the other models
which show less oscillatory behavior and more of a
slight downward curvature. In fact, it is this cur-
vature which might lead one to speculate that the
ratios for these models are going to turn downward
and eventually oscillate wildly as do the two-dimen-
sional spherical model ratios. However, downward
curvature is not sufficient to argue against a phase
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0.488
5, 15

0, 500
4. 62

(n =1)
4

0.493
5, 01

0.481
5. 80

0„446
9.84

0.429
13.57

0.498
4, 76

0.495
4, 83

0.510 0. 510
4, 38 4. 36

0.467
6. 94

0, 495
4. 85

0.498
4. 74

0. 510
4. 36

0, 510
4, 38

0.483
5. 59

0. 505 0.495
4. 50 4. 79

0.455
9.74

(n =2)

TABLE IV. Pade approximants (PA's) for the loga-
rithmic derivatives to the first five g" series are shown
for the planar model Q =2). Using this method, . indepen-
dent estimates for T,/T, (upper number) and y„(lower
number) are obtained. The zeroth R-derivative table is
not shown because the PA's for &,/T, and yo are identi-
cal and one-half the values, respectively, of the n=1
table values. This is a consequence of Zq. (3.6). Note
that for larger n the T~/T~ values are more convergent
(but smaller) than for smaller n.

berg model (n=0-5, y, and p, for various t). Here
it is found that while the two-dimensional series
have a large number of singularities in the PA's
which are complex, the higher 8 derivatives (n ~ 2)
produce a large number of real ferromagnetic
poles. However, these poles have not yet settled
down sufficiently for one to claim a convergence.
Also calculated were the PA's for the 8 derivatives
to X" for the spherical model. These approximants
give far fewer real poles (e. g. , hardly any for
n~ 2). This seems to be an indication that the se-
ries for the Heisenberg model (D = 3) are behaving
differently from the spherical model (D =~) series
for which T, =O.

For the sc lattice series, the PA's for all the
models (D=1, 2, 3, and ~) show a persistent anti-
ferromagnetic zero. Convergence to the desired
physical singularity can sometimes be improved in
cases like this by performing a transformation on
the series to move the antiferromagnetic singularity
farther away from the orgin of the complex Z plane
(K=J~/k~T). Since when going from one value of
n to another this spurious singularity moved about
considerably, and because the singularity was not
found on the fcc lattice series at all, the transfor-
mations were not employed extensively.

0.483
7.98

0.488
7. 77

0.498
7, 01

0.444
17.69

0.488
7.74

0.483
8. 06

0.490
7. 56

0.495 0.490
7.16 7.64

0.490
7.47

D. Sequences to obtain PT, /T, "

Returning to the ratios as plotted in Fig. 1, some
interesting sequences can be obtained. Using the
expression for the ratios [Eq. (4.6)] (Z„could be
replaced by any of the appropriate scaling expo-
nents) and the scaling hypothesis [Eq. (2.6)], one
obtains

(n =3) p„, = (T./T, F) [(Z, +nP —1)/1+1] . (4. 6)

0.476
ll. 62

0.474
ll. 68

0.474 0.476
ll. 67 11.57

0.476
11.62

If p„, , is subtracted from p„& two special se-
quences are obtained,

(4. 9)

0.476
14.41

0.476
14.43

0.476
14.42

(n =4)

0.476
17.47

(n =5)

spherical moments, are consistent with the values
found from y, they are not any better.

A similar analysis was performed on the many
different sc and fcc lattice series for the Heisen-

lh„, =l(p„, —p„~,) =&f)(T,/T, )+O(1/l) . (4.10)

In Fig. 1, 6, , represents the vertical space be-
tween two points on the n -1 and the nth R-deriva-
tive ratio plots. Even though all pairs of ratio
curves are getting closer together (n,„,getting
smaller) as l increases, only if the scaling hypoth-
esis is true will all the 6„,sequences have the
same exponent Q and critical temperature T,. The
value of 4„, can be plotted versus 1/l, and the se
quence should converge to the origin as E- ~ (note
that only if all the R derivatives produce the same
T, will this sequence vanish as l- ~). Since the
intercept of the plot is known precisely to be zero,
the slope of the curve can be estimated to give QT, /
z4t F

In Fig. 2, one of our many plots for this type of
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iI' Tc

yTMF
C

Tc
yTMF

QTc

g
TIIIIF

0.36

0.32 '

0.28

0.24

0.20

0.16

0.12'

0.08—

004- (o)

0
0.36

0.32'

0.28

0.24

0.20

0.16

0.1 2

0,08—

0.04 — (b)
0

0.36

0.32'

0.28

0.24

0.20

0.16

I I I I I I I

I I I I I I I

= I/2)
fcc

HJ

(S=)
fcc

HJ

g (S=)
fcc

HJ

are the most rapidly convergent for the Ising mod-
el, the RHJ curves appear to be converging fastest
for the Heisenberg model. In fact, the RHJ n =1
and n =2 curves have practically merged at QT, /
T, r =1.4. The planar model seems to be indicat-
ing its position midway between the Ising and Hei-
senberg models by placing its limiting slope some-
where between the LHJ and the RHJ plots. Here
a value of approximately 1.2 might be a good esti-
mate for the slope QT, /TMv.

Examples of the sequence lb.„„33Eq. (4.10), are
shown in Fig. 3. These sequences should converge
to the intercept &f&T,/T, F. As shown in the figures,
the predictions using the sequence (4. 10) on X'"
are entirely compatible with the p.,"' results of se-
quence (4. 9). The Ising model sequences are

2.4

2.2

2.0

4Tc I;8
MF

c 1.6

1.4

1.2

1.0
0.12

0.08—

0.04 —
( )

0
I

2

I

3

I I I I I I I

I I I I I II
4 5 6 78910

FIG. 2. Sequences shown are given by Eq. (4. 9) and
should converge to the origin with slope 41',/T~ . The
series used are p2" for the (a) Ising, (b) planar, and (c)
classical Heisenberg models. The dashed line on the
Ising model plots uses the known exact results while the
lines on the other models are visual guides only.

0.8

2.4—

2.2—

2.0—
Tc

MF
18—

Tc
1.6'-

1.4—

1.2—
(b)

1.0;;
0.8

2.4—

2.2—

HJ 32
IOIII2I4161820

or (S=)
fcc

RHJ

3 2
I .I I I I I

erg (S=f0)—
fcc

sequence is shown. Here again the ambiguity of
LHJ and RHJ ratios arises. We believe, though,
that since both types of ratios must converge to
T,/T", F, by plotting the sequences for both LHJ and
RHJ ratios one can obtain bounds on the limiting
slope of the curves. In Fig. 2(a) the sequence of
6„,for p,~" of the Ising model are shown. ' The
dashed line extending from the origin indicates the
value of &f& T,/T", P = 0.992, where we have used T,/

= 0. 566'7 and Q =y
ln Figs. 2(b) and 2(c) are the a„, sequences for

p,~" for the planar and classical Heisenberg mod-
els, respectively. The dashed lines in these fig-
ures are visual guides for the reader indicating the
bounds placed on QT, /T,"F. While the LHJ curves

4Tc
T MF
c

2.0—

1.8—

1.6—

1.4—

1.2—
(c)

1.0;:—
0.8

2

I

I

3

RHJ

I HJ

2
3

I I I I I I I

I I I I I ll
4 5 6 78910

FIG. 3. These curves represent quantities defined by
Eq. (4. 10) and should converge to the product QT~/T~
Part (a) uses the Ising model X" series while (b) and
(c) are the planar and Heisenberg models.
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shown in Fig. 3(a) where again the LHJ and RHJ
notation is used. The longer sequence for n =1 was
obtained by using the relationship (3.6) and the 21-
term Ising-model square lattice series. ' Since
this entire set of sequences shows very good con-
vergence to the predicted critical values, they
serve to demonstrate the validity of the method.

The planar and Heisenberg model results are
contained in Figs. 3(b) and 3(c). Again as in the
4„& sequences, theHHJ curves appear to be giving
the best convergence. The curves for the Heisen-
berg model seem to be turning up slightly, and
might appear to be starting to run away; but after
examining the n =1 curves closely it is observed
that the last points are coming back down. Per-
haps the upward curvature is only an indication
that the product PT, /7, is larger for D=3 than
for D=2 or D=l. The sequences (4. 9) and (4.10)
show the trends of the results very well even though
they are not as rapidly convergent as could be de-
sired.

E. Sequence for Tc/Te

l.2

I.O--

Tc
MF

08—
Tc It—

0.6

0.8

0.6—
Tc

T MF

0.4

0.2

Ik
0 6"-

c
MF

Tc

S= I/2)
CC

2

RHJ

H J Ising (S= I/2)
p,o=x fee

2
RHJ

LH J Ising (S= I/23
fcc

W

2

RHJ

In the spirit of Sec. IIID, an additional set of
sequences was obtained in an attempt to separate
the critical temperature from the exponent. Re-
turning to the ratios (4. 8), we see that if they are
weighted by n before the differences are taken, an
equation for T,/T," is obtained,

&„,=-np„, , —(n —1) p„,

=(T,/Z, ~)[(y, —1)/t+1]+O(1/ta) (4.11)

0.2

0.6

0.4

T MF
C

0.2

LHJ
Ising (S=l/2)

p-~/z «c

for all n. For n =0, 6„, is an undefined quantity;
when n =1, 6» equals the two-dimensional ratios.
For n & 1, however, the sequence represents a
quantity which not only should intersect the l =~
axis at T,/T,"r, but also should approach the inter-
cept with the same slope as the two-dimensional
ratios. That is, as l-~, the ~„,, curves for all
n should become common. The LHJ and RHJ am-
biguity again applies except for n =1, at which
point they are the same. Obviously, the sequence
is not restricted to the susceptibility series and if
we wished to use a different quantity such as IU, ,
then the exponent yo would be replaced by the ap-
propriate exponent (tv, + yo).

Shown in Figs. 4-6 are several of the Z„, se-
quences plotted versus 1/t. For the Ising model
(Fig. 4), we have shown the pz'", P", p",'t4, and

pr 3 / p sequences . These value s are of particular
interest since for t =2 and t =0 (g) the critical ex-
ponent indicates a pole. Hence the slopes of the
curves,

m -=(T,/TMF) (tv, + y, —1) (4.12)

are positive. On the other hand, since vo =1 and
3

y, =4 when t=t, =- 4, tov, +y, =1andtheslopeiszero.

0 I

I

4

I I I

I I I I I

5 6 789IO
I/A.

FIG. 4. Sequences of Kq. (4. 11) for the Ising model
fcc lattice series are shown for the spherical moments
[Eq. (l. 1)] with t = 2, 0, —@, an.d —2 in parts (a), (b),
(c), and (d), respectively. The notation LHJ and HHJ
refers to how the ratios are plotted and is explained in
the text.

These sets of curves are shown in Figs. 4(a)-4(c).
In Fig. 4(d), t =- —,', and the curves must now point
upward (negative slope). The very fact that the
slope goes from positive to negative as t is lowered
should serve as evidence for a critical point. The
dashed lines shown on these figures represent the
predicted limiting slopes using the vp and yo values
given above.

In Fig. 5 are the sequences for the planar mod-
el. The striking similarity between these plots
and those for the Ising model are most apparent
for t~ 0, but can still be seen for t & 0 (cf. curves
for t = - $). The value of to for the planar model is
particularly hard to obtain, but must be somewhere
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I.2
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Tc

T MF
0.6
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RHJ

(S=co)
fcc

0.2

0
0.6
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c 0.2
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Heisenberg (S=~)
fcc
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Ising model

t=tp= —4

0. 77305
0. 56776
0. 598 31
0. 57622
0. 572 46
0. 57012
0. 56976
0. 56902

t=-7
4

0.605 87
0.412 15
0.493 43
0.476 11
0.468 63
0.470 66
0.469 03
0.468 82

0. 631 02
0.443 53
0.510 76
0.492 83
0.484 14
0.484 07
0.481 52
0.480 29

Planar model

t =--'
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G. Natural variables"

On the linear chain lattice it has been shown"
that

X=(1+yp)/(1-yp),
where

(4.13)

y p = Ip(DJ/ks T)/Ipps, (—DJ/ks T) (4. 14)

is the nn correlation function. Here Ip(DJ/ks T) is
the Dth-order modified Bessel function of the sec-
ond kind.

For the Ising model (D =1), Eq. (4.14) reduces
to

the RHJ 4„& curves are more appropriate for the
Heisenberg model, while the LHJ curves are the
choice for the Ising. This is seen in the p.3 and X

plots for the Heisenberg model by the greater dis-
tance between the LHJ curves. Also, the p, , case
shows a leveling-off behavior for the n = 2 RHJ
curve, indicating a critical temperature in the
vicinity of T,/T, -0.38. While it is impossible
to estimate a value for t, for the Heisenberg model,
we feel that if the series were but two or three
terms longer, a great deal more could be told
about the existence of a critical point by observing
this particular sequence. We have investigated
even more negative values of t for the Heisenberg
model and show p, in Fig. 6(d). For this unusual
value of t the sequence would be expected to be
curving upward, indicating a large negative slope,
but only in the case of n = 3 is this type of behavior
seen. This result is not totally surprising, for
surely at these large (negative) values of t the se-
ries are simply approximating the nearest-neigh-
bor spin-spin correlation function [see Eq. (1.1)
defining Ii, ] and are almost independent of x and
hence t. In fact, it is for this reason that we think
the n =2, RHJ sequence of t = - 4 is showing such
similarity to the n =2, RHJ t= —2 sequence.

F. Spherical model (D =~)

The susceptibility series x" for the spherical
model were also generated and analyzed, where
appropriate, by the methods described. The ratio
plots show the well-known downward curvature of
the two-dimensional series. Likewise, there is
downward curvature for n =1, and some curvature
for n = 2. For the higher It derivatives (n )3) the
plots were more like the other models, indicating
the lesser ability of these series to show the ef-
fects of the Hamiltonian. The PA's to this series
were discussed in Sec. IIIB and, as mentioned
there, show differences from the other models for
the large n values. In Fig. 7 we present the se-
quences for lh„, . Note how rapidly the sequences
turn up (unlike the D =1-3 eases) just before they
begin to oscillate wildly.

Sphericol 2 4
model

—2.2

—2.0

9'Tc
MF16Tc

—1.4

n=1

I I I I II
1 111

4 5 6 7 8910
1/2

—1.2

—1.0

0.8
1

I"IG. 7. Spherical model 7" series sequences for
tt'~~/~~ given by Eq. (4.10). These curves all bend up-
ward and eventually begin to oscillate.

y, = ta hn(J/k Ts) (4.15)

If the Ising-model series are expressed in terms
of y„ the coefficients on even the higher-dimen-
sional lattices are all integers. Hence the vari-
ables yD are sometimes referred to as the natural
variables. We transformed our y and p,, series
into a double power series in the natural variables
[yp(DJ~/ksT) and yp(DJ, /ks T)] andperformed most
of the analysis again. While the predictions from
these series were consistent with the results of the
untransformed series, they were no more revealing.

V. CONCLUSIONS

We believe we have completed a thorough analysis
of high-temperature series for the two-dimensional
quadratic lattice. Through the comparisons of the
four spin models (D =1, 2, 3, and ~) considerable
evidence has arisen concerning the possibility of
a phase transition.

By employing the concepts of scaling theory and
by developing new sequences for the critical in-
dices, we have presented evidence that the two-di-
mensional planar model has a nonzero critical
point. Furthermore, with the aid of the negative
spherical moment series and PA's for the higher
R derivatives of all series, we estimate T,/T, v

= 0.475 + 0.015. The new sequences [{4.9) and
(4. 10)] yield QT,/T,"F=1.2+0.1. Then by using
the scaling result y„= (n+1)y, , which is rigorous
for n =1, we obtain yo =2. 53+0 pe for the two-dimen-
sional planar model. This value is compatible with
Moore's result of y, =3.0+0.5 for the model but
disagrees greatly from the conclusions of Betts,
Elliott, and Ditzian for the KI' modelM(ys =1.5
+ O. O2).

For the classical Heisenberg model (D = 3) we
have obtained both positive and negative evidence
concerning the possibility of a phase transition.
If we were to argue for a T, we would have to point
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out the strong similarities between the results of
the Heisenberg, planar, and Ising models. Yet in
view of the slight upward turn of sequences such
as those displayed in Fig. 3, we have to wonder
if these series are eventually going to become as
dramatic as the spherical model (cf. Fig. 7). Or
is this turning upward merely a product of the fact
that pT, /T", F is larger for the Heisenberg model
than for the Ising models If we were forced to esti-
mate critical values we might choose T,/T, F = 0. 88
and PT,/TM~= 1.4, andhence obtain go= 3.5, whichis
compatible with the Ritchie and Fisher'~ estimate
of 3.0+0.5.
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APPENDIX

The complete set of general-8 series for the
susceptibility, second moment, and specific heat
for the planar and classical Heisenberg models on
both the simple-cubic and face-centered-cubic lat-
tices are presented in Ref. 26. Various spherical-
moment series for the above models and the spin--,'
Ising model on the face-centered-cubic lattice are
also presented.

Note added in pxoof. After the galley proofs of
this article were received, we obtained copies of
two interesting preprints. In the first of these, J.
Zittartz proved that for the case d = 2, D = 2 a phase
transition of the Stanley-Kaplan type (Ref. 7) exists.
In the second preprint, K. Binder and D. P. Landau
performed Monte Carlo calculations on the case
d = 2, D = 3 with a range of values of spin anisotropy;
their work suggests that a transition of the Stanley-
Kaplan type also exists for D = 3.
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