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Magnetic properties of dilute Mn impurities in liquid Cu-Ga alloys
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The Mn-impurity susceptibility and the perturbation of the "Cu and 'Ga nuclear resonances by Mn
impurities in liquid Cu„Gal.„hostalloys are given. The Mn susceptibility is larger and the conduction-electron
polarization by Mn smaller in these hosts than in the Cu„Al,

„

liquid-host-alloy system. The Mn susceptibility
in the Cu-Ga hosts can be fit to a Curie-Weiss temperature dependence and does not display the unusual
nonlinear increasing temperature dependence found for Mn in the Al-rich Cu-Al hosts.

I. INT ROD UCI'ION

Elements having partially filled d or f electron-
ic shells are often found to be strongly paramag-
netic when present as dilute impurities in normal
metals. The 3d and 4f series have been investi-
gated extensively, and it is found that the magne-
tic properties of 4f impurities are well described
by a free-ion model weakly perturbed by crystal-
line fields and small conduction-electron inter-
actions. For the 3d series, crystalline fields and
conduction-electron interactions are much stron-
ger and can be considered as perturbations only
in a few special cases such as Fe, Mn, and Cr
impurities in noble-metal hosts. In contrast to
these magnetic-impurity systems, the magnetic
susceptibility of M impurities in polyvalent metal
hosts is typically much smaller and temperature .

independent below 300 K.
This magnetic-to-nonmagnetic transition as a

function of host composition has been studiedpreviously
for Mn impurities in liquid-Cu„A 1 & „hostallpys.
We have undertaken a further experimental inves-
tigation of Mn impurities in liquid alloy hosts and
give here our results for the magnetic suscepti-
bility and host nuclear-resonance perturbation in
Cu„Ga~„hosts. We find several experimental
indications that the interaction between the Mn d
electrons and the host conduction band is weaker
in Cu-Ga than the Cu-Al alloys. One indication of
this difference is that the 63Cu-host Knight shift is
more strongly perturbed by Mn impurities in Cu-Al
than Cu-Ga, indicating a larger conduction-elec-
tron spin polarization in Cu-Al. A second indica-
tion is that Mn is more strongly paramagnetic in
Cu-Ga. Alloying either Al or Ga with copper causes
a reduction in the Mn-impurity susceptibility,
but the reduction is much more pronounced for
large Al additions. The temperature derivative
of XM, also changes sign in liquid-Cu-Al alloys
having more than 50% Al but remains negative in

Cu-Ga. Similarities and differences between the
Mn-impurity state in Cu-Ga and Cu-Al are dis-
cussed below, and we suggest that a Kondo model
with significant inter configurational fluctuations in
Al-rich hosts might provide a proper description
for these interacting impurity-host systems

II. EXPERIMENTAL PROCEDURE AND RESULTS

The Mn susceptibility was measured by a stan-
dard Faraday method. The experimental proce-
durewas to measure the susceptibility of the host
alloy versus temperature in an alumina sample
holder, add Mn, and then measure the suscepti-
bility of the impurity-host alloy in the same sample
holder. During susceptibility runs and interme-
diate alloying steps, the sample was kept in vacuum
or a low pressure of purified argon. Previous
experience with similar liquid alloys has shown
that the Mn susceptibility

XMn = (X tat at lXhost) /c

is independent of Mn concentration c provided c is
smaller than 5 at. /0. The Mn susceptibility shown
in Fig. 1 was measured for samples in which c was
between 1 and 2 at. %. The error bars in Fig. 1
give the over-all uncertainty in magnitude of X'~
due to errors in Mn concentration, calibration
errors, etc. The relative temperature dependence
of XM, is affected by trace ferromagnetic impuri-
ties in the alumina sample holders which cause
significant irreproducibility below 800 'C. The
relative error in XM, between 800 and 600 'C is no
greater than 10 4 cms/mole, but becomes very
large at lower temperature, and no attempt was
made to measure susceptibilities below 600 'C.
For comparison XM, in several Cu„Alz, liquid
host alloys is also shown. .

If X. , is fit to a (T+e) t form, e.is approxi-
mately zero for liquid CuMn and VOO a 150 K for
liquid GaMn. The Curie constant is 3.5+0.2
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Uemura and Takeuchi.
Knight-shift measurements were made using a

standard field-swept cw NMR spectrometer operat-
ing at 13.5 MHz. Alloys were made in a specially
designed induction-heated chamber which allowed
the alloy to be quickly quenched from the melt in

order to minimize inhomogeneities. The alloys
were filed to a powder with diameter less than VO

p, m, mixed with alumina powder to separate the
droplets when liquified, and sealed into an evacuated
quartz capsule with a small amount of Ti getter.
Cooling with liquid nitrogen was necessary for fil-
ing the softer alloys.

In liquid metals, NMR lines are motionaQy nar-
rowed, and one observes line shifts but little line
broadening in alloys. It is convenient to define a
normalized measure of the impurity-induced shift
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FIG. 1. Magnetic susceptibility of Mn impurities in
Cu„Ge~„„liquid host alloys. Dashed lines show the Mn
susceptibility in C~1&

„

liquid hosts where x is shown.
Data are taken from Refs. 1, 4, and 5 and are subject
to experimental uncertainty of approximately the same
size as that shown for Cu-Ga hosts.

cms K/mole in Cu and 3.9 a 0.3 cms K/mole in Ga
liquid hosts. These correspond to effective mo-
ments of 5.3 and 5.6 bohr magnetons, respec-
tively The .Mn susceptibility in Ga is in good agree-
ment with a previous measurement by Peters and
Flynn. Host suceptibilities were not measured
precisely but were roughly the same as found by

I'M, = [e (1)—Ioo (T)]/cloo (1100 'C),

where K, Ko are, respectively, the host Knight
shift with and without concentration c of Mn added;
~ refers to either the Cu or Ga host resonances.
K Kp and X' are functions of temperature and host
composition and depend on the nuclear species ~
being observed. In these alloys the Mn concentra-
tion is between 1 and 3 at. 9o Within experimental
uncertainty I' is independent of c and is linear in
temperature. The experimentally available tem-
perature range is restricted by a maximum of
1150 C in the present furnace. Figure 2 shows
both X'M, ~„and 1M, 0, at &100 'C. Experimental
errors are due to composition uncertainties and
differences among different sample droplets.
Figure 3 shows the slope with temperature of I'I, „.
Experimental uncertainty is due to time-dependent
irreproducibilities in resonance position which are
probably caused by slow compositional changes by
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FIG. 2. Relative host Knight-shift perturbation. by Mn
impurities at 1100 C normalized to unit Mn concentration.
Cu-AI data from Ref. 2.
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FIG. 3. Slope of 63Cu Knight-shift perturbation with
temperature at 1100'C. Cu-Al data from Ref. 2.
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FIG. 4. Knight shifts of Cu and Ga in liquid Cu„Ge~
„

alloys. Open (closed) points are data taken a(1000'C
(900 C) extrapolated where necessary.

X' is an average measure of the g component of
conduction-electron-spin polarization s (r) by a
Mn impurity located at r =0. If one ignores non-
contact contributions to the Knight shift and assumes
that the penetration factor is not significantly af-
fected by the impurity, it can be showna that

where s~ is the unperturbed Pauli spin density,
and the brackets denote a spatial average over all
N nuclei of type n. Sotier et al. 2 pointed out that
since s (r) is an oscillatory and rapidly decreasing
function of r, the average will normally be strongly
dominated by the large perturbation at the first-
neighbor shell surrounding the Mn. Equation (3)
may be approximated by

I'„,=ns(r )/s~, (4)

where n is the total number of neighbors in the first
shell and r is the average distance. to the type-o
nuclei in the first shell.

In liquid CuMn, n= 10, and s(rc„)= -2s~ at
~llOQ 'C. The relative dependence of s(rc„)on x
should be qualitatively similar to that of 1"c„M„
although s~ may vary by a factor of two over the

vapor transport among the separated sample drop-
lets. The Knight shifts of Cu and Ga in the
Cu,Ga~, liquid alloys are shown in Fig. 4 at (ex-
trapolated where necessary) temperatures of 900' C
and 1000 'C. These were the two isotopes observed
in all NMR data reported in this paper.

III. DISCUSSION

host composition range. The nearly identical. val-
ues found for zc„in Cu+I, „andCu„Ga, „alloys
imply that s~ is the same for Cu-Ga and Cu-Al and
that the magnitude of s(rc„)is - 20% greater in
Cu-Al hosts between x= 0.8 and 0.2 than in Cu-Ga.
An interesting consequence of Eq. 4 is that 1M, ~„
—I'u, o, is proportional to s(rc„)-s (ro, ) and pro-
vides a rough measure of the radial dependence of
s(r) near the first-neighbor shell. In the Cu„AI,
host alloys I'„,„,is considerably smaller in mag-
nitude than X'M,~ „

for x & 0.5, but the two ar e about
equal for x&0. 5.~ Since rz, & xc„,this observation
is taken as an indication that s(r) has a node just
beyond the first-neighbor shell when Mn is "mag-
netic" but that the node is further away when Mn
is "nonmagnetic. " Although the Ga resonance data
is less complete, it appears from Fig. 2 that s(r)
has a node near rG, in the Cu-Ga alloys.

The Mn magnetic susceptibility shown in Fig. 1
indicates that the impurity state in the liquid Cu-Ga
system is similar to the impurity state in the por-
tion of the Cu„A1& „hostsystem above x= 0.5.
These impurity states can be described qualita-
tively by a Kondo model in which Jp increases as
x decreases and is larger for Cu-Al than for Cu-Ga
hosts of the same x. This would account both for
the larger s(r) and more rapid decrease of X„,
in Cu-Al. The temperature dependence of XM, re-
flects the expected rapid increase of TE wi.th x
under these circumstances. The sign and magni-
tude of dl'„,c„/dT shown in Fig. 3 are consistent
with the expected approximate proportionality of
ds( r ) /d T to d X„,/d T. In terms of this model, the
striking change in the character of XM, for x& 0.5
in the Cu-Al system probably indicates that ionic
fluctuations to different term or configuration levels
are important. These are neglected in the simple
Kondo model and were first discussed in detail by
Hirst. ~ Such fluctuations could account for the
peculiar temperature dependence of XM, as well as
the finite orbital magnetism of Mn in the Al-rich
host alloys. This type of model does account semi-
quantitatively for many features of Co impurity
systems where orbital magnetism is quite pro-
nounced. ~~ For Mn impurities a quantitative anal-
ysis cannot be undertaken at present because very
little is understood about the impurity ionic level
structure or about the dynamics of fluctuations
appropriate to such a state. Since ionic fluctuations
in rare-earth magnetism are now being studied
extensively, some more quantitative application of
this model to transitional impurities may soon be-
come feasible.
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