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The magnetic excitation spectrum of the singlet-doublet magnet double-hexagonal close-packed praseodymium,
which has been measured by means of inelastic neutron scattering, is analyzed using a diagrammatic high-
density expansion technique. The lowest-order random-phase-approximation diagrams give a detailed
description of the wave-vector and temperature dependence of the four modes in terms of a Hamiltonian
including isotropic Heisenberg interatomic exchange interactions and anisotropic, dipolarlike exchange
interactions. In general, the modes are linearly or elliptically polarized. The leading contribut&ons to the line
shapes of the excitations are obtained by extending the 1/Z expansion of the generalized susceptibility
propagators one order beyond the random-phase approximation. This damping corresponds to spin-wave
scattering on single-site fluctuations. The propagators are calculated self-consistently by including internally
renormalized Green s functions. The theoretical spectral functions are in detailed agreement with experiment.

I. INTRODUCTION

For the last several years there has been a great
interest in the properties of localized magnetic sys-
tems which possess a nonmagnetic singlet ground
state. ' The ordering in such systems occurs as an
exchange polarization of the ground state, provided
the exchange interaction betw'een the magnetic ions
exceeds a certain threshold value. Double-hexag-
onal close-packed (dhcp) praseodymium is an ex-
ample of a singlet-ground-state magnet in which
the exchange is only slightly undercritical with re-
spect to magnetic ordering. '

In the double-hexagonal close-packed structure
with stacking sequence ABAC, the Pr ions experi-
ence a crystal field of cubic symmetry at the A sites
and of local hexagonal symmetry at the B sites.
The atomic ground state is the ninefold degenerate
H4 multiplet. Magnetization measurements, 3 as

well as neutron-scattering experiments~*4' clearly
demonstrate that the resulting crystal-field ground
state on the hexagonal sites is the pure I

J'~ =0) sin-
glet, and the first excited state is the doublet lx),
ly), where Ix) =(1/&2)(ll)+1-1)) and ly) = —(i/

v 2)(11)—l —1)). The paramagnetic excitation
spectrum arises from the transitions between these
states, coupled together by the interatomic ex-
change interaction. Hence, the hexagonal ions con-
stitute an effective spin-1 system with uniaxial
anisotropy, if the higher excited states are ne-
glected.

The spin dynamics has recently been measured
by Houmann et al. using inelastic-neutron-scatter-
ing techniques. dhcp praseodymium seems to be
the simplest real singlet-ground-state magnet, and
significantly more information is now available on
the excitations in this material than in any other
paramagnetic system. This makes the element Pr
almost ideal for a confrontation between experi-

ment and theoretical modej. calculations. A pre-
liminary analysis of the spectrum~ showed that
anisotropic two-ion interactions are important, as
could be expected from spin-wave studies of the
heavy-rare-earth elements. ' Moreover, the tem-
perature dependence of the excitation energies were
found to be in substantial agreement with a random-
phase theory (RPA), in apparent contrast to neu-
tron-scattering results for the singlet-ground-state
magnet Pr3Tl. The lowest-lying mode shows a
clear tendency towards softening as the temperature
is lowered towards 0 K, but no critical effects were
observed. However, antiferromagnetic ordering
corresponding to this mode has been observed in a
single crystal of Pr with 3-at. /o Nd. 8 In addition to
the strong temperature dependence of the exciton
energies, a dramatic increase of the intrinsic line-
width was observed as the temperature was raised
from 6 to 30 K, where well-defined modes cease
to exist.

Most of the theoretical work on singlet-ground-
state systems has been based on the random-phase
approximation (RPA) using a variety of different
representations of the single-ion states, or on
pseudoboson theories, ' 6 which essentially give
the zero-temperature limit of the HPA. More
elaborate theprjes ' based pn varipus higher-pr-
der decouplings of equations of motions of spin op-
erators give corrections to the exciton energies.
However, inconsistencies and ambiguities are in-
troduced through the decoupling procedures as al-
ready pointed out by Murao and Matsubara" and it
is difficult to estimate the errors introduced via
the truncations, Another shortcoming of these the-
ories is that they give infinite lifetimes of the exci-
tations and thus completely neglect damping effects.

Another approach to the calculation of correlation
functions in the paramagnetic regime is the method
of Blume and Hubbard, which has been applied to
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the transverse Ising model (or singlet-singlet sys-
tem) by Moore and Williams. ' This approximation
may be superior at high temperatures. Common
to all the above-mentioned approaches is the lack
of well-defined expansion parameters, which great-
ly precludes systematic calculations. An alterna-
tive type of theory is the diagrammatic Green's-
function expansion method developed by Vaks,
Larkin, and Pikin 2 (VLP) for spin operators to cal-
culate correlation functions to any order of per-
turbation theory. The formalism has later been
generalized by Kashchenko et al. , and by Izyumov
and Kassan-Ogly. 24 Yang and Wang ' extended the
method to any multilevel magnetic system using a
standard basis operator representation. This rep-
resentation has previously been used, within the
random-phase approximation, by Haley and Erdosa
in the discussion of a spin-1 system, and by Pur-
wins ef al. 2~ and by Bak 8 in the analysis of mag-
netic excitations and excited-state spin waves in
real multilevel systems.

The VI P formalism corresponds to the semi-
invariant theory introduced by Stinchcombe et al. ,
which has been applied to the Ising model in a
transverse field. " In contrast to the other tech-
niques, this kind of theory gives a well-defined
high-density expansion parameter 1/Z or 1/r ~o,

allowing us to perform systematic self-consistent
calculations, and to recognize the physical pro-
cesses involved. Z is an effective number of ions
interacting with a given ion, and ro is an effective
interaction length defined by Vaks et al. ~2 The ap-
proximations are now based on physical, not tech-
nical reasons. Only in the critical regime, or in
an overdamped situation, the formalism is inade-
quate to any order in 1/Z, but this restriction is
not relevant to Pr, since this material is paramag-

4.0

netic at any temperature. The rapid q dependence
of the measured excitation energies (Fig. 1) shows
that the forces are of long range, indicating that
the high-density expansion is applicable. As is
well known, the zeroth-order terms provide the
magnetization in the mean-field approximation and
the RPA theory for the correlation functions. En-
couraged by the success of the RPA in describing
the temperature dependence of the exciton ener-
gies, ' we may hope that inclusion of higher-order
terms in the 1/Z expansion give a good description
of damping effects and hence the complete spectral
function of the excitations as measured by inelastic
neutron scattering.

Section II presents the Green's-function formal-
ism to be used in this paper and the low-tempera-
ture dispersion relations are analyzed within the
RPA. The nature of the different modes is dis-
cussed in terms of the spin correlation functions,
which are closely related to the Green's functions.
In general, the modes are linearly or elliptically
polarized. ' The analysis enables us to set up a
complete model Hamiltonian for Pr. In principle,
we can then perform numerical calculations of cor-
relation functions and other thermodynamical quan-
tities to any order at any temperature without in-
troducing further adjustable parameters, the only
restriction being the limited computer capacity
In Sec. III, the complete spectral function is cal-
culated at several temperatures and energies by
extending the 1/Z expansion one order beyond the
random-phase approximation. The calculation is
performed self-consistently, taking into account
internally renormalized propagators. The theo-
retical line shapes are in substantial agreement
with experiment.

In Sec. IV the significance of the results will be
discussed with emphasis on the implications for
other magnetic and nonmagnetic multilevel sys-
tems, and further experiments are suggested.

II. RPA THEORY
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FIG. 1. Dispersion relations for magnetic excitations
propagating on the hexagonal sites in dhcp praseodymium.
The experimental data are taken from Ref. 2. The
squares and the circles denote modes measured to be
dominantly of optical, and dominantly of acoustic nature,
respectively. In general, the lower optical and acoustic
branches are polarized along the q direction and the upper
branches perpendicular to q. The full lines represent a
least-squares fit as described in the text.

The Hamiltonian describing the magnetic prop-
erties of the Pr ions at the hexagonal sites may be
written as the sum of a single-ion term + and a
two-ion exchange term Xf, where

(la)

Xr =-Z Z &rr (rr ry)Or (Jr)Or ~ (Jy) ~ '(lb)
lml'm'

The summation is over the two hexagonal sublat-
tices. V„ is the crystal field, which may qualita-
tively be described by the crystal-field parameters
deduced by Rainford. 32 For a discussion of the
origin of the general two-ion exchange term X,',
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X=+~(S',.)' —g u;.,'S, S', , (2)
i f', j, eg

where the higher-order terms in (1) with m, m' = 0,
+ 1 have been effectively included in the resulting
effective bilinear exchange coupling J,&~, between
spins i and j. & is the crystal-field splitting and
o.' and p are Cartesian coordinates. The single-ion
part of X is denoted by K0 and the two-ion part by

K,„,. The analysis of the temperature dependence
of particular modes in the exciton syectrum gave
the value 4 =3.2 meV, which is in fair agreement
with the value & =2.93 meV obtained by Jensen'4 by
analyzing the field dependence of the excitations at
zero wave vector.

To calculate the magnetic excitation spectrum,
it is convenient to introduce the Green's functions

G (r„v„' r„v,) = (T,S"(r„r,)S (r„~,)&, (3)

where (T, ~
& denotes the thermal average of the

v'-ordered product of operators in the interaction
representation

S (r, r) =e o'S (r)e- o' . (4)

The Green's functions are defined for n, P=@,y
only. It is a standard procedure" to expand the
Green'. s functions in the form

&T.S (r, ~»'(r2, ~2)s(P)&0

(

li 2t 8&
(s(P)&

s(P) =T, exp(- I K,:.,(v)d~) .
0

The averages are taken with respect to 3C0.

The corresponding noninteracting Green's functions
are

Go (r„~„rz, ~2) =(T,S (r~ 7;)S (~r2 ~~)&0

=go (ry 'rgi r2 7'2)R& s

see the article by Jensen et al. ' The 0, are tensor
operators working on the ground-state (8=4) multi-
plet. The coupling to phonons has been neglected,
which may be justified by the fact that no anticross-
ing effects owing to phonon modes was observed in
zero-magnetic field. In this analysis we shall also
ignore the coupling between the excitations propa-
gating on the hexagonal sites and the excitations
propagating on the cubic sites, which have much

higher energies. ' A rough estimate shows that
the correction to the energies owing to this effect
is only about 4%.

We now consider only the ground-state single
l0& and the excited doublet lx&, ly& and represent
these states by an effective spin S =1. The Hamil-
tonian [Eqs. (1)] may easily be projected on to the

basis spanned by these states. Ignoring the transi-
tions within the doublet, which turn out to be unim-
portant to first order in the high-density expansion
anyhow, the most general Hamiltonian may be writ-
ten

where

go (r„r; rz, 0) = fe~'"[1+n(&)]+e '"n(&)}5,z, (7a)

R = &([0&&0( —(~&&~))& =~, -~.
=(1-e ")(1+2e '~) ', (7b)

and

n(&) = (e' —1) ' . (7c)

go is defined in the interval —p& v&8, and no and

. n are Boltzmann population factors of the levels
10& and I o'&. The Fourier components are defined
in terms of the Matsubara frequencies 2nv/P in the
usual way (n integer),

G '(q, i&a„) =g
B

dT G (r„v; r2, 0) e ' '~ '~' e'""'

(Ba)

8
G' (q, i&a„) =g d7'G (r„~; r,', 0) e" '& '&'e'"~' .

r~
(8b)

r~ denotes ions at the same sublattice as r„and
r~ denotes the ions at the oyyosite sublattice. The
inter- and intrasublattice exchange constants ~9 ~(q)

and g' ~(q) are defined in a similar way. The ana-
lytic continuation of the Green's functions G' ' (q,
i&@„) are related to the usual measured dynamical
susceptibility by

X (q, &)=a u G (q, f&.),
To zeroth order in 1/Z this formalism is exactly
equivalent to the enhanced dynamical susceptibility
formalism used by Holden and Buyers' to analyze
the dynamics of the singlet-ground-state system
Pr3 Tl. The Fourier transforms of the noninteract-
ing Green's functions are

(10a)

where

g, (i(u„) = 2a[d.' —(i(u„)']-' . (lob)

The Green's functions G ~(q, i~„) are simple linear
combinations of the correlation functions K, (q, iv„)
defined by Vaks et al. or of the Green's functions

G„~ „,(q, i&u„) defined by Yang and Wang ' in terms of
standard basis operators. Hence, the rules for
drawing Bnd calculating diagrams can be inferred
easily by applying the methods of these authors.

In general, the expansion (5) can be represented
by a sum of connected diagrams representing an
aggregate of single-cell blocks joined by interac-
tion lines. The noninteracting Green's functions
are represented by full lines, and the interactions
by wavy lines. The propagators G ~(q, i&a„) are rep-
resented by double lines. The single-cell blocks
are surrounded by broken lines to denote that the
propagators involved are restricted to the same site.
A diagram containing N independent wave-vector
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G(q, im ) Go(i(u )0 n
26 (i' ) P(q) G(q, i~ )

FIG. 2. RPA diagram representing the zeroth-order
term in the 1/Z expansion.

labels, which are eventually summed over, is of
order (1/Z)". The zeroth-order diagrams simply
consist of noninteracting Green's functions con-
nected with interaction lines (see the HPA diagrams
in Fig. 2). The analytic expressions corresponding
to these chain diagrams are

+2G0(iv)„) Q4 "(q)G'"0(q, ia)„),

or in matrix notation

(iib)

G(q, i&„)=G0(i~„)1+2G0(i~„)$(q)G(q, iu&„), (12)

where

G"(q, i~„)= G,(i~„)5,+ 2G, (i~„)g P"(q) G"'(q, i&„)
y

+2G0(i&o„)g8' '(q)G'" (q, i~„), (ila)
y

G' 0(q, i~„)=2G0(i&a„)+8' "*(q)G'0(q, i~„)
y

(&4 '~n)

G'"(q, i~„)
G(qy ~ n) G&xx+( i(g )

G "
(q, i00„)

G"'(q, is&„)

G"(q, i~„)

G'"'*(q, i~„)

G"'*(q, i~„)

G'""(q, i(u„)

G'""(q, i~„)

G'"(q, i00„)

G'"(q, i~„)

G'"'(q, i(u„)

G'""(q, i~„)

G""(q, i~„)

G"'(q, ' .)

where

(14)

(~")'=6' —4&RA (q) . (15)

The poles of the Green's functions , are the fre-
quencies of the excitation modes within the random-
phase approximation. The propagators of the four
excitations are thus expressed directly in terms of
the effective exchange interactions 8"(q).

The dispersion relations, measured in high-sym-
metry directions by Houmann et al. , were least-
squares fitted to the expression (15). The crystal-
field splitting 4 was fixed at the previously deter-
mined value 3.2 meV. The two-ion part of the
Hamiltonian was assumed to be

x,.„,= Q9„5,-~ '5,. +8,".,"ij

xj(R;) S()(R); ' Sj) —0[(R*;J) +(R';;) ](S; ~ S;)),
(15)

where A&& is the unit vector along r& —r, . This is
the most general axial symmetric Hamiltonian in
the form (2); it effectively includes electric and
magnetic multipole terms, and also higher-

„J(q) is defined in a completely analogous way.
From Eq. (12) one sees immediately that G(q, i~„)
is diagonalized by the same unitary transformation
that diagonalizes g(q). Denoting the eigenvalues of
$(q) by g"(q), Ã=1, . .., 4, and the eigenvalues of
G(q, i~„) by G (q, i&u„), we find the following solu-
tion to Eq. (12):

GN(
.

)
. g0(z n)R

1 —2,)"(q)g0 (i~„)R

I

order Kaplan-Lyons terms37 originating from or-
bital contributions to the exchange interaction. The
isotropic term —,'[(R";;)2+ (R~,)2](5,. '5,.) is included
to ensure that. 8";z" has no influence on the degen-
erate modes at the zone center I'. Exchange pa-
rameters for atoms out to fifth-nearest (100) plane
(tenth-nearest neighbors) were included in the cal-
culations of the Fourier transforms P0(q) and
4' 0(q). The resulting interatomic exchange param-
eters are given in Table I and the corresponding
theoretical dispersion relations are shown in Fig.
1. Note that the fit is slightly better than the. one
presented in Ref. 31. The anisotropic part of the
exchange interaction is generally of the same order
of magnitude as the isotropic part. These exchange
parameters reproduce all the main features of the
spectrum correctly, so the resulting Fourier trans-
forms 8 0(q), ' to be used in higher-order calcula-
tions, are known with good accuracy, but too much
physical significance should not be assigned to the
particular interatomic exchange parameters. A
physical description of the four branches is most
conveniently given by considering the correlation
functions of the spin operators corresponding to a
mode with a given q. These correlation functions
can be calculated directly from the Green's func-
tions. The Green's functions G' ' (q) are easily
determined by applying the inverse unitary trans-
formation of that which diagonalized g (q) to the
diagonal matrix with elements g (q).

The correlation functions are

S' ' '(q ~) = (1/v) (1 - e '") ' ImG" '(q, ~)

= (1 —e ") ' Q „&(~—(og)V~V„*, (ig)
~ ~q
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TABLE I. Interatomic exchange parameters as derived from the least-squares
fit described in text. The positions of atoms are given in a coordinate system
with x, y, and z axes in the a, b, and c directions, respectively.

Number
Sublattice of atoms

a 6

12

12

12

Coordinates of
typical atom

(a, 0, 0)

(0, &sa, o)

(a, v 3a, o)

(0, 0, c)

(a, O, c)

(o, -a/WS, ~c)

(0, 2a/v3, —,'c)

(a, 2a/vS, —,'c)

(2a, —a/W3, —,'c)

(2a, 2a/v3, 2c)

6.36

7.35

11.83

12.39

6.28

7.28

8.15

9, 67

10.34

-0.005

0.009

—0. 052

0. 025

—0. 051

-0.013

0, 005

0. 010

0, 005

—0. 033

—0. 049

0.306

—0.124

,0. 015

—0. 016

0. 021

Distance (A)
'

8&& (meV) gf& (meV)

0. 030 —0. 084

where V« = (V"„,V"„,V"„,V«) is the Nth eigenvector
of 7(q) or G(q, i~„). The corresponding correlation
functions in real space for a particular mode N with
wave vector q and frequency +g are

—,'[(S (r„ f)S'(r,' &, O)+S'(r,'&, 0)S (r„ i)&]

=(1/N)[1 —e~(- ~;")] '(~/ &)

x —,
' (V «V« '* exp[- iq (ri —rs') —i~;"f]

+ V«v«exp[iq (rt —rs') + i~;"&1i

Again, r, is the position of a spin at the same sub-
lattice as r„and r~ is a spin at the opposite sub-
lattice.

For q in the 5 direction (y direction), where
J"'(q) and, ')'"'(q) are zero, the polarization eigen-
vectors are of the form

direction at the point M, and acoustic and optical
modes with the same polarization direction can not
cross each other at any q value. The qualitative
picture suggested by the present analysis is in
agreement with all the measured points. However,
even if our model fits the dispersion relations at
low temperatures, the eigenvectors may be quite
sensitive to the form of the exchange.

For q in the a direction (x direction), the polar-
ization vectors VN may be written

V, =(D, iC, D, —iC), (2Oa)

V, =(A, iB, -A, iB), (2ob)

v, =(B, -m, -B, -iA), (20c)

V~ = (C, -iD, C, +iD), (20d)

V„'= (A, 0, +A" e'", 0),
V,'=(O, A", O, +A" e*"') .

(18a)

(19b)

q=(0, 0.25, 0) A

These modes are longitudinal or transverse with
linear polarizations. At the points l and M, the
phases y" and y' are zero or r, so that the modes
can be characterized exactly as optical or acoustic.
An instantaneous picture of the modes at q =0.25
A ', calculated on the basis of Eq. (18), is shown
in Fig. 3. The optical longitudinal mode at this
wave vector corresponds to the magnetic structure
of neodymium, or of praseodymium with a few per-
cent neodymium. An interesting feature is that
the phase y" passes through 90 at q-0. 85 A ', so
that the mode which is optical at q =0 eventually be-
comes acoustic at the point M. y' changes rapidly
near M, which makes it difficult to connect the ex-
perimental points properly. In any case, the op-
tical branches must be connected with the corre-
sponding acoustic branches measured in the I'KM

2

FIG. 3. Instantaneous picture of the two ";acoustic"
modes at q = 0.25 A."~ in the b direction. The optical
branches can be obtained by reversing the spins on one
sublattice. The two sublattices are denoteQ I and II.
Note that the magnetic moments on the two sublattices'
are not completely in phase.
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where A, B, C, and D are real.
These modes are elliptically polarized with prin-

cipal axes in the x and y directions. For the modes
a and d, the x components of the spins on the two
sublattices are in phase, and the y components are
in antiphase, and for the modes b and c, the x com-
ponents are in antiphase and the y components are
in phase. Figure 4 shows an instantaneous picture
of the spins as calculated on the basis of Eq. (18)
for q =0.6 A '. At the point I', B and D are zero,
so that the modes can be characterized as acoustic
or optical with longitudinal or transverse polariza-
tion. Figurt.' 5 shows the polarizations of the modes
a and b at several q values in this direction. For
both modes, the relative values of the axes of the
ellipses changes rapidly in a complicated way for
large q. At certain wave vectors, the modes are
circularly polarized, which again might cause
trouble in separating and identifying the modes ex-
perimentally. At the point M, the modes eventually
become linear again. However, in agreement with

the behavior in the I'-M direction, the branch 5,

q=(06, 0, 0) A( =( ~)()(

q 0 0.5 0.6 0.8 0.9 1.0 1. 1 1.2 1.5 1.5 1.7

(c)

(d)

FIG. 5. Polarizations of the optical longitudinal and
transverse modes calculatedI for several q' values along
the a direction. The two remaining modes can be obtained
by rotating the ellipses in analogy with Fig. 4.

which at I' corresponded to a longitudinal optical
mode, now represents a transverse acoustic mode,
whereas the optical transverse mode returns to its
initial polarization, corresponding to the param-
eters A and D being zero at this point. The ellip-
ticity of the modes is in agreement with the fact
that the modes at finite q could not be extinguished
completely by selecting the neutron-scattering vec-
tor I(; parallel to the x or y direction. '

Thus, the RPA theory has allowed us to set up a
theory of the dispersion relations, and to construct
a complete model to describe the magnetic proper-
ties of the hexagonal ions. In Sec. III, we shall
use this model to calculate the complete spectral
function at any temperature and wave vector.

III. FLUCTUATION DAMPING OF MAGNETIC
EXCITATION S

c)

b)

U

In addition to a clear temperature dependence of
the excitations in Pr, which could be completely
accounted for within the random-phase approxima-
tion, Houmann et al. ' observed a dramatic increase
of the linewidth when the temperature was raised
from 0.4 to 30 K. In this section we shall extend
the 1/Z expansion one order beyond RPA using the
exchange parameters derived in Sec. II. The for-
malism allows us to calculate the complete spec-
tral function to this order without introducing any
adjustable parameters.

The first-order corrections to the RPA Green's
function Gap4(q, i&u„) originate from the evaluation
of the terms

g $343 &T,S"(r„7;)S'(r„T2)S'(r3, TQ)S'(r4, T4)&Q, (21)
34

which occur in first order in the expansion (5). To
calculate the diagrams giving rise to damping of
excitations, we need only consider the terms cor-
responding to pairwise matching of the spin oper-
ators S (r„T,) and S (r2, T2) with S"(r„T,) and
S'(r4, T4), which are equal to

a/2
FIG. 4. Instantaneous picture of the four modes at q

0=0.6 A" in the a-direction, as determined from the cor-
relation functions S~~(q, ~) and S' ~(q, u) calculated within
the RPA. The two sublattices are denoted I and O.

Q ~34 I.gQ (rlt l~ r3i 3)gQ (r2~ T2i r4~ T4)
34

+gQ (rl Tl 14 T4)gQ (12 T2 13 T3)]

».„,&(I o&&o
I

—
I

n& &~
I },(I o&&o

I

—
I ~&&~1)2&Q

(22)
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The temperature average over the diagonal opera-
tors is dependent on whether the site 1 is identical
to or different from the site 2,

&(10&&0 I
—

I ~&&~),(l 0&&o I I
~&&~ I),&, =R'+I 6„, (23)

where b=(5e ~ +e ~ )(I+2e ~ ) . The fact that
this weight factor is not simply a product of the
weight factors R associated with the noninteracting
Green's functions invalidates the use of the original
Dyson's equation in summing diagrams. The R
terms have already been taken into account via the
RPA chain diagrams. The terms containing the
factor b~» correspond to the single-cell block shows
in the upper part of Fig. 6. The real part of the
diagram gives rise to a small shift of the excitation
energies. The imaginary part, which is of inter-
est here, has the following analytic expression in
„, q space:

Gf ™(i~„)= 2go(i&„)'bi Im-g g (q', i&„) . (24)

The summation over q' represents an effective dy-
namic "screened" siqgle ion in-teraction g~ (.q',
i(o„) is defined self-consistently by the equation

& s(q', f&.) = J(q') +2&(q')[Go(f~.) + G&(f~.)]& &(q', f~.),
(»)

which is represented by the chain diagram in Fig.
6. The corresponding sum over the unscreened
exchange, J (q~), is simply if/, which is zero
per def inition.

The matrices g z(q', it@„) and G~(iv)„) are defined
in analogy with Eq. (13). By grouping together
terms with equivalent q' vectors in the summation
in (24), one realized that 8~ (q', i&„) may be effec-
tively replaced by —2[+ (q', i ~) g+~~ (q~', ia&„)], which
is rotationally invariant. Therefore, the matrix
G, (i&o„) is proportional to the unit matrix, and the
screened interaction J~(q, i&„) is diagonalized by
the same unitary transformation which diagonalized
$(q'). The effective screened interactions for the

four modes are thus

8~(q', i~„)=8~(q')(I -2$~(q)[GO(i&a„) +G&(i~„)])' .
(26)

To get the effective interaction [g~ (q', i(u„) +8~ (q',
i(o„)] to be inserted in Eq. (24), the diagonal matrix
with elements 8~(q', i&„) must be rotated according
to the inverse unitary transformation. Because of
the invariance of the trace under such a transforma-
tion we get

2[8~ (q', i&a„) +8~)(q', i~„)]=g8g(q', i&a„) . (2'I)

Hence, the screened interaction in Eq. (24) finally
turns out to be the average of the interactions
4z(q', i~„) determined from Eq. (26),

G, (i~„)= 2g, (i~„)'bz —P -g 1m'",(q', i~„),
E

(26)
where the summation may be restricted to the ir-
reducible part of the Brillouin zone. The diagram
(Fig. 6) corresponds to scattering of excitation
waves on single-site fluctuations of the population
difference (or quadrupole moment), R. The inter-
mediate states are magnetic excitations with wave
vector q'. This effect corresponds to scattering of
spin waves on fluctuations of &S'

& for a simple ideal
ferromagnet as discussed by Vaks et al. ' It is in-
teresting that the damping occurs to first order in
the expansion. For boson or fermion systems, the
lowest order imaginary part of the self-energy oc-
curs in second order in the high-density expansion
owing to interaction between excitations. In the
present case the damping is of pure kinematic na-
ture. The correction terms in Eq. (23) arise be-
cause the commutators of spin operators are oper-
ators, not simple numbers. The resulting diagonal
Green's functions including all chain diagrams in-
volving Go(i~„) and G~(i(u„) are

G"(q, i~„)= [G,(i~„)+ G, (i&a„)]

x {I—2 J"(q)[G,(i~„)+ G, (i~„)]j' . (29)

Gi(i'~) =

/

I

I
/

The spectral functions, which are proportional to
the neutron-scattering cross section, can easily be
expressed in terms of the Green's functions using
the fluctuation-dissipation theorem,

(q, icu„) S"(q, ~) = (I/v)(1 —e ~") ~ ImG (q, &u) . (30)

/
I
/ Y

I )

/

FIG. 6. First-order diagram representing fluctuation
scattering of magnetic excitation waves. The double
wavy lines represent "screened" interaction lines as de-
fined by the diagram equation.

Combining Eqs. (10), (28), (29), and (30) we find

y( )(& -&)
~ ' —' '" [(~;")'—~']'+ [2y(~)&"(q)]'

where the damping parameter y(~) must be deter-
mined self-consistently by solving the integral equa-
tion
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r(~) = (~' —~') 1m'.",-(~)
l Z~ N", (~')&'(~') r(~)

(~"—~'F + [»(~)&(~')]' '

The summation over q' space has been changed to
an integration over (u' space. Nr(~) is the density
of states for the Ã'th exciton mode at temperature
T, and P(u&') is the value of Ã(q') for a mode with
energy ~' determined by Eq. (15). This transfor-
mation is possible because 8~(q') depends on q' only
through to'. Using Eq. (15) we get

I I

0Eo= l.2 meV

IO—

I

I. 2
I

3. 2—
fo
CO

Eo= 2.0 meV

Eo= 2.8 meV

2 3 2 3
I I I I

I I

T= IOK

Eo= 3.6meV-

3 4
I

T= 20K

Nr(&) =No (&(~ = 0))&(7' = 0)/~~, (33)

where ur(T =0) is the zero-temperature RPA energy
of the mode which has the energy at tempera-
ture T.

Using the parameters obtained from the least-
squares fit in Sec. II, the averaged density of
states No(~) (Fig. 7) was determined by sampling
more than 100000 points in the irreducible part of
the Brillouin zone. No(w) is only very slightly sen-
sitive to the goodness of the fit, as long as the
main features of the dispersion relations were re-
produced correctly. Once No(&) is derived, the
spectral function at any q vector and temperature
is completely determined by Eqs. (31)-(33). The
numerical solution of the integral equation (32) was
performed as a computer iteration process. No(~)
has a very large peak around the crystal-field split-

2 3 2 3
I . I I I

I

4 3
. I I

T= 30K

ij
2

I

4 3
I

I 2 3 2 3 4
ENERGY (meV)

FIG. 8. Intrinsic line shapes of magnetic excitations
in Pr calculated to first order in the high-density ex-
pansion. Solid lines: self-consistent line shapes deter-
mined using fully renormalized interaction propagators.
Broken lines: line shapes calculated using RPA-screened
propagators only. This approximation corresponds to
~omitting thelast term of the lower diagram equation in
Fig. 6. Note the different vertical scales at different
temperatures.

O. I 0

0.08

I

0.06E

UJ

O

0.04

0.02

0
I 2 3

ENERGY ( meV )

ting 4 and is about a factor of 15 less at =1.8
meV corresponding to the zone center optical mode.
Nevertheless, the damping is nearly constant for
1.5 «v &2. 8 meV due to the factor (&2 —~ ) or 8(~),
which increases rapidly when is removed away
from 4.

Examples of intrinsic spectral functions at sev-
eral energies and temperatures are shown in Fig.
8. At temperatures «6/b, the line shapes ap-
proach Lorentzians with a full width at half-maxi-
mum of 8mb&'8(+)'No(&)/&', which vanishes like
e ~ as T-0 because of the factor b. However, al-
ready at T =10 K there are marked deviations from
this shape, and at higher temperatures the spec-
trum is highly distorted. The vanishing of the spec-
tral function for = 4 is due to the factor 4' —~~.
This effect will probably be removed by higher-or-
der diagrams; in any case, it would be interesting
to measure the spectral function with high resolu-
tion at several temperatures for a mode with ener-
gy around &.

Figure 8 also shows spectral functions calculated
with a screened interaction g~(q'), calculated with-
out the last term of the diagrammatic equation in
Fi.g. 6. In this case we have

FIG. 7. Normalized density of states for the magnetic
excitations in. Pr. The curve was obtained by computer-
smoothing the histogram calculated as described in text.

&&(q')[&' —(f~.)']
(34)
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FIG. 9 Spectral func-

tions for magnetic excita-
tions in Pr. Points: neu-
tron measurements (Ref.
38) and lines: self-consis-
tently calculated line shapes
convoluted with the experi-
mental resolution (Gauss-
'ian with full width at half-
maximum 0 36 meV)

0.
I

I I I

2 3 I

I

2 ' 3 I
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2 3 I 2 3
ENERGY (meV)

I I

2 3
I I

2 3 4

fmgE(ql (g) 8(Q )( [6((gf ~) + 6(~f ~)]
(36)

Because of the 6 function, S"(g, &o) vanishes for &o

outside the exciton bands. This gives rise to a
sharp cutoff of the intensity for modes. with ener-
gies near the band edge, as pointed out by Stinch-
combe. Furthermore, the damping of the modes
vanishes completely at high temperatures where the
density of states approaches a ~ function. How-
ever, the last term in Eq. (35) secures the self-
consistency of the calculation and removes the
above-mentioned singularities by effectively
"smearing out" the density of states corresponding
to the actual width of the. modes. The theoretical
line shapes convoluted with the experimental reso-
lution function (Gaussian, full width at half-maxi-
mum =0.36 meV), are compared with experiment
in Fig, 9. The measured mode is the zone center
optical mode with zero temperature energy 0-1. 8
meV. Almost complete agreement between posi-
tions of peaks, intensities, and line shapes is ob-
served at any temperature. The agreement is least
perfect at the highest temperatures, where the line-
width, as calculated to first order in the 1/Z ex-
pansion, is comparable to the energy as calculated
to zeroth order. This indicates a slower conver-
gence of the expansion, and we can expect higher-
order corrections to the energies and linewidths to
be important. However, statistical uncertainties
of the measured points are important at T- & owing
to the relatively small number of neutron counts.

IV. CONCLUSION

In Secs. II and III it has been shown that the spin
dynamics of the magnetic excitations on the hex-
agonal sites of dhcp praseodymium can be under-
stood in terms of the lowest order terms in a dia-
grammatic high-density expansion. The first-or-
der RPA terms give an excellent description of the
dispersion relations, as measured by inelastic neu-
tron scattering, at any temperature. The analysis

showed that the forces between the spins are highly
anisotroyic and of rather long range. However,
no clear systematic behavior of the interatomic ex-
change constants, corresponding, for example, to
the Ruderman-Kittel-Kasuya- Yosida interaction,
was evident (Table I). The polarizations of the ex-
citon modes are, in general, elliptic or linear, and
the polarization vector changes rapidly as a func-
tion of q, in particular, at large wave vectors.

The large damping of the excitations can be ac-
counted for almost completely in terms of diagrams
representing scattering of magnetic excitations on
single-site fluctuations. Hence, damping effects
due to other effects, such as interactions between
excitations occurring to order (1/Z) in the expan-
sion, scattering on phonons, or direct Coulomb
scattering with conduction electrons, can be en-
tirely neglected at least at moderate temperatures.
This fundamental understanding of the excitations
in Pr may be valuable for the understanding not
only of other singlet-ground-state systems of mag-
netic or nonmagnetic nature, such as the hydrogen
bonded ferroelectrics, ' but also of more compli-
cated systems, since the formalism can easily be
extended to arbitrary level schemes.

An interesting feature is the fact that praseodym-
ium with very small amounts of neodymium orders
magnetically at low temperatures. ' Inelastic neu-
tron-scattering measurements of the dynamics in
such systems will probably give important informa-
tion on the dynamics in singlet-ground-state sys-
tems in the critical regime, and may provide a
crucial test to the validity of the present theory in
this regime.
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