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Classical displacive limit of an n-component model for structural phase transitions
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The static critical behavior of an n-component model at the displacive limit is investigated by means of
classical mechanics. In the large-n limit, critical exponents and crossover behavior are found by explicit

calculation, whereas renormalization-group and scaling relations are used to treat the case of general n exactly

for arbitrary dimension. The exponents at the displacive limit, i.e., for T, = 0, are classical for d ) 2. They are

independent of n and differ from those of T, & 0 for d & 4.

I. INTRODUCTION

We consider the usual ~-vector Hamiltonian

tive magnitude of A and C. (The latter is supposed
to be positive. ) At T =0 the ordered phase is more
stable for a classical system if

a=+ "+-,'AQ x,'. +
ta t. Qf

+ toa&
ro ———A —zC &0, (1.4)

z being the number of nearest neighbors.
In the limit of n going to infinity the static and

the dynamic properties of (1.1) can be evaluated
exactly. ' A phase transition occurs for dimension-
ality d &2, provided that (1.4) is valid, and the
static exponents agree with those of the spherical
model' and with those of a model with n = 1 but with
the quartic term in (1.1) replaced by a long-range
anharmonic interaction. ' Moreover, the existence
of a phase transition has been proved rigorously
for e= 1 for the full order-disorder regime and for
some part of the displacive regime.

According to the principle of universality, the

static critical exponents should be the same all
over the domain of those A and C values which al-
low for a transition, as long as n and d are fixed.
This need not be true for the so-called displacive
limit, i.e. , where T, =O. We expect this to occur
in classical mechanics for r~ = 0. This is an "iso-
lated point" in the parameter space of A, B, and

C. It is the purpose of this work to evaluate crit-
ical exponents for this limit and to calculate the
crossover behavior which is expected, since these
exponents differ from the ones valid away from the
displacive limit.

In Sec. II the calculations are done explicitly for
n- ~, while Sec. III deals with arbitrary v by
means of renormalization-group techniques. Un-

like the usual situation with T, &0, where exponents
can only be obtained in powers of & =4-d the dis-
placive limit allows for some exact results for ar-
bitrary n and d. This is the (formally) interesting
aspect of the classical displacive limit. "'" In

reality one may argue that if the critical tempera-
ture is zero, quantum effects are no longer negligi-
ble. The quantum-mechanical displacive limit,
where zero-point fluctuations dominate the critical
behavior, will be treated in a further publication, '2

where the physical relevance for real systems will
also be discussed.

1
2C xf Qf xf tcf ~

This form has been used as a model for structural
phase transitions. ' In this framework, x, and

Pi denote the n component of displacement and
momentum (1 & n &n) of the particle at lattice site
R„respectively. The sum over l and l' in the last
term is restricted to nearest neighbors, for sim-
plicity. Similar Hamiltonians as (1.1) can also
describe transitions in classical magnetic systems.
For this purpose the kinetic energy is usually
omitted Bnd x, is interpreted as the nth component
of a continuous spin vector attached to site l. Most
of the recent renormalization-group work ' has in
fact been performed with the potential-energy part
of (1.1). More specifically, one uses the corre-
sponding expression in q space, taking into account
only a small-q expansion of the "dynamical matrix"
[see our Eq. (3.5)]. For the magnetic case, A is
usually chosen to be negative. Thus the one-par-
ticle distribution function

(1.2)
is a good approximation to a classical spin system,
where

Px2. =s'

(i.e. , the spin vectors have fixed length s). In

fact, if A--~, B-+~, A/B= const, (1.2) re-
duces to 5(g x', —s'). In the case of structural
transitions, both regimes A &0 (order-disorder
transitions) and A &0 (displacive transitions) are
of interest. In the displacive domain considered
here the existence of an orderedphasewithnonvan-
ishing order parameter (x, ) depends on the rela-

2-

p(x, )=expI'-p-,'Age, '„+ ',p Qx,'„)-
Qf Qf

I
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II. LARGER LIMIT

In order to have a guide for general ~ it is useful
to study the limit n-~ which can be treated exact-
ly. Here the static structure factor

(2.4)

For cubic lattices it is sufficient to take the term
h2q~ in order to determine the critical behavior.
For small q the solution of (2. 3) is of the form

S (q) =Q(x, x, ) e" "(

is given by

(2. 1) (d'(q) =r+ f)'q,

x being determined by

(2. 5)

S (q) =kBTy(q) =ksT/(d (q). (2.2)

p Bk~T ~ 1
(u (q) =r()+g(q)+ & ~q'~ ' (2. 3)

with

g(q) is the static susceptibility (independent of n
for T & T, =0), and the frequency ur(q) is the solution
of the self-consistent phonon equation

Bk~T ~ 1x=ro+
N ~ r+bq (2.8)

r= Ty(r),

with

(2. 7)

For an infinite system the q sum is replaced by an
integral over a spherical Brillouin zone with some
cutoff radius A. At the displacive limit (ra=0) we
find

ar)( /2-1 ~ for d(2,
for d= 2q

!

c+er —ar lnx+ ~ ~ ~ for d =4,

( c+ er+ ~ ~- for d &4.

c —alnr+ ~ ~ ~

(t)(r)- dqq~ ~
2

— c —ar / -1+ ~ ~ for 2&d &4,
1

x+q
(2. 8)

X(q= o)-(T- T.) "= T", (2.9)

The (cutoff dependent) values of the constants are
irrelevant for the critical behavior. Moreover
Eqs. (2. 8) only show the leading powers of r. We
find

l

usual. The border between mean-field and non-
classical behavior (d = 2 here) has logarithmic cor-
rections as is usually the case for d =4.

From (2. 5) it immediately follows that r/=0.
The correlation length is best defined by

with (dS (q) 1
p.(t))) s-o

' (2. 11)

2/(4 —d) for d &2,
y=

1 for d &2.
(2. 10a)

In two dimensions y=1. However, there are log-
arithmic corrections to the form (2. 9).

The values (2. 10a) of y do not agree with the us-
ual ones for wo ~0 which are

since $ itself vanishes at T=0. This yields

g- T, with v= —,y. (2. 12)

The displacement M induced by an external field
H at T= T, =0 is easily calculated from the equa. -
tion of state

! 2/(2 —d) for d &2,

y= 2/(d —2) for 2 &d &4,

for d &4.

(2. 10b)

M, r()+—M~+ksTM, Z 2, =H .
rl g

()) qp' H~)

(2. 13)
The result is

(For d &2 there is no ordered phase for any finite
temperature in the n - ~ limit, but for ro (0 the
susceptibility X diverges for T- T, =O, see the end
of this section. ) In the displacive limit y takes the
molecular-field value for d &2 instead of d &4 as

M ~ H'~'
0 0 (2. 14)

with 6 = 3 for all dimensions. The specific heat is
calculated in the same way as for the spherical
model. The partition function can be evaluated by
noting that

sxp —p Q( Qs,', =(—RO)- S') ds, sxp -p Qsisi&2+s,
p Qs,',

l at r 4m Q
(2. 15)
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(r —ro) ksT ~
+ ~in(r+q ). (2. 16)

This formula allows one to use the steepest-descent
method in the limit n-~ as for the spherical mod-
el. 7 The free energy per particl. e and per compo-
nent of the order parameter is

with r = T- T,(ro). The last term can be neglected
in the critical region, where v is small. Thus
(2. 26) implies

r = 7g(ro/r') (2. 27)

Here g(x) is the crossover function, and the cross-
over exponent P is given by

Using relations (2.3), (2. 6), and (2. 6) this yields
for the specific heat 1t1 = 1 - s = -,'(4 - d). (2. 28)

At the displacive limit

C T" T (2. 18)

The susceptibility X takes the form

x(., )= '(g( o/ '))'.
For d &2, Eq. (2. 6) yields

t'= J'o+QTT
~ s = p d —1 &0.

(2. 29)

(2. 30)

with
—d/(4 —d) for d & 2,
—1 for d &2. (2. 19)

In order to check scaling relations involving the
specific-heat exponent n one should choose r/r" =ra/r"0+ a(r/T o) (2. 31)

For these dimensions the critical temperature is
T, = 0; r goes to zero and g diverges for T- 0,
provided that ro- 0. However, the critical expo-
nents again differ for t'010 and ra=0. Equation
(2. 30) is written

n= 2+1, (2. 20)
with

because at T = T, = 0 the factor T in the definition
(2. 17), which is usually replaced by T„we kaen s
a possibly singular behavior of C by one power of
T= T- T,. Equations (2. 10), (2. 12), (2. 19), and
(2. 20) show that the exponent relations

y = (2 17)1-

yo = 1/(1 —s) = 2/(4 —d),

as found in (2. 10). Thus

r = r"og(r, /r'),
with

(2, 32)

(2. 33)

and (2. 21) (2. 34)

6= (2- o. + y)/(2- o. y)-
are fulfilled. Those relations which involve the
dimension are violated. In fact we find

For small x the shape function g(x) tends to a con-
stant, which produces the behavior (2. 9) and
(2. 10) for )/, whereas for large x the leading term
is

6 = (D+ 2)/(D —2) (2. 22)
g(x) „„=x'/'. (2. 36),

(2. 23) Thus, away from the displacive 1.imit, we end up

with

r = ro+ T(c —ar'), s = —,'d —1 & 0. (2. 24)

with D=4, i.e. , the system behaves in this re-
spect as if it were four dimensional.

Finally, we calculate the crossover form of
g(ro, r) as well as the crossover exponent P de-
scribing the deviation from behavior (2. 9) and

(2. 10) for nonvanishing negative ro. For 2 & d & 4
we find, using (2. 6) and (2, 8),

r1'0 (1-1 /s ) r-1/s

and therefore

y= —1/s = 2/(2 —d),

as shown in Eq. (2. 10b).

(2.36)

(2.37)

The critical temperature T, is determined by r =0,
thus

III. RENORMALIZATION-GROUP TREATMENT FOR
GENERAL n

~, + r,c=o. (2. Z6)

—=c+ 1 s
— —A 7', (2. 26)

With the help of this condition (2. 24) is brought
into the form

Recently, some rigoruous results concerning
the displacive limit of (1.1) for 11 = 1 have been de-
rived. Morf and Thomas' calculated the partition
function and static susceptibility of a linear chain
with the help of the transfer-operator technique.
They found
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as well as a crossover behavior of the form

(3.1) for d=1,

1 for d& 2.
(s.4)

X(ro, r) = r "r(ro/r'),

with

2

(3.2)

(3.3)

By means of Green's function methods, Wiesner"
found for n = 1,

This result, valid for n = 1, agrees with the large-
n limit studied in Sec. IIfor d ~2, even though
Wiesner used a different definition of the cross-
over exponent. In order to treat arbitrary n we

apply Wilson's renormalization-group approach to
Hamiltonian (l. 1). For this purpose the latter is,
as usual, transformed into

H -,'g d X(r+=X )x, (q) x(-q)+-', xJd Xx
. .dX4() Pt( Px, (q~)x, (t(~)x„(qa)x, .(t(~).

e )=1 ee'
(s. 6)

r' =L [r+4(n+1)uTA, (r, L)+ ],
u' =L'[u -4(n+ 8)u~TAz(r, L)+ ~ ~ ~ ],

with

(3.7)

(s. 8)

A— (s.9)

Many authors' ' have derived recursion relations
for the parameters r and u under the effect of a re-
normalization-group transformation. Such a
transformation is generated by eliminating the de-
grees of freedom with I ql &1/L and looking for a
new, effective Hamiltonian involving parameters
r' and u'. Our analysis differs from all this work
in one respect: since we are interested in T, =O

we cannot absorb the quantity p= (ksT) ' showing

up in the partition function, into the parameters of
the Hamiltonian. Instead we have to keep track of
all factors T explicitly. Consequently, the effec-
tive four-point coupling becomes small as T-O,
and the ordering of the graphs is done with respect
to powers of T. For example, expectation values
of the form

(x, (q)x, (q')) =6, , 6(q+q')ksT/(r+q') (3.6)

(evaluated in the "Gaussian" approximation), which

arise in the perturbative treatment of renormaliza-
tion are linear in T. Therefore the explicit recur-
sion relations —Eqs. (6. 18) and (6.19) of Ref. 6—
read

volve higher powers of the propagator (3.6).
Therefore we find for the displacive limit, - T, = 0,
a fixed point of (3.7) and (3.8) which is correct for
arbitrary dimension, namely,

r~ -u* —0 (3. 11)
Although these are the values which r and u assume
at the Gaussian fix point, the exponents need not be
classical, since, close to the fix point the recur-
sion relations (linearized with respect to 6r =r —r*
and 6u =u —u*) have two relevant variables for
d&4 (i.e. , e &0):

f 6r') &L' 01 f6r )
(6u'] ( O L') (eu) '

pointing to a crossover away from the fixed point
(3. 11), which would indeed take place if T, were
greater than zero. According to the general rules
of renormalization-group theorys we first de-
termine the exponent v of the correlation length,
which is given by the largest eigenvalue (of the
form L') of (3. 12):

1/@=1/(4-d) for d&2 (e &2),lnL (3. 13)
lnL' for d &2 (e &2).

This again shows that the borderline between
mean-field and nonclassical behavior lies at d = 2.
Next, the crossover exponent is given by the ratio
of the "weaker" and the stronger" exponents in
(s. 12):

g~ (r+q')' (3. 10)
2/e = 2/(4 -d) for d & 2,
1 1—2e= 2(4 —d)

(3.14)

Equations (3.7) and (3.8) are correct up to order
e (a =4 —d), thedots pointing to higher-order terms
-e, &', etc. In our context, however, the im-
portant fact is that higher-order contributions also
involve higher powers of T, since diagrams of
higher order in the perturbation expansion of the
partition function with respect to small u also in-

For d &4, P is negative: the Gaussian fixpoint is
stable for all T„as is wellknown. The exponent
6 need not be determined by renormalization
theory, since at T= T,= 0 there are no more
thermal fluctuations. Landau theory is exact and
therefore 5=3 for all d and n. From this and the
scaling relations (2.21) we again obtain
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1 —d/(4 —d) for d &2,
G= &+1=

for d &2.

All these results confirm that the static expo-
nents are independent of ~ in the classical dis-
placive limit. It is also interesting to compare
the dif ferent borderlines between molecular-field
and true critical behavior: (a) For T, &0, i.e. ,
away from the displacive limit, thermal fluctua-
tions cause deviations from Landau theory for
d &4. (b) At the quantum-mechanical displacive
limit there are only zero-point fluctuations. ' '
Their "infrared" behavior is less singular than
that of thermal fluctuations', there is some kind of
a borderline at d=3 (which is reflected, for ex-
ample, in 6), at least for n- ~, although some ex-
ponents take nonclassical values for all dimensions.
(c) At the classical displacive limit, thermal fluc-
tuations are weakened by factors of T [see, for ex-
ample, our Eq. (3.6), and the integral equation
(2. 6)]. Thus the critical behavior is classical for
d &2.
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Note added in pr oof. The renormalization-group
arguments can be presented in a slightly different
way, which makes the determination of v and &f&

more transparent. By scaling the field variables
in (3. 5) by T '2 the inverse temperature in the par-
tition function is, as usual, incorporated in the
Hamiltonian. The quartic coupling parameter u is
then proportional to T. The recursion relations
have no explicit factors of T, but the eigenvalues
at the Gaussian fixed point are the same as in
(3.12). At the displacive limits, the renormaliza-
tion procedure starts from x=0, thus both scaling
fields (6 and a linear combination of 5u and S)
are proportional to T. The correlation length then
scales as

$ =L((L aT, L'bT),

which immediately yields (3. 13) for p. Away from
the displacive limit the starting value x is different
from zero which leads to scaling fields of the form
aT+ 6. The scaling properties of $ then yield the
crossover exponent as in (3. 14). It should again
be emphasized that the quantity 7 showing up in
crossover form like (2.29) is the difference be-
tween T and T,(r ).0
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