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For N spins, u, = + 1, i E f1,2,...,N), interacting via nearest-neighbor ferromagnetic Ising interaction —Jcr, rr,. on a
Cayley tree with branching number B, it is shown that any even-spin correlation function &o;I Ol2" &i2~ }
decomposes into a product &Gji Qj2} &Oj2+ g op2~} of two-spin correlation functions &Oj Oj

[tanh(Jlks T)}dttP IP+&~.where d(j~,j„+,) is the number of bonds on the unique self avoiding~Path connecting ot&
and oi&+i. This generalizes to B & 1 the known decomposition for an Ising chain (a Cayley tree having B = 1).
The decomposition theorem leads to upper and lower bounds for the zero-field susceptibility, and these
bounds become infinite for temperatures T & T, and are finite for T & T2 where B tanh (J/k~ T,) = 1. An upper
bound is also given for the fourth cumulant of the magnetization. That bound becomes (negatively) infinite for
T & T4 where B 'tanh (Jjj'kg T4)=1. The above exact considerations are consistent with recent results of other
authors and provide elementary insight regarding the cumulant divergences and long-range correlation of
subsets of surface spins.

I. INTRODUCTION

A model of N spins, o& =+1, having nearest-
neighbor, ferromagnetic Ising interaction —Jo&o&

on a Cayley tree with branching number B has been
a subject of some recent interest for several rea-
sons: (a) The model displays' s a phase transition
(divergent susceptibility) without' a spontaneous
magnetization. (b} Previous approximations which
neglected surface contributions are invalid here,
since careful treatment of the surface is essential
for this model. (c) The equilibrium statistical
mechanics can be formulated' in terms of non-
linear recursion relations, the study of which is it-
self of current importance in mathematical physics
and biology.

The purpose of this paper is first to prove for the
above model that any even-spin correlation func-
tion (o, ot ~ ~ o, ) decomposes into a product of
two-spin correlation functions (o& o& t) = [tanh(J/
ks T)] '~s'~s+", where d(js, j s,t) is the number of
bonds on the unique self-avoiding path connecting
o& and o».„and T is the absolute temperature.
This generalizes to 8& 1 the known' decomposition
for an Ising chain (a Cayley tree with B=1), and
also generalizes to K&1 Mukamel's resulte spe-
cialized to zero field.

Having established the decomposition theorem,
we use it to obtain upper and lower bounds for the
zero-field susceptibility. The bounds are shown
to become infinite in the thermodynamic limit for
T = Ts and are finite for T& Ts, where'~ Btanhs(J'/
kn Ts) =1, thus providing a simple proof of the di-
vergence of the zero-field susceptibility for T = T~.

A bound is also given for the fourth cumulant of
magnetization, and the bound shows that the cumu-
lant becomes (negatively) infinite for T& Ts, where
B tanh (8/knTs}=1. But Ts& Ts, therefore the
fourth cumulant diverges before the susceptibility

&AB = JAB&qOq+g ~ (2)

The theorem is
Theorem I: The canonical ensemble average of

any function of the spins in system A only is inde
pendent of all interaction parameters contained in
+Bu +AB ~

Proof: Introduce new spin variables t, =+ 1 for
i = 1, 2, . . . , N and write

as T is lowered from infinity.
These divergences of the second and fourth cumu-

lants are consistent with the general asymptotic
free-energy analysis by Muller-Hartmann and Zit-
tartz, who found that the 2' cumulant diverges at
T&& where

Btanh(J/kTst) =Btt, I=1,2, . . . .
The construction of the bounds given here shows
explicitly that correlations among a subset of sur-
face spins produce the divergences for 1=1,2.

II. DECOMPOSITION THEOREMS

The main results are obtained here via a pre-
viously stated theorem~ regarding the correlation
(o,o,) between two spine o„, o, in system A which
is linked to another system (call it B) by a single
ferromagnetic bond J».

Let system A consist of q spins o„o„.. . , o„
and let the Hamiltonian XA for system A be of the
most general form, possibly containing one-spin,
two-spin, . . . , q-spin interactions. Let system
8 contain N-q spins o„&, o„2, . . . , o„, and re-
strict the Hamiltonian XB for system B to even-
spin interactions; i.e. , KB may contain two-spin,
four-spin, . . . interactions only. The Hamiltonian
for the linked system is

A++8+AB s

where
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connecting 0» and o; . The above argument ob-
tains for any spins on the tree, and Eq. (9) gives
Mukamel's resulte specialized to zero field.

It is worth a bit more effort to generalize Eq.
(9) to any even-spin correlation function (o;, o;
o;. „). Odd-spin correlation functions are zero
owing to the symmetry of the Hamiltonian. Since
the generalization of Eq. (9) is not required for
bounding the susceptibility, we simply state the
generalization as a theorem here and defer the
proof to Appendix A.

Theorem II: For any szzbset of sPins o;,
0;, . . . , oi, K=1, 2, . . . , on a Cayley tyee gee'3'
eanoniml ensemble ave~af. e

P-zx [(B I)/(Bzr 1 1)]Bzzr-2uaM

(B—1)B z(u B)"

for u B&1, M

for

X—:lun X~ =~
M~

where u=tanhPJ. Taking the (B ) pairs formed
from a spin in the upper cluster and a spin in the
lower cluster, one has only a partial sum of terms
in the susceptibility and hence a lower bound

Btanh2(J/ks T ) & Btanh2(J/ks Ta) —= 1. (17)

(10)
zvhere (o; o;,) is given by Eq. (9), and the Hamil-
tonian is given by Eq. (8).

Remark: The proof given in Appendix A shows
that although the decomposition indicated in Eq.
(10) is not unique, any of the possible decomposi-
tions leads to the same value for (o; o; ~ ~ ~ o; ).
Since a decomposition of the form of Eq. (10}is
well known' for an Ising chain (a Cayley tree hav-

ing B=1}, Theorem II provides a generalization
to B&1.

%e now apply these theorems, particularly Eq.
(9), to obtain upper and lower bounds for the sus-
ceptibility, and will subsequently use the more
general result, Eq. (10), to bound the fourth cumu-
lant of the magnetization.

III. SUSCEPTIBILITY LOWER BOUND AND PHASE
TRANSITION

Equation (9) leads directly to upper and lower
bounds for the zero-field isothermal susceptibility
y„[with N given by Eq. (7)]

P Xzr =N + (ozog) ~

/=i= j=N

(12)

p y = 1+2 N g [tanh(p J)]""'",
i&g ~N

where the sum is over all pairs of vertices and

d(i, j) is the number of bonds in the unique, self-
avoiding path between vertex i and vertex j.

Refer to Fig. 1 and consider the upper and lower
clusters of surface spins, each cluster containing
I3" ~ spins. The number of bonds in the path from
any spin in the upper cluster to any spin in the
lower cluster is 2 M. According to Eq. (9), the
correlation (o,o~) between a spin o, in, say, the
upper cluster and a spin 0& in the lower cluster is

This is intended as a proof of the zero-field sus-
ceptibility divergence for T & T2. The proof is
based on a simple theorem and avoids an analysis
of nonlinear coupled recursion relations. ' The
construction of the bound shows how a subset of
surface spins produces the susceptibility divergence.

Before obtaining an upper bound on the suscepti-
bility for T& T~, it is interesting to qualitatively
consider the connection between long-range corre-
lations and the established divergence of X. Notice
that there are no infinite-range correlations for
any T & 0 since 0 & tanh(J/ks T) & 1, and from Eq. (9),

( zl2
m*—=

~

lim lim (o, o&) =0
kg(i g) ~ N

consistent with the absence of spontaneous mag-
netization. Nevertheless, one can study the long-
range correlations. For that purpose we imbed
the Cayley tree in a regular two-dimensional square
lattice so that the distance b between neighboring
vertices in any column (labelled by l in Fig. 1) is
the same as the distance between neighboring col-
umns. Such an imbedding obviously leaves many
lattice sites unoccupied. Consider two surface
spins o~, o (in column l =M), one at the top and
one at the bottom. The distance r between those
spins is (B"—1) b; whereas the correlation (oz,o„)
by Eq. (9) is

(oz,o„)= u'"

where

o =——2M lnu/ln[(B" —1) b] .

If we take b =1 as our length scale and demand that

for integral convergence in two-dimensions, then

1 —@&0,

which, for large M, implies that
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—2Mlnu/(MlnB) )1,

or, equivalently,

u B&1.

An alternative form for the zero-field suscepti-
bility expression, Eq. (18), is obtained by writing
u=tanhP J and considering the number C„of two-
vertex connecting paths of bond length n. Then

P yu -—1+2N Q C u".
1~ n~2hf

(18)

Conversely, the condition u B& 1, which by Eq.
(15) gives a divergent )(',, also implies long-range
correlation within the framework of this qualitative
argument.

IV. SUSCEPTIBILITY UPPER BOUND

—(01'02 ~) (01~ ~ 02 ~ I)

(01'01' '/i02' +2")i/

—(01~ 02rt) ( 0e1~ 02 ~ ) . (24)

The decomposition theorem, Eq. (10), shows that
(0, 0; 0, 0, ) will always be cancelled by one of the

1 2 3 4

three terms involving pair correlations; thus,
C4(il, i2, i2, i4) =-0 as required by a more general
inequality given by Griffiths, Hurst, and Sherman 11

To obtain a lower bound for D4, consider any
pair o1, 0 2 of spins in the upper surface cluster.
There are ,'B '—(B"' —1) such pairs. Similarly
there are ,'B" (—B"' —1) pairs of spins 0',„,02„on
the lower surface cluster. The cumulant associ-
ated with the four spins is

C4(1» 2» 1» 2 ) —(0'1 0'2 ~ 0'1 ~ ~ 0'2 )

An explicit expression for C„has been given by
graph theorists' and is contained in Appendix B,
which also includes a derivation of the following
bound.

But

and

(01i02i 01~ ~ 02 ~ ~ ) = (0lt 02 2) (01' ~ 02m 2) (25)

C„=-G'B"'"" 0 =-n =-2X (19)

The quantity G depends only on B and is positive
and finite for B & 1.

Substitution of Eq. (19) into Eq. (18) gives

(01' 01' ') (02'02' ') (01'02' ') (01"02') 2N

where u = tanhP J, therefore

C4(1', 2', 1",2")= —2u (27)

2(B—1) (ug B)2"'1 —up B
X4( + BN+1 1 ( qB)

where the right-hand side

for u B=1, M-~,
for u B& 1.

(21)

and

for

2
BN-1 BM-1

(28)

Thus, Eqs. (15) and (20) establish that )t is bounded
for T & T2 and unbounded for T = T2, with T2 given

- by Eq. (17). This is consistent with the results
given by Matsuda, von Heimburg and Thomas,
and M61ler-Hartmann and Zittartz. 3

V. FOURTH CUMULANT OF MAGNETIZATION: UPPER
BOUND

p D4 ——N Q C4(il» i2» q» i4),
~ ~ ~ k4

where

(22)

The zero-field isothermal susceptibility expressed
by Eq. (11) is essentially the second derivative of
the free energy per spin with respect to the mag-
netic field In zero field the odd derivatives are
zero, so that the next nonzero derivative is the
fourth derivative D4

Bu&1, M

Define T4 by

f22 Zg/g=[tanh '(B- i4)]-1

and recall from Eq. (17) that

$2 1"2/»f —= [tanh 1(B1 )]

(29)

(80)
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FIG. 3. Typical two-vertex connecting path of bond
length n (=7) with shorter branch of length r (=3).

(S BM-n+1
@ ) Bn-1

Case III. n a positive even integer, n =M:

C. = [(B""'—1)i(B—1)]B"

+
& (BM-n/8~1 1) B&-1+(S BM-rr+1 S ) B&-1

(812)
Case IV. n a positive odd integer, n =M:

C„=[(B"""' —1)/(B- 1)]B"

+ (S B&-~+~

B" for x=0, (B2)

~B"(B I) B"~-=—,'B~" ~(B—1) for n =2r, (BS)

B'(B—1)B" '"'~' =(B-1)B" ~ for n& 2r, (B4)

For each feasible vertex the number of paths is
For Eqs. (B10)-(B18),

1
S11

——M- ~n,

S)~
——(B"/ —B"")/(B —1),

S„=M--,'(n -1),
(B (nag)/2 Bn M)/(B 1)

(814)

(B15)

(816)

(sl7)
as may be readily verified by considering a path-
number matrix with rows labelled ~=0, 1, . . . , and
columns labelled n =0, 1, .. . .

For M-n+r =0 let A„„denote the number of
paths of length n with shorter branch r:

B", r=0,
g&-n+t'+1 1

1

B"~(B—1), 2 =2m n —1=.

(s5)

(B6)

(s7)
The number C„which we seek is now obtained from
elementary geometric sums:

A, n even, (B8)
0 r n/2

C n

0 r {n 1)/2 +my oddy

where the prime means that the sums. are restricted
to M —n+x = 0.

To compute the sums consider the following cases:.
Case I: n a positive even integer, M& n = 2M:

[L(B&-~/~+& 1)+ S B&-~+& S ] B~-& (Il10)

Case II. n a positive odd integer, M& n =2M-1:

1@~=2n —1,

S p
= (B"/ —B)/(B —1),

S4, ——~(n —1),
SN ——(B '"'~ '/ —B)/(B —1).

(S18)

(slo)

(820)

(B21)

Consideration of Matthews and Jenkins's above ex-
pressions for C„ leads to the inequality

Cn = G& '"~ for 0 = n = 2M, (B22)

where G is a positive quantity depending only on B.
In principle, one can substitute Eqs. (B10)-

(B18) into Eq. (18) and compute the indicated sum-
mation to arrive at an explicit expression for the
susceptibility for a Cayley tree with general B and
M. One finds that u B=1 coincides with the radius
of convergence; however, the resulting expres-
sions are somewhat unwieldy and provide little in-
sight beyond what has already been gained via our
bounds and the work of von Heimburg and Thomas, 1

Matsuda, and Muller-Hartmann and Zittartz.
A generalization to the Potts and Ashkin-Teller

models of ideas in Refs. 1-4 has been given by Y. .

K. %ang and F. Y. %u. '
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