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For N spins, o; = £ 1,i€{1,2,...,N}, interacting via nearest-neighbor ferromagnetic Ising interaction — J o;0;0na
Cayley tree with branching number B, it is shown that any even-spin correlation function (0iy Oiy---Oizg)

decomposes into a product (07,0, *$Ojy 5 1 Oiak

) of two-spin correlation functions (ojpajp i) =

[tanh(J/ kg T)}4Up+ip+D ;where d(j,sjp41) is the number of bonds on the unique self-avoiding path connecting Ojp
and 0j,.y. This generalizes to B > 1 the known decomposition for an Ising chain (a Cayley tree having B = 1).
The decomposition theorem leads to upper and lower bounds for the zero-field susceptibility, and these

bounds become infinite for temperatures T < T, and are finite for T > T, where Btanh’(J/kyT,) = 1. An upper
bound is also given for the fourth cumulant of the magnetization. That bound becomes (negatively) infinite for

T < T, where B*tanh*(J/kpT4)=1. The above exact considerations are consistent with recent results of other
authors and provide elementary insight regarding the cumulant divergences and long-range correlation of

subsets of surface spins.

I. INTRODUCTION

A model of N spins, o; =+1, having nearest-
neighbor, ferromagnetic Ising interaction - Jo;o0;
on a Cayley tree with branching number B has been
a subject of some recent interest for several rea-
sons: (a) The model displays'~® a phase transition
(divergent susceptibility) without'~* a spontaneous
magnetization. (b) Previous approximations which
neglected surface contributions are invalid here,
since careful treatment of the surface is essential
for this model. (c) The equilibrium statistical
mechanics can be formulated!~ in terms of non-~
linear recursion relations, the study of which is it-
self of current importance in mathematical physics
and biology.

The purpose of this paper is first to prove for the
above model that any even-spin correlation func-
tion {0y, * * * 03, ) decomposes into a product of
two-spin correlation functions (o, 0;,,,) = [tanh(J/
kg T)] %9 92+1 | where d(jp, jp.y) iS the number of
bonds on the unique self-avoiding path connecting
05, and 0;,,, and T is the absolute temperature.
This generalizes to B>1 the known® decomposition
for an Ising chain (a Cayley tree with B=1), and
also generalizes to K>1 Mukamel’s result® spe-
cialized to zero field.

Having established the decomposition theorem,
we use it to obtain upper and lower bounds for the
zero-field susceptibility. The bounds are shown
to become infinite in the thermodynamic limit for
T = T, and are finite for 7> T,, where!™ Btanh®(J/
kg Tp) =1, thus providing a simple proof of the di-
vergence of the zero-field susceptibility for T =75.

A bound is also given for the fourth cumulant of
magnetization, and the bound shows that the cumu-
lant becomes (negatively) infinite for 7< T,, where
B3tanh*(J/ky T,)=1. But T,> T; therefore the
fourth cumulant diverges before the susceptibility
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as T is lowered from infinity.

These divergences of the second and fourth cumu-
lants are consistent with the general asymptotic
free-energy analysis by Miiller-Hartmann and Zit-
tartz,? who found that the 2* cumulant diverges at
T,t where

Btanh(J/kTy) = BY2') 1=1,2, ...

The construction of the bounds given here shows
explicitly that correlations among a subsef of sur-
face spins produce the divergences for 7=1, 2.

II. DECOMPOSITION THEOREMS

The main results are obtained here via a pre-
viously stated theorem” regarding the correlation
(0,0 between two spins ¢,, o, in system A which
is linked to another system (call it B) by a single
ferromagnetic bond J, 5.

Let system A consist of ¢ spins oy, 0y, ..., o,
and let the Hamiltonian 3¢, for system A be of the
most general® form, possibly containing one-spin,
two-spin, ..., g-spin interactions. Let system
B contain N — g spins 0,3, 0,2, ..., Oy, and re-
strict the Hamiltonian 53¢z for system B to even-
spin interactions; i.e., 3z may contain two-spin,
four-spin, ... interactions only. The Hamiltonian
for the linked system is

J=3,+3C5+3Cyp, (1)
where
¥ ap =J450e0q1- (2)

The theorem is

Theovem 1: The canonical ensemble avevage of
any function of the spins in system A only is inde-
pendent of all intevaction parameters contained in
¥p, Hyp.

Pyoof: Introduce new spin variables #; =+1 for
i=1,2,..., Nand write
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t, forj=1,2, ..., q,
0']:{ (3)

tt; for j=q+1, q+2, ..., N;

then the inverse relations are

o; for j=1,2, ..., ¢
tj:{ s Sy s 4y (4)

0,0; for j=q+1, q+2, ..., N.

That transformation leaves 3C, and 3¢z unchanged
except to replace the ¢ variables by £ variables,
whereas 3, 5 is transformed into J,5f,,;. Denote
the transformed Hamiltonians by 3¢, and 3¢, and
let f(oy, ..., 0,) denote an arbitrary function of
the spins in system A only. Then the canonical
ensemble average

(FH=2" 22 f(og eny 00

OreeerOy

X exp[~B(¥C4 +3Cp +3Cap)]

=( S fty, ..., tq)exp(—Bff_CA)>/

tireeertq

2o, exp(=BRy), (5)
ety
which proves the theorem.

A simple application of the theorem relates to
the special case in which system B has pair inter-

actions only:

e T

q+l SKKISN

Jp10%07 . (6)

The theorem then asserts for 1 =¥< s =g that
(0,0, is independent of J, 5 and J,; for g+1=k<!
=N. Inother words, for the purpose of calculating
correlations among spins in system A only, one
may “disconnect” system B by putting J,5 =0.
Remavrk: Neither the theorem nor the example
should lead one to the false conclusion that the
spins in system A are statistically independent of
the spins in system B. For example, (0,0,,,)
# ( Uq} (0q+1> =0.
With Theorem I in mind consider the Cayley
tree shown in Fig. 1. For definiteness B has been
taken equal to 3, and the tree shown has “branched”
through M =4 generations. The number of spins
(vertices) in the zeroth generation is B°=1; in the
second generation B new spins are added, etc. The
total number of spins on the tree is

M+l _
N= ), -2l )

and the Hamiltonian for the system is taken as
X=-J Z 0;0;5, J>0, (8)
(4,4

where (i, j) refers to nearest-neighbor spins.
Now consider any two spins on the tree. Again,
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FIG. 1. M (=4)-generation Cayley tree with branching
number B (=3).

for definiteness, two spins o; and o;, , have been
labelled in Fig. 1, and the unique self-avoiding
path® connecting them is shown with a broadened
line. The theorem then enables us to partition
the tree into two systems A and B. The B system
contains all spins attached to the path connecting
9, and Oiper by a particular bond. For example,
the upper cluster of 13 spins would constitute a
possible choice for the B system. The A system
contains all other spins on the tree and clearly
includes Oips Tipays and all spins on the path con-
necting o;, and oy, .. Theorem I says that in cal-
culating (U,P 0y,,,) We may prune the tree by dis-
connecting the B system. The resulting tree may
then be similarly partitioned; Theorem I may be
applied again and the pruning process continued
until one is left with a one-dimensional chain of
spins with o; and Ojpa at opposite ends of the chain.
For such a cflain it is well known® and easily veri-
fied that

(03,05,,,) =[tanh(J/ ks T)] Wpripy), (9)

where d(j,, js1) is the number of bonds on the path



5186 H. FALK 12

connecting o;, and 0;, .. The above argument ob-
tains for any spins on the tree, and Eq. (9) gives
Mukamel’s result® specialized to zero field.

It is worth a bit more effort to generalize Eq.
(9) to any even-spin correlation function (%1 Opyvne
Gizx>' Odd-~spin correlation functions are zero
owing to the symmetry of the Hamiltonian. Since
the generalization of Eq. (9) is not required for
bounding the susceptibility, we simply state the
generalization as a theorem here and defer the
proof to Appendix A,

Theovem 1I: Fov any subset of spins Oiys
Oi s »ons Oigyy K=1,2, ..., on a Cayley tree the
canonical ensemble average

(03,03, ° " 03, ) =(07,03,(03304) * * *Tippe_1 Oinge)>

(10)
where (0;,0;,,,) is given by Eq. (9), and the Hamil-
tonian is given by Eq. (8).

Remark: The proof given in Appendix A shows
that although the decomposition indicated in Eq.
(10) is not unique, any of the possible decomposi-
tions leads to the same value for (0i1<7i2 AL AN
Since a decomposition of the form of Eq. (10) is
well known® for an Ising chain (a Cayley tree hav-
ing B=1), Theorem II provides a generalization
to B>1.

We now apply these theorems, particularly Eq.
(9), to obtain upper and lower bounds for the sus-
ceptibility, and will subsequently use the more
general result, Eq. (10), to bound the fourth cumu-
lant of the magnetization.

III. SUSCEPTIBILITY LOWER BOUND AND PHASE
TRANSITION

Equation (9) leads directly to upper and lower
bounds for the zero-field isothermal susceptibility
Xy [with N given by Eq. (7)]

Flxy =Nt 2 (o0, (1)
1=isSj=N
Blxu=1+2NT 25 (o)), (12)
1=i<j=N
Bl =1+2N1 D [tanh(8N]*®?,  (13)
1=i<i=N

where the sum is over all pairs of vertices and
d(i, j) is the number of bonds in the unique, self-
avoiding path between vertex ¢ and vertex j.

Refer to Fig. 1 and consider the upper and lower
clusters of surface spins, each cluster containing
B"-1 gpins., The number of bonds in the path from
any spin in the upper cluster to any spin in the
lower cluster is 2 M. According to Eq. (9), the
correlation {0;0;) between a spin o; in, say, the
upper cluster and a spin o; in the lower cluster is

(o107 =u®M, (14)

where u=tanhBJ, Taking the (B¥"!)? pairs formed
from a spin in the upper cluster and a spin in the
lower cluster, one has only a partial sum of terms
in the susceptibility and hence a lower bound

Blxy = [(B-1)/(B"* —1)] B2H-2y2H
= (B_.l)B-S(uZB)M

—o  for u?B>1, M-, (15)
Thus
X=Lm X, = (16)
Moo
for
Btanh®(J/ks T)> Btanh?(J/ky Ty)=1. (17)

This is intended as a proof of the zero-field sus-
ceptibility divergence for T < 7,. The proof is
based on a simple theorem and avoids an analysis
of nonlinear coupled recursion relations.!™ The
construction of the bound shows how a subset of
surface spins produces the susceptibility divergence.
Before obtaining an upper bound on the suscepti-
bility for T> Ty, it is interesting to qualitatively
consider the connection between long-range corre-
lations and the established divergence of x. Notice
that there are no infinite-range correlations for
any 7 >0 since 0< tanh(J/k5 T)< 1, and from Eq.(9),

1/2
m* E( lim lim (o,-oj)) =0,
Aliyj)=e New
consistent with the absence'™ of spontaneous mag-
netization. Nevertheless, one can study the long-
range correlations. For that purpose we imbed
the Cayley tree in a regular two-dimensional square
lattice so that the distance b between neighboring
vertices in any column (labelled by / in Fig. 1) is
the same as the distance between neighboring col-
umns. Such an imbedding obviously leaves many
lattice sites unoccupied. Consider two surface
spins o,, 0, (in column 7=M), one at the top and
one at the bottom. The distance » between those
spins is (B” —1) b; whereas the correlation (0,0,,)
by Eq. (9) is
<Gpom> = uZM
= 1"-“’
where
=~ 2M Inu/In[(B" - 1) b].
If we take b=1 as our length scale and demand that
y1"* L0 for y—ow
for integral convergence in two-dimensions, then

1-a<0,

which, for large M, implies that
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—2M1nu/(M1nB)>1,
or, equivalently,
u®B<1,

Conversely, the condition #®B> 1, which by Eq.
(15) gives a divergent X, also implies long-range
correlation within the framework of this qualitative
argument.

IV. SUSCEPTIBILITY UPPER BOUND
An alternative form for the zero-field suscepti-
bility expression, Eq. (13), is obtained by writing

u=tanhBJ and considering the number C, of two-
vertex connecting paths of bond length ». Then

Blxy=1+2N" 2.

1=n=2M

C, u". (18)

An explicit expression for C, has been given by
graph theorists!® and is contained in Appendix B,
which also includes a derivation of the following

bound:
C,=GB"™"2  o=p=2M. (19)

The quantity G depends only on B and is positive
and finite for B<1.
Substitution of Eq. (19) into Eq. (18) gives

2(B-1) (uyByf¥' -y /B

-1 = M
B Xu 1+Bm1_1 (u\/B)—l GB 3 (20)
where the right-hand side
- for u?Bz1l, M-,
(21)

<w for u?B<1.

Thus, Egs. (15) and (20) establish that X is bounded
for T> T, and unbounded for T =7T,, with T, given

by Eq. (17). This is consistent with the results
given by Matsuda, % yon Heimburg and Thomas, !
and Miiller-Hartmann and Zittartz.?

V. FOURTH CUMULANT OF MAGNETIZATION: UPPER
BOUND

The zero-field isothermal susceptibility expressed

by Eq. (11) is essentially the second derivative of
the free energy per spin with respect to the mag-
netic field In zero field the odd derivatives are
zero, so that the next nonzero derivative is the
fourth derivative D,

B'3D4 =N Z

il""'i‘i

Culty, &, 35, 1y), (22)
where

Culty, 13, 13, 14) ={04, 01,0304 ) =03 03)
><<0130“i4> - (0110“13> (Ui20i4>

- (0't20'¢3> <0¢10i4> . (23)

The decomposition theorem, Eq. (10), shows that
<°11°fa°¢3°i4> will always be cancelled by one of the
three terms involving pair correlations; thus,
Cy(4y, i, 43, 74) =0 as required by a more general
inequality given by Griffiths, Hurst, and Sherman !

To obtain a lower bound for D,, consider any
pair o7, o3 of spins in the upper surface cluster.
There are 3 BY (B! -1) such pairs. Similarly
there are 3 BY(BY-! 1) pairs of spins 0;..,05.. on
the lower surface cluster. The cumulant associ-
ated with the four spins is

C4(1', 2', 1”, 2”) =<0'1:0'210'1n0'2u>
—(0’1:0'21> (01::0'2,.)

=01+ 010+ ){02+ 0+

— (010000 (Oyre 00 . (24)
But
<0'110'210'1u(72n> :<O'100'21> (0'10:0'21'> (25)
and
<0'1: O'1u> = <O’21 0'2n> =<O'1l Oy I> = <O’1a10'21> = uzM, (26)

where u = tanhBJ, therefore
Cy(17, 27,1 2" =~ 24 @7

and

2
_ M-1 pH-1 _
B'3D4<— B"ﬁl—l1><B (B 1))2”‘

- 00
2
(28)
for
Bu*>1, M—~w, (29)
Define T, by
kg T,/J=[tanh™ (B-3/ 4], (30)
and recall from Eq. (17) that
kg Ty/J=[tanh™}(B1/2)]1, (31)

The upper bound shows that D, diverges (to — =)
as M- for T< T,. But T,< T,; therefore, as
the temperature is lowered from infinity, D, di-
verges before the susceptibility diverges.

The detailed asymptotic free-energy analysis of
Miiller-Hartmann and Zittartz® led them to de-
scribe this as a “continuous phase transition,”
since there is a line of transitions for 7 in the
interval (0, T.).
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FIG. 2. Ten-spin correlation decomposition on a Cay-
ley tree.

APPENDIX A

To establish Theorem II, consider any subset R
consisting of » spins on the tree. Take, e.g., the
spins on the circled vertices in Fig. 2. Let » be
an even positive integer. Form a subtree by con-
necting all pairs of spins in R by both paths as in-
dicated, e.g., by the broadened lines in Fig. 2.
The subtree is itself a Cayley tree and consists of
a set @ of g spins where RC Q.

On the subtree, partition the set R into disjoint
pairs by drawing nonoverlapping (edge-disjoint)
bond paths between spins as indicated. Such a par-
titioning is always possible. Denote two spins in a
connected pair by Ojps Ojpyy SO that

R:(Gjl’ 0355 Oigs Tjgs v 5 ojzx-iozx)’
where 2K =7,

According to. Theorem I, the canonical ensemble
average of any function of the spins in @ may be
expressed as an equivalent average with respect
to the Hamiltonian 3, of the subtree alone. Thus

(o-iloiz. .. Gi2K>

=04, 05, *** 03,05, ** ) (A1)

0;. O .
Iak-1 J2x’xg

Now the path connecting the pair Ty Tipyg contains
A(Jpy Jpsy) bonds and therefore d(j, jpuy) —1 in-
ternal vertices (in addition to the terminal ver-
tices where o0, and 0;,,, are located). Label the
internal vertices consecutively as they appear along
the path from o; to o; , So that if A (Jpy Jpe1) —1=38,
say, then the internal vertices would be labelled
o5 Jp,25 204 jp,3;

Oip0ipt ™= (Ufpofp,l) (05, 1%49,2)(03,,504,,3) (019.3011»1)’

(A2)
which is associated with the product

exp(8Jo;,0;, )¢+ exp(BJoy, 0, ) a3)

in the ensemble average where BJ= J/kz T. Each
term in Eq. (A2) provides a contribution tanhBdJ;
consequently, the product of L disjoint pairs gives

<of10iz Tt 03,00 00 ofaL-xosz>Wo
=01y 01p5q " * * {03,004 ** * T34 01z r g

= <011°12> e <Ufp0fp+1> o <012L-10f2L> ’ (A4)

where (c,-pojm) is given by Eq. (9).

The above proof shows that the subtree, in effect,
decomposes into a collection of independent Ising
chains with spins in R at the ends of the chains. Al-
though the decomposition is not unique, it is seen
that any decomposition gives the same contribution,
i.e , tanhgJ from each member of a fixed set of
bonds. The product, in spite of different factoriza-
tions, will therefore be invariant.

A proof equivalent to the above can be obtained
by introducing new spin variables to replace each
product of nearest-neighboring spins. That trans-
formation was used by Eggarter® to calculate the
partition function and has also been used, e.g., by
Dobson*? for one-dimensional systems.

APPENDIX B

In this appendix we describe a derivation kindly
provide by Matthews and Jenkins!® of the number
C, of two-vertex connecting paths of bond length
n>0 in an M-generation Cayley tree (see Fig. 1).

A path is of the form shown in Fig. 3, where v
is the vertex nearest the /=0 vertex, » is the bond
length of the path, and 7 is length of the shorter
branch at v. Thus, # = 27, and such a path exists
for any vinthe 0, 1,2, ..., (M —#n+7)th generation.
Such vertices will be referred to as “feasible”
vertices, of which there are

B =(BY™™ ~1)/(B-1) (B1)

0=j=M=nsr

for M=n+7v=z0, »=0.
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FIG. 3. Typical two-vertex connecting path of bond
length » (=7) with shorter branch of length » (=3).

For each feasible vertex the number of paths is

B" for r=0, (B2)
$B"(B-1)B™'=3B%*Y(B-1) for n=27, (B3)
BT(B__ I)Bn-(ﬂ-l) =(B— 1) Bn-l for n> 2,},’ (B4)

as may be readily verified by considering a path-
number matrix with rows labelled »=0,1, ..., and
columns labelled 2 =0,1, ... .

For M-n+7 =0 let 4,, denote the number of
paths of length » with shorter branch #:

B", r=0, (B5)
BM-n+r+1_1 L p2r-1
Am=—f—7 2B B-1), n=27>2, (B6)
B™Y(B-1), 2=2y=n-1,
(B7)

The number C, which we seek is now obtained from
elementary geometric sums:

4

4A,,, neven, (B8)

0s7r=n/2

C,= ,
0=r=(@n-1)/2 Arm n Odd, (BQ)

where the prime means that the sums are restricted
to M-n+7v =0,

To compute the sums consider the following cases:

Case I: n a positive even integer, M<n=2M:
Cn - [%(Bu-n/zu _ 1)+SIZBM-n+1 - sll] B"1, (BIO)

Case II. n a positive odd integer, M<n=2M-1:
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C,=(Sy B ™ _s, ) B™, (B11)
Case III. n a positive even integer, n =M:
C,=[(B"™ -1)/(B-1)] B"

+3(BY /21 _1) B™1 4 (Sgp B - Sy) B™,

(B12)
Case IV. n a positive odd integer, n =M:

C,=[(B"™ -1)/(B-1)] B"

+ (S BY™1 —5,)) B™, (B13)
For Egs. (B10)-(B13),

Sy =M—-3n, (B14)
Siz=(B"% - B"™")/(B-1), (B15)
Sp=M-3z(n-1), (B16)
Sz =(B™V/2 - B™)/(B-1), (B17)
Sy =3n-1, (B18)
Ss2=(B"? - B)/(B-1), (B19)
Sy=2(n-1), (B20)
Sp=(B™V/%-B)/(B-1). (B21)

Consideration of Matthews and Jenkins’s above ex-
pressions for C, leads to the inequality

C,=GBY""/% for 0=n=2M, (B22)

where G is a positive quantity depending only on B,

In principle, one can substitute Eqs. (B10)-
(B13) into Eq. (18) and compute the indicated sum-
mation to arrive at an explicit expression for the
susceptibility for a Cayley tree with general B and
M. One finds that #2B=1 coincides with the radius
of convergence; however, the resulting expres-
sions are somewhat unwieldy and provide little in-
sight beyond what has already been gained via our
bounds and the work of von Heimburg and Thomas, !
Matsuda, ¢ and Miiller-Hartmann and Zittartz.*

A generalization to the Potts and Ashkin-Teller
models of ideas in Refs. 1-4 has been given by Y.
K. Wang and F. Y. Wu.?

*A summary of this work was presented at the IUPAP
Statistical Mechanics Conference in Budapest on 25
August 1975,
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