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Three-dimensional ordering of impure linear-chain systems

Daniel Hone, * P. A. Montano, *~ and T. Tonegawa*~
Physics Department, University of California, Santa Barbara, California 93106

Y. Imry~
Physics Department, University of California, Santa Barbara, California 93106

and Brookhaven National Laboratory, Upton, New York 11973
(Received 2 July 1975)

The reduction of the three-dimensional ordering temperature T, by random substitutional
impurities in spin-1/2 Ising and classical Heisenberg quasi-one-dimensional systems is cal-
culated within an approximation which treats interchain coupling in mean-field theory. The
reduction can be substantial for highly one-dimensional systems even for impurity concen-
trations of 1-at.% or less. A qualitative analysis of impurity effects on ordering applicable
both to magnetic and to nonmagnetic linear-chain systems is also given, with particular at-
tention to the possible role of impurities in promoting incomplete three-dimensional ordering,
such as that observed in the quasi-one-dimensional conductor K2 Pt (CN)4Bro 3' 3D20(KCP) .

I. INTRODUCTION

There are now known a substantial number of
insulating crystals, including tetramethylammo-
nium manganese trichloride (TMMC), CsNiF„
CsNiCl, and other isomorphous salts, which ex-
hibit quasi-one-dimensional magnetic behavior.
Although phase transitions are forbidden for iso-
lated chains with short-range interactions, the
weak but finite coupling between chaiqs in these
materials does result in three-dimensional (SD)
magnetic ordering below a critical temperature
T„substantially less than the characteristic in-
tr achain interaction strengths. A useful picture' '
of the ordering process results from considering
a group of spins within a correlation length of each
other along a given chain as being oriented as a
unit by an effective molecular field due to interac-
tions with neighboring chains. The size of the unit
grows with the correlation length as T decreases;
in conjunction with the increasing mean-field sus-
ceptibility this monotonically increases the ten-
dency to 3D order with decreasing T. The process
is particularly sensitive to impurities and other
defects because of the marked effect on correlation
length these may have in one-dimensional struc-
tures. In particular, nonmagnetic impurities break
communication along the chain and restrict the
growth of the correlation length to the average
impurity separation. We have considered a simple
model for this situation in an earlier paper, ' where
the dramatic depression of &, by nonmagnetic im-
purities was demonstrated. In the present paper
we explore the effects of more general impurities
on ordering in quasi-one-dimensional magnetic
systems. We treat only the binary alloy, with a

single type of substitutional impurity distributed
randomly in the crystal, as expected for a quenched
alloy (a more realistic model than the evenly
spaced impurities chosen in Ref. 3 for simplicity
of exposition). We will consider explicitly two
models in which the isolated chain problem can
be solved exactly: The S =2 Ising and the classical
spin Heisenberg models with nearest-neighbor ex-
change interactions. The main approximation then
involves the treatment of interchain interactions
within mean-field theory to determine T, . In Sec.
II we present the necessary mathematical formula-
tion for evaluating T, in the above approximation.
In Sec. III the results are discussed and plotted
numerically for typical cases. This treatment
holds only in the case where all the interactions
in the system promote the same kind of ordering.
An interesting situation occurs when the impurities
divide the chains in such a way that the ordering of
consecutive pure segments is not consistent with
the interchain mean field. This can cause a
"pinning" of the disorder by the impurities and
is discussed in Sec. IV.

It should be noted that although we have specif-
ically treated spin models, the spectacular in-
fluence of impurities is a general characteristic
of many other quasi-one-dimensional systems.
This is, in fact, perhaps one of the most impor-
tant topological characterizations of one dimen-
sionality. Thus, our results should be qualita-
tively relevant to other cases of experimental
interest such as quasi-one-dimensional electronic
systems, displacive transitions, etc. We believe
that the results of Sec. IV may be relevant to
explaining the apparent incomplete 3D order-
ing in the quasi-one-dimensional conductor

12 5141



5142 HONE, MONTANO, TONEGAWA, AND IMHY

K2Pt(CN)4Bro. , ~ 3D20 (KCP).

&+X n i n g +Z

S ~ S7/
n &i; n+6&iSn, i Sn+b&i

&n. i &a&n, i Sn, i (2.1)

where n is summed over all chains, & over vectors
connecting nearest-neighbor chains, and s over
sites in a chain. Thus J describes intrachain ex-
change; if we introduce the occupation number
P„ i which is 1 if an impurity spin occupies the
site n, z and 0 if host spin occupies that site, then

J„&.„,. +x =P„,P„,+, &„+(P„,—P„,+,)'4,

+ (1 P„,)(1 P—„,„)&H—H, (2.2)

in an obvious notation where H denotes "host" and
I "impurity. " Similarly, there are three values
J&» ~&H, and ~„'„for the interchain exchange ~',
associated with impur ity-impurity, impurity-host,
and host-host pairs of coupled spins. In general,
we can also take the g values g„and g& to be dif-
ferent. For the spin-& Ising model Sn, in Eq.
(2.1) is to be interpreted as a unit vector in the
z direction (S-S'=+1).

Magnetic quasi-one-dimensionality results from
the relative weakness of interehain exchange inter-
actions in the crystals under consideration:

Thus the spin correlations which, as the
temperature is reduced, eventually lead to mag-

neticc

or der ing at & = T„develop substantially
along each chain at temperatures far above &,
(since they become important when T -2&). It is
therefore essential to include these intrachain
correlation effects with some care; we take them
to be those of single isolated chains, for which
they can be found exactly in the models treated
here. That approximation should be accurate
until the onset of substantial three-dimensional
cooperative behavior in the critical region just
above T, . (In principle, one should distinguish
between two different temperature ranges around
T, : the region in which three-dimensional cor-
relations start to be felt, and the one where criti-
cal fluctuations become important —the Ginzburg

II, FORMULATION FOR DETERMINING T,

The method of calculation proceeds through near-
ly identical algebraic steps for the spin-& Ising
and classical Heisenberg models; although we use
vector spin notation in what follows, with suitable
interpretation, the results apply as well to the
Ising problem. Consider a random alloy of "host"
and "impurity" spins, with the latter present in a
concentration p. We deal with the Hamiltonian

critical region. It turns out, however, that for
the quasi-one-dimensional case, the two regions
are of the same order of magnitude. ) In contrast,
the interchain spin correlations develop important-
ly only in the three-dimensional critical region.
Thus we can expect to find a good estimate of T,
itself by treating these interchain interactions
within a molecular-field approximation. ' Even
for the extreme case J' =~ in a pure Heisenberg
square lattice Stanley and Kalplan4 found only a
50/p increase of T, as estimated in this way over
the high-temperature series-expansion results.

The approximation is certainly much better than
that for J' «J, as it is used here; e.g. , it is es-
sentially exact in this limit for the 2D Ising model. '
The results of such a calculation of 1'„described
below in more detail, are shown in Fig. 1 for pure
Ising spin S =& and classical Heisenberg systems
as functions of the ratio of interchain to intrachain
exchange strengths, &'/&. Since T, can be mea-
sured directly and ~ estimated from thermodynamic
measurements, the plots indicate the range for the
experimental quantity T, /J over which a quasi-
one-dimensional description is appropriate. It is
clear that in a system where there is no supres-
sion of 1', due to competition for different types
or order between various exchange interactions,
T, /«&1 implies J'/«&1, and quasi-one-dimen-
sionality. What is perhaps not so immediately ob-
vious is how sensitive the reduction in T, /~ with
&'/& is to the form of the exchange (e.g. , Ising
versus Heisenberg), and in particular that in the
Ising model, a decrease in J'/J of several orders
of magnitude results in less than a factor of 2 de-
crease in T, /&. We will see below that this is
related to the extremely rapid (exponential)
growth in the Ising model of the single chain
correlation length with decreasing temperature.
Leaving out these single chain correlation ef-
fects therefore gives drastically incorrect esti-
mates of T, . Thus Takeda et al.' used simple
molecular-field theory and their measured values
of & and g(T) in CoC12 ' 2NC, H, to find an estimate
of z'~&'~/&R 1, in spite of the apparent highly one-
dimensional behavior of the susceptibility and spe-
cific heat. Since T„/~=1.2, we see from Fig. 1
that this estimate of &'/& was too high by about two
orders of magnitude.

Since we will treat the interchain interactions
within a molecular-field approximation, we basi-
cally require the magnetic susceptibility of an iso-
lated chain. In particular, we need the two-spin
correlation functions (S,'Sf )»i where A, & take
on the values I or H restricting the two spins to
be either impurity or host atoms, respectively,
and I labels position on a single chain (spins on
different chains are uncorrelated in this approxi-
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mation). The notation implies a cordiguration
average over the occupation of all other spins than
the two under consideration, We treat the
"quenched" limit only, where the distribution
of impurity spins is taken to be random. We
make use of the techniques which were employed
in Ref. 6 to calculate the thermodynamic proper-
ties of isolated impure classical Heisenberg chains.

For a given configuration the correlation func-
tions are given by standard transfer matrix tech-

niques:

IL U--'- "'
(s, s, )= (2.3)

where the characteristic function U, is given
in terms of the exchange integrals as

coth(2p&, ) —(2p&, )
' (classical Heisenberg),

tanh(2 P4, ) (S=—,
' Ising),

(2.4)

and we note in the ease of the classical model that
(S',Sf) =-,'(S, .S,) by symmetry. In each case the
function U, , then has three possible values:
UII, UI» or U„„. If we now take a configuration
average, we find immediately a matrix recursion
relation for these functions:

((s, s, )„,)=D((s, s, , )„,), (2.5}

(PUrr (1 —P) Ura)
D=

(PUrH (1 —P)UaH j
which gives, after iteration,

(2.6}

p l II
A A

(s, s,)„(U„U„
[ (t&1) .

(So Sl)HH) (UIH UHH)

(2. '7)

This is readily solved~ explicitly in terms of the
eigenvalues and the eigenvectors of D (see Appen-
dix).

In the pure system U, , =U independent of m,
and (So S, ) =U'. The characteristic distance of
this exponential decay, the correlation length, is
thus $ = —1/ln U. We are interested in low temper-
atures, 2P&»1, so (-2P& for the classical
Heisenberg and $ - e'8~ for the S =-,' Ising model.
It is this relatively rapid (exponential) growth of
$ with P in the Ising case which we mentioned above
as leading to the extraordinary sensitivity of the
value of interchain to intrachain exchange ratio
&'/& to T, /& in the Ising system (see Fig. 1).

We turn now to the molecular-field calculation
itself. We can treat straightforwardly only those
cases where all exchange interactions favor the
ultimate magnetic order. These include the fully
ferromagnetic problem: all ~, ~' ~ 0; ferromag-
netically coupled antiferromagnetic chains: all
~'~0, all ~ 0; and if the array of chains can be
separated into two sublattices with all nearest-

neighbor chains on opposite sublattices: all J'
~0 and all J of the same sign. The case where
the nature of the impurities is such that the ex-
change interactions favor competing ordering
modes will be discussed in Sec. IV. We treat the
fully ferromagnetic problem explicitly below, but
the results can be immediately extended to these
other cases. Each spin is surr ounded by z ' ne igh-
bors on nearest-neighbor chains. We take these
z' spins to be statistically representative of the
crystal as a whole, so that the molecular field on
a host spin, e.g. , is given as 2z'[(1 —p) J„'Ho„
+P&(„o,], where o', —= (S')

~ and o„=—(S')H repre-
sent averages over all environments of the given
spin as well as thermal averages. The dominant
correlations determining these averages are those
assoc iated with intr achain interactions; ignor ing
fluctuations due to differing neighboring configura-
tions along a chain restricts validity of the ap-
proach to sufficiently low-impurity concentrations
p. Since weakly coupled impurities —particularly
nonmagnetic ones —also limit the intrachain cor-
relation lengths approximately to the average im-
purity spacing, and since long intraehain correla-
tion lengths are at the basis of the approximation
for T„we must restrict consideration to suffi-
ciently small p in any case. We therefore report
results only for p-0.05. Within this mean-field
approximation the effective Hamiltonian for the
nth chain can be written as X(n) =X,(n) +X'(n),
where Xo(n) contains only the intrachain interac-
tions, and

X'( )= —Q (&„„[g)P, a, +2p&f, z'v,

+2(1-P}~(Hz'~H]+(I -&„„.)[g, P,,&,
+2P&f „z'(r, +2(1 —P) JH„z'oH]] S„',

(2.8)
where the external uniform field strength is Hp.
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Standard linear response theory gives

(2.&)

which results in two linear equations for o„and oI ..

fv, ')t t('c, )
L(T) =H

i (2.10)

As we are interested only in Ho=a, we will have
no further need of the constants c, and c,. Explicit
expressions for the matrix L(T) are given in Ref.
6 for the classical Heisenberg case. It is clear
from Eqs. (2.8) and (2.9) that the elements of L(T)
are linear in the sums over two-spin correlation
functions,

As Q ( sn, f Sn, j)~s (2.11)

These functions are evaluated explicitly by the
solution of Eq. (2.8), which has been carried out
in detail in the Appendix. The critical temperature
T, is determined as the highest temperature T for
which the homogeneous equation, (2.10) with H, =0,
has a nontrivial solution:

0 =detL(T, ) =1 —2nP, z'f p(pQ„+1)&,',

+ 2p (1 -p) &)„Q,„+(1 -p) [(1—p) Q „H + 1]&„'H]

+ (2oP.z')' [Jf,J,'„-(Jf,)'] p(1 —p) (2.12)

[1 +PQII + (1 p) QHH +p(1 —p)(Q(i QHH QIH)]

where e is the diagonal correlation function
((S„', , )') =1 (Ising) or -', (classical Heisenberg).
We have solved this numerically for represen-
tative values of the parameters p, ~/~ and ~/~.

III. RESULTS AND DISCUSSION

A. Ising model
I

We consider first tQe Ising S =& case. The most
effective reduction of the single chain correlation
range by substitutional impurities, and therefore
the greatest reduction of the ordering temperature
&„ is accomplished if those impurities are non-
magnetic. This is clearly also a case of substan-
tial experimental interest, with nonmagnetic ions
readily identified and unambiguously characterized.
The number of parameters characterizing the sys-
tem is also reduced to a minimum. We treated
this problem in Ref. (3) within a model, chosen
for simplicity of exposition, in which the impuri-
ties were regularly spaced along the chains. The
results can be immediately extended to the random
distribution appropriate to a quenched alloy. The
susceptibilities of the various magnetically iso-
lated segments along a chain are weighted ac-
cording to the statistical probabilities of finding
segments of every possible length for a given im-
purity concentration, rather than taking the sus-
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FIG. 1. 30 transition temperature Tc as a function
of interchain molecular field z'J', both in units of
intrachain exchange J.

ceptibility of an average length segment as in the
regularly spaced impurity model. The result for
T, is of course identical to that given by Eq. (2.12)
with all impur ity-associated exchange constants
and correlation functions (&f„,Jf, , Qq„, Q, ~ ) set
equal to zero:

,
( )

(+(( —p) s)nh2 ))Z

) ( ( ()
1 —(1 —p) t', anh2 p, ~

The factor in large brackets, which is [(1—p)QHH
+1]P, in the notation appearing in Eq. (2.12), is
readily identified as the spin susceptibility per
magnetic ion of the isolated impure single chain. "
The factor 2z'&'(1 —p) is the average molecular
field on that chain per unit magnetization. Thus
Eq. (3.1) is the expected mean-field expression
for the critical temperature. The factor of (1-p)
in the denominator of the susceptibility limits the
growth of the coefficient of P„ the single chain
correlation range cannot increase beyond the
average impurity spacing. Below the temperature
where that is achieved the tanh factor saturates,
and each highly correlated segment contributes a
Curie law susceptibility -P. Then if &' is suffi-
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T, (p)/T, (0)=1 —[e' ~ /2(1+4+ J)]p, (3.3)

which is identical to the corresponding expression
Eq. (8b) of Ref. 3.

We turn now to the behavior of magnetic im-
purities in these crystals. We have seen that im-
purities can substantially change the magnetic
ordering temperature effectively by modifying the
temperature-dependent correlation length ( of in-
dividual chains. As long as the range of exchange
coupling is restricted to nearest neighbors it is
clear that strongly exchange coupled impurities
can produce no significant changes in g, regard-
less of how strong their exchange with their neigh-
bors may be. At best the impurity and its two
neighbors will act as a completely coherent entity,
simply increasing the effective length scale, or $,
by a factor (1+p). The critical temperature will
increase essentially by this factor. Virtually the
same argument holds even for strongly antiferro-
magnetic coupled impurities in the ferromagnet.
Therefore the most interesting effects are as-
sociated with weakly coupled impurities (&,„/&„H
&1) and, in particular, the depression of T, with
decreasing exchange ratio &,H/JHs. In Fig. 3 we

ciently small that ordering has not yet occurred
at this temperature, the chain susceptibility grows
with decreasing temperature at a slower rate than
for the pure system and the critical condition (3.1)
is correspondingly not achieved until a tempera-
ture lower than the pure T, . This reduction in T,
is shown as a function of p in Fig. 2 for represen-
tative values of the interchain coupling. It can be
very substantial even for impurity concentrations
p of a few percent or less. Similar reductions
should be expected from other defects which break
spin communication along a chain. Considering the
sensitivity of &'/J to small changes in T, /J, it is
clear that caution is warranted in estimating ~'
from measurements of T, /&, and that care must
be taken to eliminate nonmagnetic impurities and
other defects or'to know their concentration ac-
curately. In fact, determination of ~' might better
be made with the deliberate, but well-controlled,
introduction of nonmagnetic impurities.

For low critical temperatures P, &»1 and small
concentrations p we can find asymptotic expressions
for T, useful for extending the results given in
Fig. 2. If e ' &~«p«I, then from Eq. (3.1) we

have

(3.2)

We note the difference of a factor of 2 from the
corresponding result [Eq. (8a) of Ref. 3] for equal-
ly spaced impurities with separation p '. The
qualitative behavior is, of course, the same. For

— Bo~p«e 48&~ we obta. in

1.0

Tc(

0.5

0
0.001 0.01 0.05

FIG. 2. Relative depression of T in the S=2 Ising
system as a function of concentration p of nonmagnetic
impurities (or equivalent defects). Different curves
are labeled by T~/J for the pure crystal; see Fig. 1
for the corresponding ratio of interchain to intrachain
exchange (z'8'/J'=0. 2, 10 ~, 2x10 3, and 10 4}.
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FIG. 3. Relative depression of T~ in the S= 2 Ising
system by weakly exchange coupled magnetic impurities
as a function of the ratio of impurity-host to host-host
exchange strengths, J&H/ JHH. Host crystal is highly
one dimensional: T~/J =0.685 &'J'/J =10 3.

have plotted this behavior for a highly one-dimen-
sional host crystal: z'&'/&=10 ', which from Fig.
1 corresponds to T, (p =0)/&HH 0.685. The solid
lines give T, /T, (p =0) as a function of &q„/~HH
for representative impurity concentrations of p
=0.01 and 0.05. We chose &„=(J&H~HH)'~', but
since this impurity-impurity exchange can. enter
only to order p', the results are very insensitive
to the value chosen. There are two additional in-
terchain exchange parameters, ~~H and J», which
must also be specified, but as one would anticipate
the results are also relatively insensitive to these
values. They simply determine the strength of
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the average effective molecular field, which is
changed by terms of order p and p'. To demon-
strate this we have taken ~~H =~q& =~„'„for the
solid curves and &IH /&'HH = (~II /&HH)' ' = 5 for the
dashed curve. Even for this unreasonably large
value and for the relatively high concentration p
=0.05 we see only a relatively small change in

Fortunately it is then unnecessary to specify
these additional parameters accurately in char-
acterizing an experimental system. We point out
that Fig. 3 implies substantial reductions in T,
for reasonable values of ~IH/~HH —e.g. , a few
tenths or so—for concentrations of a few percent.
The asymptotic value appropriate to nonmagnetic
impurities is essentially reached for the systems
under consideration by the time JIH /&HH = 0.1.

There are a few examples of quasi-one-dimen-
sional systems that can be described at low tem-
perature by a simple S =2 Ising model. They are
the Co" salts, such as' CoC1, ~ 2NC, H, and
CsCoC13 In the first case ferromagnetic chains
are coupled to one another antiferromagnetically
(J&0, &'&0, and z' =4}, and in the second all ex-
change interactions are antiferromagnetic. Mea-
surements of the transition temperatures of the
above compounds doped with magnetic or nonmag-
netic impurities would make an interesting test
of our theoretical predictions.

B. Classical Heisenberg modeI

We can make a similar analysis of the classical
Heisenberg system. ' ' For nonmagnetic impuri-
ties we find directly from Eq. (2.12) as the condi-
tion determining T,

c(P) 1 HH IH (gl +0)
(0) g gs P I H (3.6)

when the second term is not too large (in particu-

respectively, to z'&'/&=10 ', 10 ', and 10 4,

according to Fig. 1}. As before, we see that
there can be very substantial reductions of T, for
quite low concentrations of these nonmagnetic im-
purities or other defects which break magnetic
communication along a chain, so that care must
be taken to account for them in interpreting ex-
perimental results.

In Fig. 5 we have considered the reduction in

T, to be expected from magnetic impurities in a
highly one-dimensional classical Heisenberg crys-
tal: T, (0}/JHH =0.015, or z'J'/J =10 4, approxi-
mately the value appropriate to TMMC. We ob-
serve a more gradual approach to the nonmagnetic
limit with decreasing JIH/~HH than was seen in
Fig. 3 for the Ising model. This is a consequence
of the difference in dependence on ~ of the correla-
tion lengths —exponential in the Ising model and
algebraic for the Heisenberg —implying a higher
sensitivity to the exchange parameters in the Ising
case. As before, the solid curves are drawn for
equal interchain exchange values J&H

——J~~ = ~„'„.
The extreme choice of 8I'H/JH'H = (JII /JH„)' '=5
is given as a dashed curve to be compared with
the corresponding solid line for p =0.05. In fact,
these curves are very nearly proportional to one
another. This can be seen analytically in the clas-
sical Heisenberg model; because of the simple
algebraic expansion of U=1 —(2P J) ' at large J3&

we can find directly from Eq. (2.12)

I j'I (1 )
( P) Pc

1 —(1 —p)U 3
(3.4} I.O

of the same form as Eq. (3.1}for the Ising model.
The square bracket is to be interpreted, as before,
as the single chain spin susceptibility per magnetic
ion. It differs from the Ising result only in the
factor of (1/3) associated with the isotropy of the
exchange interactions and therefore of the spin
correlation functions, and in form of the correla-
tion function U =coth(2P, &)- (2P, &) ' [see Eq.
(2.4)]. For the large values of 2P,J of interest
to us U=(1 —2p, &) '. This gives from Eq. (3.4)
the asymptotic expansions

T.(p)
1 —[J/T, (0)]p, p «T, (0)/2 «& 1

T.(o) stTc(0)/~]P ' T (o)/2

0.8

0.6

0.2

0
O.OOI

& (il
O.OI

I I

OQ5

(3.5)

We have plotted the numerical results for T, (p)/
T, (0) as a function of p in Fig. 4 for values of

T(0) &/= 20, 0.05, and 0.015 (corresponding,

FIG. 4. Heduction of T~ in classical Heisenberg sys-
tem with concentration p of nonnmgnetic impurities.
Values 0.2, 0.05, and 0.015 for Tc/J correspond (see
Fig. 1) approximately to z'J'/J=M 2, yo 3, and yp-4,
respectively.
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lar, the nonmagnetic case, JqH-—0, can never be
expanded in this way}.

There are several quasi-one-dimensional com-
pounds whose magnetic properties have been suc-
cessfully analyzed using the classical Heisenberg
model. Among them TMMC (spin S = 2) and
CsNiF, (spin S =I), which are both highly one
dimensional, may be particularly interesting candi-
dates for experimental comparison with the theory.

IV. IMPURE SYSTEMS WITH "INCOMPLETE ORDERING"

The systems considered above have been char-
acterized by interchain interactions between host
spins which all promote the ultimate magnetic
order. This order is of a conventional type,
signaled by a divergence in the static susceptibil-
ity g(g) at T =T„ for some value of the wave
vector g, with a nonvanishing order parameter
(S'(q)} below T, . In this section we consider a
class of impure systems which are not charac-
terized by such an order parameter at low tem-
peratures, because it is energetically unfavorable
for the order parameter in consecutive pure seg-
merits along a chain to be consistent everywhere
with the net interchain molecular field. As a
simple example, let us compare the two situations
shown in Fig. 6, both representing impure quasi-
one-dimensional systems with ferromagnetic
coupling between host spine. In Fig. 6(a} anti-
ferromagnetic si~e impurities replace host spins
located at positions labeled a, and a„ in Fig. 6(b)
antiferromagnetic bond impurities (e.g. , substitu-
tion of ligand ions in a superexchange bond) are
located at positions &, and &,. In both cases we
assume the "impurity-host" intrachain interaction
strength, I "Hl, to be of the same order of mag-
nitude as the "host-host" value, ~„„.At low tem-
peratures, &T « I'tHl, 'H„ the favored spin con-
figurations (overwhelmingly determined by intra-

chain exchange} are shown schematically in the
figure. In case a the spins on both sides of the
impurity remain parallel, whereas in case b, the
spins above and below the impurity are antiparallel.
If we now consider the interchain configuration,
neglecting the possibility that impurities on near-
est-neighbor chains may face each other, we find
that not all the interactions favor the assumed
state. For example, all the spins below the im-
purity on the left-hand chain of Fig. 6(b) are con-
veniently parallel to the corresponding ones on
the right-hand chain (this will not be the case once
we get to the next impurity down either of the
chains). However, the spine above &, and below
&, are antiparallel, while those above both &, and
b, are again parallel. It is clear that, on the
average, there will be equal numbers of favorable
and unfavorable interchain bonds in the assumed
conf igur ation.

While our formulation of Sec. II does not cover
this interesting case, we believe the the physical
understanding of the three-dimensional ordering
process gained by our theory may tell us what
should happen qualitatively. We tentatively ex-
pect the system to go, as T-0, to a state (which
may well be one of a nearly degenerate manifold)
in which each spin points in a well defined direc-
tion to optimize the exchange energy of the local
impurity configuration discussed above; the con-

a2

Ol

t l I lIIttf ' ' '''I
CLASSICAL HEISENBERG

( I tl

09
C

T(o)
0.6

0.4

0.2

0
O.OOI O.OI O. I

JIH~JHH

FIG. 5. Relative ch~~~e in 2'~ for the classical Hei-
senberg system with impurity-host to host-host ex-
change ratio. Host crystal chosen has T' jJ =0.015,
or z'J'/J 10

pIQ. 6. Neighbor~. pmrs of ferromagneb. c chauxs

(JHH & 0, J' &0) with (a) antiferromagnetic site impur-
ities, JyH & 0, at positions a$ and a2., (b) antiferro-
magnetic bond impurities at positions b& and b2. Labels
+ and —indicate the spin ordering imposed by intra-
chain interactions.
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figuration of a given spin does not determine the
average configuration of distant spins in an
"ordered" (ferromagnetic, antiferromagnetic
or any other type) fashion. Thus, there should
be no magnetic Bragg scattering due to a long-
range order. However, this sort of "spin glass"
structure is almost static, except for extremely
improbable jumps between nearly degenerate
states. One would thus predict that neutron scat-
tering from this structure should be essentially
elastic. We can make a simple estimate of the
characteristic temperature for this incomplete
ordering. Recall that T, in case a (all interac-
tions favor the same ordering) was given in our
approximation by z'~' times the number of spins
in a large length L-$&o. In fact, T, is virtually
unaffected by the impurities, even though they are
antiferromagnetic, since for ~J, H~

- J„„the cor-
relation length in a single chain is substantially
unchanged. Now consider case b. If $,~ is sub-
stantially less than the average interimpurity
spacing p 'd, we would expect L to remain of
order $,~. However, in the opposite limit,
»p '0, the reversal of all spins in a given cor-
related segment of length (» will raise the energy
of some of its exchange bonds with neighboring
chains and lower the energy of others. Since the
impurity positions are random, the net change
in energy will be of the order of &'(z'p 'g»/d)'~2.
Thus we estimate the characteristic temperature
&», around which the 3D correlations build up,
to be of the order

z'&'((,n/d) for p 'd» &,o,
kT ~-2o P&(z&p-1 t /d)1 l2 for p ld (( (

The same type of considerations should hold also
for other quasi-one-dimensional systems. In par-
ticular, it is tempting to argue that the build up of
incomplete three-dimensional ordering in the
quasi-one-dimensional conductor KCP in the tem-
perature region around 50-100 K is due to a simi-
lar mechanism. This incomplete ordering is now
well documented by both x-ray and neutron scat-
tering measurements. " The role of impurities
in these one-dimensional conductors was empha-
sized by Sen and karma, ' while Sham and Patton"
have recently proposed a model where the dis-
order along the chain, e.g. , the bromine ions,
smears the phase transition and leads to a central
peak. Our considerations emphasize that defects
and impurities, once their concentration is in the
range of p-d/(, o (which is less than IVo for"
KCI2 at T =T, ) may be of decisive importance for
the 3D ordering. An experimentally testable pre-
diction of all the models in which the incomplete

APPENDIX: SOLUTION OF EQ. (2.7)

The calculation proceeds exactly as in Ref. (6).
We diagonalize D by the similarity transforma-
tion

(0 d

where the secular equation det~D —d 1
~
=0 gives

immediately

d, =2 ( PU„+ (1 —P) UHH + l[.PUrr —(1 —p)UHH]'

p)U2 }1/2 ) (A1)

and & is formed from the eigenvectors of D:

R =[(1—P)U1H(d+ —d )]

((I-P)U1H (I-P) 4H)
X

( d+- PU11 d —PU11 f
which is indeterminate only in the case &1H =0 (so
that U, H =0), when D is already diagonal and R is
the unit matrix. Except for this case we can then
write R ' as

(A2)

R 1=[(1—p)U1H(d~ —d )]

(I-P)U1H l
xi

(d. PU11 —-(I P) U1Hj—
For the solution of Eq. (2.7) we need

yl-1 0

(A3)

R R-1~l-1 ~

0 d )
Finally, summing over l0 we have the result

three-dimensional ordering is due to pinning by
impurities is that the quasi-Bragg scattering char-
acteristic of the 3D ordering, which has a finite
width in & space, should be nearly elastic; i.e.,
centered around cu =0 with a very small width as
a function of the energy transfer @~. This is due
to the fact that the low-temperature structure, in

spite of not having conventional long-range order,
is essentially static, as discussed above. We re-
emphasize that although it is clear that the spe-
cifics of the impurities may determine even the
nature of the low-temperature state, our con-
clusions in this section are rather tentative. Our
main intention here is to call attention to the
dramatic role of impurities, possibly even in con-
centrations of less than one percent, for chainlike
systems. At the same time, the predictions of
Secs. II and III remain quantitative. We hope that
new experiments with small controlled impurity
concentrations will further probe the quasi-one-
dimensional structures.
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(1 —d ) ')

UI I UI H

IH HHi

& -d+

IH QHH 1

(A4)
QHH =2 [UHH —P(UII UHH O'IH)] /B

where the denominator in each case is

(A5)

the expressions reduce to the relatively simple
forms

QII =2IUII —(1 —P)(UII UHH —UIH)t/B,

QIH = 2UIH /B

where the Q„s are defined in Eq. (2.11).
If one carries through these matrix multiplica-

tions, substituting the expressions (A1) for d„
=1 —( &UII + (1 - Io) UHH 1 +P (1 - p)(UII UH, —UIH).

(A6)
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