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Static electronic perturbations of metallic surfaces
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We present a theory of charge distributions induced at a jellium surface by a static applied potential. Exact
expressions are derived for the changes in surface potential, and the total potential barrier in terms of the

unperturbed electron distribution and the change in the latter due to adding electrons to the jellium. These

results are applied to a simple chemisorption model and the induced dipole moment is calculated as a function

of proton position for several r, values.

I. INTRODUCTION

In this paper we examine the effect of a static
external perturbation on the electron distribution
near a metallic surface. Problems of this sort
arise, for example, in field emission or chemi-
sorption, where one requires knowledge of the
perturbation of the surface region caused by an
applied uniform field or an external localized
charge. While quite a few approximate treatments
of this problem have been presented, ' we report
here several exact results in this area. We note
that exact results have already been presented
for the unperturbed jellium surface. '

We shall first consider linear-response theory,
and seek the induced charge density due to a weak
point charge. The positive background is taken to
be a jellium of charge density pe, whose surfaces
are at z = 0 and z = —I. (Fig. 1). The induced
charge density at point r due to a point charge at
r' is denoted by —en, (z, z', x —x', y -y') because
of translational invariance parallel to the surface.
In order to calculate the average value of some
function f(z) over n; we do not require the full n;
since

II. HALF-MOMENT

We now derive an expression for the change in
potential difference between the jellium surface
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response function as n;(z ~z') except that it corres-
ponds to a neutral system. Electrons are added to
or removed from the system, by grounding for
example, in order to compensate for the extra
charge of the applied plane (Fig. l).

x d(x —x')d(y —y') .

(1)
The integral of v, over x', y' represents the re-
sponse at z due to a uniform superposition of
charges over a plane at z'. Therefore, within
the framework of linear-response theory, the
response function for a plane of charge is suffi-
cient for determining the average of any f(z) for
an ambit any applied charge distribution. We need
therefore only consider n; (z

~

z') the induced den-
sity at z due to a charge plane at z'.

It will be convenient to distinguish between
n;(z (z') and n(z(z'). The latter represents the same

FIG. 1. Solid curves schematically represent induced
electron distribution for distant applied charge plane of
unit surface charge density. Upper curve corresponds
to isolated jellium, while lower curve corresponds to
grounded jellium. Numbers indicate total number of
electrons per unit area, associated with each distribu-
tion.
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and bulk due to an external charge plane at z. The
jelllunl ls taken to be gl ounded~ so thRt the over-
all system is neutral. Momentum conservation,
as applied to the total system, requires that the
force acting on the external charge plane be
equal and opposite to that acting on the jellium
background.

Calculating these forces directly from the Feyn-
man-Hellman theorem, ' we obtain

plane at infinity) and furthermore implies that
n(z

~
~) oscillates about zero within the solid,

since the half moment is zero. This is rather
surprising at high densities since the unperturbed
electron density is rather smooth in this case.
This is however indeed confirmed by explicit
numeric Rl calculations. '

Differentiating Eq. (5) with respect to z we ob-
tRln

oez, (z) = —pe dz' K(z'iz), (2) —-" =4wpe ))(-*)-— da'*' t ')z)) .
BZ dZ

where Eo 1s the unperturbed electric field,
E(z'~z) is the total change in the electric field due
to the applied charge plane at z, and oe is its sur-
face charge density. The left-hand side of this
equRtlon gives the force pel unit RreR Rctlng oQ

the applied charge plane, and the right-hand side
that acting on the jellium background. Without

any loss in generality in the linear response theory
we take (x= fd 'z(nzI )z=1.

For an applied charge plane near the z = 0 sur-
face we may take I, = ~ since for the neutral sys-
tem the field E goes to zero rapidly in the bulk.
The integral appearing in Eq. (2) then gives the
change in potential difference between the surface
and the bulk in terms of the unperturbed field Eo.

Equation (2) is readily related to the induced
electron distribution n{z'~z). Integrating it by
parts we obtain

9
Z, (z) = p dz'z' —,X(z'iz).

E(z'tz) is related to the change in the charge dis-
tribution by Poisson's equation

The unperturbed field E, is related to n, (z), the
unperturbed electron density, by Poisson's equa-
tion

' = 4we[p8(-z)- n, (z)J .

Inserting Eq. (7) into Eq. (6), we obtain

d dz' z'n(z'~z) = n, ( z)/ p.

Since n, (z) is positive for all z, we see that the
half-moment increases monotonically from large
negative values in the bulk to zero as z approaches
inf inity.

III. FULL MOMENT

We now go on to consider the ful/ moment of the
induced electron distribution, which is directly
related to the change in the total potential barrier.
The electron density response of the isolated
jellium to an external plane of charge at position
z, is given by

sZ(z'[z) = 4~e[5(z' —z) —n(z'~z)l .
8Z

Inserting Eq. (4) into Eq. (3) yields

(4)
n,.(z(z, )= J dz'Z(z)z')(. (z')*,),

where K(z~z') = K(z'~z) (Ref. 6) is the usual linear
response kernel, and P, is the applied potential

4),{z~z, ) = —2))e )z —z, ~, g -=1;

where 8(z) is the Heaviside step function. The
specific moment of n which appears in this equa-
tion shall be referred to as the half-moment.

For large negative z the applied charge plane is
in the bulk where the unperturbed field F., is zero.
In this case we can see from Eq. (5) that the half-
moment ls equal to 8, l.e., lt colQcldes with the
plane position. As z approaches the surface the
difference between the half-moment and the plane
position varies as E,( ) zOn the vacu. um side of
the surface the half-moment approaches zero
monotonically as does E,(z).

This shows that the change in the potential differ-
ence between the jellium surface and bulk is ex-
actly zero for a weak applied electric field (charge

an arbitrary constant may be added to (t)„corres-
ponding to fixing the zero of potential, and has no
effect on the induced electron density. In order to
generate information about the vacuum side we
shall use the symmetry property R(z~z') = K(z'~z).

Consider now the density response to R charge
plane at z, and an oppositely charge plane at
Zp ~Zy

n(ziz, ) —n(ziz, )

Z Z (I)'g Z Zy (I)g Z Zg s

We note that the n in the left-hand side of this
equation can be replaced by the n; since the total



applied charge is zero in this case.
Taking the full z moment of Eq. (11) and using

the symmetry of K(z~z'), we obtain

dz z[s(z] z, ) —n(z[z, )]

z~ g z z2

dzzK z'z . (12)

2re dzzK z'z =-n,. z' ~ .
Inserting this relation, as well as the applied
potentials [Eq. (10)], in Eq. (12) we obtain

dz z[n(z(z, ) —n(z[z, )]

gg ga
dz'n, . z' ~ + dz'z'n] z' ~

~ oo 1

g2
—g, «'n, (z'( )) (14)

The last term vanishes as z, tends to infinity
since the total induced charge for the isolated sys-
tem is zero, and the last integral in Eq. (14) ap-
proaches zero exponentially. In this limit, Eq.
(14) becomes

z dz[n(z)z, ) —n(z
~
~)]

g Oo

z~ dz n ~ z oo +

= 2 z d
gg g'

(15)
where the last line follows from the fact that the
total induced charge is zero for the isolated sys-
tem.

For z, "near" the z = 0 jellium surface, i.e.,
sufficiently to the right of the z = —L surface such
that the induced charge distribution localized near
the latter is negligible at z» we can replace
2n, (z~~) by n(z~~) (see Fig. 1). Equation (15) then
becomes

The last integral in Eq. (12) is simply proportional
to n, ( z~~), the response of the isolated jellium to a
charge plane at infinity:

any plane position in terms of the universal func-
tion n(z~ ~) which represents the charge induced

by a plane at infinity, or equivalently the change
in electron distribution due to adding electrons to
the neutral jellium. '

The Qualitative features of the fUll moment Rl e
readily seen from Eq. (16). For large negative z
the plane is in the bulk and the induced moment
coincides with the plane position. This follows
from Eq, (16) since the first integral approaches
zero by Eq. (5) while the second approaches unity.
The full moment increases to zero at z= 0 as it
should since n(z (0) = —dn, /pdz corresponding to
Rn infinitesimal displacement of the Unperturbed
electron distribution no. The moment then ap-
proaches a constant value as z approaches infinity.

IV. CWORK FUNCTION

We now use Eq. {16)to derive a relation be-
tween the work function W and n(z~ ). It follows
from Poisson s eqURtlon thRt the change ln the
total electrostatic potential barrier C~ due to an
applied charge plane at z and a compensating
number of electrons is given by

g

54 s = 4ve {z-z')n(z'(~)dz',

where Eq. (16) has been used as well as the fact
that the half-moment is zero.

If we apply a continuum of such planes, each of
infinitesimal surface charge, between z = 0 and
z = -D, we arrive at the configuration shown in
Fig. 2. For D a macroscopic distance, we have
a jellium of density p+ 5p with free surface at
z = 0, in contact with a jellium of density p at
z = —D. The total 54 corresponding to this situa-
tion is simply calculated by integrating Eq. (17)
over the applied plane positions, i.e. , z = 0 to

J
OO g

dz'z'n(z'iz) = dz'z'n(z'i~)+ z
~ 00 0

(16)

where we have used our previous result, Eq. (5),
that the half-moment is zero for z = ~.

This relation expresses the induced moment for

zs -0

FIG. 2. Schematic representation of jellium modified
by uniformly increasing density of macroscopic portion
of jellium. The total potential barrier change is re-
solved into two components, one at the interface of the
two slightly different jelliums and the other at the free
surface.
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z = —D.
54 is composed of two parts, that at the free

surface, I54„and that at z= -D, 642. The latter
is however known since the electrochemical po-
tential is constant' in space; therefore,

d pe5&, = p(p+5p)- p(p)= 5p
5p

where p. is the bulk chemical potential.
Since the change in work function is given by

d jj,
5W = 5(-e4 —p) = —e54 —5p—I 1 dp

(18)

z
= 4ve' dz z n(z'~ ~)dz',

6p QQ ~ 00
(20)

where we have integrated by parts and have set
D = ~. Further partial integration is not possible
since z'n(z~~) does not vanish at minus infinity
because of the Friedel oscillations.

V. NONLINEAR THEORY

Up until now we have only considered linear re-
sponse theory. In Eq. (2), for example, the field
acting on the applied charge plane was taken to be
E,(z), the unperturbed field. In the exact theory
the latter is replaced by the total electric field
acting on the applied charge plane, i.e., one must
add to E,(z) the unknown field E,(z):

0

oe[E,(z) + E( )jz= —pe E(z'~z)dz'. (21)

This induced or screening field is in fact the do-
minant term at large distances since the unper-
turbed field E,(z) is of very short range.

In the limit of an infinitely distant applied plane
however we know the total field acting on the
plane, it is simply -2noe, where Oe is the applied
plane's surface charge density. The analog of
Eq. (5) is therefore the exact relation

0'2 1 0

dz n(z~ ) = p dz zn(z( ) . (22)
2 2

The left-hand side of Eq. (22) is obviously zero
in linear-response theory, thus reducing to our
previous result. The half-moment is therefore
exactly quadratic in the applied surface density
and varies inversely as the jellium density.

VI. NUMERICAL APPLICATION CHEMISORPTION

We have compared all of the analytical results
presented above with detailed numerical calcula-
tions carried out by Lang" and have found excel-

= —e(54, + 54, ) = —e54, (19)

integration of Eq. (17) yields

lent agreement between the two for both our linear-
response results as well as our nonlinear result
equation (22).

As a numerical application of the above results
we consider the induced dipole moment due to an
external point charge. The induced dipole mo-
ment is proportional to the change in potential,
which is given by Eq. (17) in linear-response
theory. This therefore provides a simple model
for the induced-dipole moment in chemisorption.

We used the n(z~~) computed by Lang and Kohn'

to calculate the induced-dipole moment as a func-
tion of the distance of the proton from the jellium
surface. The results are shown in Fig. 3, for x,
values 1.5, 2, 4, and 5. The dipole moment is
zero for the proton at the jellium surface, and
increases slowly as the proton moves into the
vacuum. For very large distances on the vacuum
side, the dipole moment increases linearly with

distance, as is obvious from Eq. (17). Although
not visible in Fig. 3 the dipole moment oscillates
about zero as the proton penetrates into the
jellium. This is scarcely visible for the r, = 1.5
curve while it is only further into the jellium that
the higher x, curves show these oscillations.

We note that the induced dipole moment is posi-
tive for proton positions in the vacuum, which

corresponds to a reduction of the work function.
These results are quite different from those' ob-
tained in simplified calculations based on a gra-
dient expansion of the electron kinetic energy.

There one obtains negative induced dipole mo-
ments up to distances of approximately 1.3 a.u. ,
and the size of the induced moments are approxi-
mately one order of magnitude smaller than those
obtained here using the more accurate charge dis-
tributions obtained by Lang and Kohn. ' Here again

1

0.5
i5

DISTANCE ta.u. )

FIG. 3. Induced-dipole moment as a function of proton
distance from the jellium surface. The curves corre-
spond to r, = 1.5, 2, 4, and 5.
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excellent agreement is obtained with Lang's"
results for the induced-dipole moment.

We do not claim that linear response theory pro-
vides an adequate description of chemisorption
but we emphasize that when applied self-consis-
tently to the chemisorption problem, it yields
quite different results from those obtained in
theories where the gradient expansion approxima-
tion is used.

VII. CONCLUSION

In the summary we have presented the following
exact results within the framework of linear re-
sponse theory: (i) The half-moment of the induced
charge distribution is given in terms of the un-.
perturbed electric field [Eq. (5)]; (ii) the full mo-
ment of the induced charge distribution is given in
terms of the universal function n(z [~) [Eq. (17)].

Within linear-response theory these results are
applicable to an arbitrary applied potential, as
discussed in Sec. I.

In addition the density derivative of the work
function is given in terms of n(z~~) [Eq. (20)].
Finally, Eq. (22) gives the exact half-moment for
an applied external field, including nonlinear ef-
fects. We note however that in deriving this latter
nonlinear result, it was assumed that the jellium
is not "ionized" by the applied field. All these
results are in excellent agreement with detailed
numerical calculations carried out by Lang. '

We have also presented a linear-response theory
of the induced-dipole moment in chemisorption.
The induced-dipole moment has been calculated,
as a function of proton position for several r,
values. For proton positions in the vacuum, the
linear theory predicts a positive dipole moment,
corresponding to a decrease in the work function.
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