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Nonlinear effects involving localized magnon modes in impure ferromagnetic insulators*
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A simple theoretical treatment for the study of nonlinear processes involving impurities in ferromagnetic
insulators is presented. In particular, the possibility of exciting ferromagnetic magnons with very large wave

vectors is analyzed theoretically. The proposed excitation mechanism is analogous to the first-order Suhl

instability arid takes place via nonlinear processes involving localized modes. A rough estimate of the critical
power of a far-infrared laser source necessary to attain the instability threshold is given. It is noted that the
threshold value is within the power capabilities of present pulsed far-infrared lasers, suggesting that the
process is experimentally feasible.

I. INTRODUCTION

During the last few years there has been increas-
ing interest in studying the effect of impurities
as useful probes of the properties of magnetic in-
sulators. It is well known that, under certain
conditions, the introduction of an impurity spin
in a Heisenberg exchange Hamiltonian can give
rise to impurity modes whose energies may lie
above or within the spin-wave band. These energy
states may be classified according to the symmetry
elements of the crystal lattice and are the so-
called localized and virtual modes, respectively.
The conditions for the appearance of localized and
virtual modes associated with impurities in mag-
netic insulators have been studied by many in-
vestigators. ' ' The significant thermodynamic
effects of the impurity modes occur at tempera-
tures comparable to their excitation energies. So,
in contrast to the localized" modes, the virtual
modes contribute dominantly to the thermodynam-
ics of the system at low temperatures, since they
are usually excited at lower energies.

Thermodynamic properties of such impurity
modes have been studied by various authors. "''
Moreover, the presence of the spin-wave impurity
states in magnetic crystals containing impurities
has also been observed by a large number of dif-
ferent experimental techniques, such as optical
measurement, neutron diffraction, and nuclear
magnetic resonance. A recent review with detailed
description of these different experimental tech-
niques has been provided by Cowley and Buyers. '

The nonlinear behavior of the spin-wave modes
beyond a critical occupation number is a well-
known phenomenon (which is manifested as an
unstable growth in the spin-wave population). In

particular, the transient growth of the spin-wave
population resulting from three-magnon nonlinear
processes is due to the dipolar interaction, and
as was pointed out by Suhl, "gives rise to the sub-
sidiary resonance effect, observed at high-power
ferromagnetic resonance experiments. In this
case, the uniform mode (with k =0) is pumped by
a strong transverse microwave field and beyond
a critical value g„ the spin-wave modes (with
km 0) directly coupled to the pumped mode, grow
parametrically causing instabilities. This excita-
tion method of spin waves is frequently referred
to as "perpendicular pumping" and allows one to
excite magnon pairs with low wave vectors only.
Another extremely versatile method, which was
proposed by Morgenthaler" and Schl5mann, is
the so-called "parallel-pumping" technique, where
the rf field is applied parallel to the static field,
instead of being perpendicular to it. The advantage
of this method over the former one lies in the fact
that spin waves can be parametrically excited
with a wide range of k vector. However, it pre-
sents difficulties if k is very large. ' The large-k
magnons in three-dimensional ferromagnets cannot
be excited by this technique, since the exchange
frequency is often considerably higher than the
microwave frequency. Over the past several
years, both techniques have been extensively
employed as a useful means for studying relaxa-
tion mechanisms of spin waves, and considerable
progress in the understanding of the ordered mag-
netic state has thus been made.

The objective of the present paper is to present
a simple theoretical study of nonlinear processes
involving localized modes associated with impuri-
ties in impure ferromagnets insulators. Here we
are concerned with first-order nonlinear processes
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originating in dipolar interaction, i.e., three inter-
acting magnon modes such that one is a localized
mode. In a preliminary report presented some
time ago" certain simple aspects of the present
problem were examir. ed, and in particular, results
for the case where the magnitudes of the host and
impurity spins are the same, i.e. S = S', were re-
ported. In the present paper we discuss the prob-
lem in detail and include the case SWS'. In Sec. II,
the Heisenberg ferromagnet with nearest-neighbor
exchange, containing a single ferromagnetic3lly
coupled impurity, is treated in the spin-wave ap-
proximation. By the use of a canonical transfor-
mation, the Hamiltonian is recast in a diagonal
form. Next, some general features of a single
substitutional impurity problem are discussed,
and an asymptotic expression for the spin-wave
mode amplitude associated with s-like localized
modes is derived. The vertex of the interaction
between a localized mode and two spin waves is
derived explicitly (Sec. III), restricting ourselves
to s-like localized modes. The s-like modes are
of particular interest since they are directly
associated with the motion of the impurity spin.
As is reasonable to expect, we find that total
wave vectors need not be conserved in such pro-
cesses.

The main purpose of the present paper is to
investigate theoretically the possibility of local-
ized magnons (excited by an electromagnetic pulse)
producing magnons in a threshold process. For
this purpose, in Sec. IV we deal with the two mag-
nons and one localized s mode coupling via dipolar
interaction and an electromagnetic pulse (in the
perpendicular configuration) from a strong laser
source which enables us to pump the localized
s mode. Under certain conditions, the instability
threshold value is obtained (Sec. IV), and a rough
estimate of the laser source power for some types
of impurities is presented in Sec. V. Finally, in

the Appendix an order-of-magnitude estimate of
the relaxation rate of the localized s mode, due

to splitting into two magnons, is presented.
From energy-conservation considerations, we

can see that such magnons as one produces in
these processes must have high energies. There-
fore, it is worth seeking a deeper understanding
of this mechanism since it offers a possible method
of exciting magnons with very large k. It should
be emphasized that in this paper w'e have re-
stricted ourselves to looking at a particular im-
pure simple-cubic Heisenberg ferromagnet. Thus,
the present results cannot be directly applied to
known ferromagnetic insulators. However, we
are concerned here primarily with the type of in-
formation which can be antieip3ted, and should
a need develop to examine a particular lattice

structure, the work of the present paper could,
in most cases, be readily generalized.

where X,' is the host Hamiltonian,

x', =-zg QR,. f„~,
i h,

and X,' is the impurity Hamiltonian,

(2 I)

(2 2)

K,'=2(JSO —O'So) Q S~. (2.3)

Here, the subscript j for the lattice vector runs
over all sites, and 6 is summed over all nearest
neighbors; the impurity site labeled by j= 0 is
assumed to be the origin of the coordinate system.

The Bose operators a~ and a&~ for the spin de-
viations can be introduced through the Holstein-
Primakoff transformation, "according to the re-
lations

(2.4a)

and

$ =(2$)"'at(I —aiba. , )'"—
~ ~/»

$~ =s —a~ a&,g=

$'+ = (2$')"'(I —ata )'"a
= (2$')&~ gt(I gtg )

~

So"= S' —ao ao .

(2.4b)

(2.4c)

(2.5a)

(2.5b)

(2.5c)

Restricting ourselves to the linear spin-wave ap-

II. SOME GENERAL FEATURES OF A

SINGLE-SUBSTITUTIONAL-IMPURITY PROBLEM

IN FERROMAGNETS

In this section, some features of a single-sub-
stitutional-impurity problem in a Heisenberg
ferromagnet will be discussed. The aim is to
derive an asymptotic expression for the spin-wave
mode amplitudes associated with s-like localized
modes, which will be used in Sec. III to treat the
long-range dipolar terms.

The impurity energy states in a Heisenberg
ferromagnet containing a ferromagnetic impurity
were first examined by Wolfram and Callaway, '
Takeno, ' and Li and Zhu. ' The present account
is therefore rather brief, and it contains only as
much information as is required to make the
present paper self -contained.

We shall start from the usual isotropic nearest-
neighbor exchange Hamiltonian which contains a
single-substituted ferromagnetically coupled
impurity (characterized by spin $' a.nd exchange
integral J' &0), which can be conveniently written
in the form



12 NONLINEAR EFFECTS INVOLVING LOCALIZED MAGNON-. - 5083

proximation, which is valid at low temperatures,
the Hamiltonian (2.1) can be written in a quadratic
form as follows:

where Ez characterize the excitation energies of

the magnons and the coefficients, r&, (j), are
determined by the secular equation

&.'=~s (a,. a,. + a,, z,aj, ~ —a,. a, ,~ —a,, ~a,.), ZqI'k(j) —2Jszrk(j)+2JS Q rk(j+&)

R,' = 2Jsz(n —1)aoa, +2JS(nP —1) g azar'

(2.6a) = 2JSz(n —1)I'„(0)6,.0+ 2JS(o.P —1)

x Q Fk(h)6,.~ —2JS((yp ~ —1}

—2JS(oP'~' —1) P (aota~+ a~~ao), (2.6b)
x g [r„(~)6,,+ r, (0)6,,], (2.18)

where z is the number of nearest neighbors,
and o. and P are, respectively, the ratios of the
impurity effective exchange and the impurity spin
to those of the host atoms,

A = J'/J, P = S'/S. (2 7)

a, = Q F (j)at; a,. = Q r (j)a
X

where I' denotes the complex conjugate of l.
Here, the spin-wave mode amplitudes r~(j)'s
satisfy the following orthonormality conditions:

(2.8)

The quadratic Hamiltonian (2.6) can be brought to
diagonal form by a canonical transformation, so
that one can separate out the elementary excita-
tions of the spin system. This method has been
used by other authorse'' to treat impurity prob-
lems. The difference here is that we treat the
impurity and the lattice spins in the same manner.
So, we transform the operators a~ to a new set of
operators a& through the transformations

Ek = 2JSz(1 —yk),

where

(2.15)

g-j. ~ eik I' g (2.16}

which is identical to that obtained by Vfolfram and

Callaway. ' (Note that the right-hand side of this
equation reveals the destruction of the translation-
al invariance of the system due to the presence
of the impurity spin. )

In the particular case of a pure ferromagnet
(n = 1 and P = 1}, the spin-wave mode amplitudes
reduce to the usual plane-wave form

(j) ~-1/2 ik ry' (2.i4)

where N is the total number of spins, r,. is the
lattice vector connecting the origin with the jth
site, and k denotes the wave vector of the excita-
tion. In this case the eigenvalue Eq also reduces
to the familiar spin-wave dispersion relation (in
the absence of an external magnetic field},

, jr, . j

g r.(j)r,(j') =&,,

The inverse transformations

at~= Q I k(j)at,

(2.9a)

(2.9b)

The impurity energy states of the problem are
determined by the solution of the @+1basic secular
equations,

z, r„(0) 2 Jar„(0)+2Js P r, (~)

= 2 Jsz(o. —1)I'„(0) —2 Js(nP'" —1) Q rk(d, ),

(2.17a)

6kX'

[ak, ak ] =[ax, ak, ] =0.
(2.11)

With the transformation (2.8), the Hamiltonian
(2.1) takes the dia.gonal form

X.= g Z,atria, ,
X

(2.i2)

(2.10}

a&
—— Iz ja,.

define the creation (a~) and annihilation (a„) op-
erators associated with the A. mode with eigenvalue

Ez, which satisfy the Bose commutation relations

E,r„(s) - 2 Jsz r„(~)+ 2 Js P r, (~+~')

= 2 JS((y P —1)rk(b) —2 Js(nP~~ —1)rk(0),

(2.17b)

which are obtained from Eq. (2.13), putting j =0
and j=A. The impurity energy states [solutions
of the Eqs. (2.17)] due to a single ferromagnetically
coupled impurity in a Heisenberg ferromagnet
have been studies through different approaches by
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several authors. ' ' It is found that these energy
states are discrete levels that may lie within or
outside the energy band of the host (virtual and
localized states, respectively), which may be
classified according to the symmetry elements
of the crystal lattice. For instance, in a simple
cubic lattice the site symmetry of the defect is
0„, and there exist three types of magnon impurity
modes, s-like (representation" I',), P-like (I'»),
and d-like (1 ~). Among these modes, we are
particularly interested here in the s-like modes,
which are directly associated with the motion of
the impurity spin characterized by a large ampli-
tude predominantly located at the impurity and thus
excitable by external radiation. Although the en-
ergies of the s-like localized modes have been
previously studied in some detail (e.g. , Refs.
1, 2, and 4), we discuss this case explicitly for
completeness of our analysis, as well as for pre-
senting an explicit expression of the criteria for
the appearance of this type of localized modes in
a simple cubic lattice. We follow closely the
approach introduced by Ishii et al.' to discuss the
corresponding problem for an antiferromagnetical-
ly coupled impurity.

The solutions of the set of secular equations
(2.17) may be derived if we assume

(2.18)

(2.19)

where G(j,j';E~) is the usual pure-host Green's
function, i.e.,

ei] ~ (r,.-r,')
(2.20)

Here the k summation extends over the first
Brillouin zone. The dimensionless energy ez
introduced in the Eq. (2.19) is defined by

e x
——2Ex/E —1, (2.21)

where E (= 4JSz) is the maximum excitation
energy of the spin-wave band. (Note that cz = 1
and cz = -1 correspond, respectively, to the en-
ergies at the top and the bottom of the spin-wave
band. ) Substituting Eq. (2.18) into Eqs. (2.17a.)
and (2.17b), we obtain the following set of z+ 1
secular equations (valid for all ca,ses of cubic
crystals) which determine the coefficients V,
and Vz„and the eigenvalues ez of the system:

where Vo and V~ are coefficients associated with
the impurity site and its neighbors, respectively,
and g(j, j', e„) is a. dimensionless Green's func-
tion defined as follows:

V,[1+(o —1)g(0, 0; e~) —(o.P'~ —1)g(h, 0; e ~)]

+ g 'V~, (n —1)g(a, o;Eg) —(Qg'" &)z-'pg(~, ~";Ey))=0;
+I gtl

V,[ (oj3"' 1)z 'g(0, 0; e~)+(ap —1)z 'g(6, 0; e~)]

(2.22a)

+Q V~.[5~~. —(eP'" —l)z 'g(a, 0;e~) ( +P —ol)z 'g(a, a';a~)]=0. (2.22b)

In arriving at this equation, we have used the fact that, in cubic lattices, g(6, 0; e~) and +~i g(A, 6; e~)
are independent of the direction of the vector r~. To solve the system of Eqs. (2.22a), and (2.22b), we
shall confine ourselves to the solutions corresponding only to s-like modes which are characterized by
the site symmetry given by nonzero V, and +~V~. To pick up, from Eqs. (2.22), solutions with V, AO
and P ~v~c 0, we combine the Eq. (2.22a) with the following equation:

V,[-(~p'" —1)g(o, o; e )+(~P -1)g(&,0 ex)]

+ g V~, 1 —(nP'" —1)g(6, 0;ci)+( P-1)z 'Pg(&, &";c,))=0,
gl gt I

(2.22c)

which is obtained summing Eq. (2.22b) over A. In this manner, the following relationship, which deter-
mines the energy of the s-like modes, is obtained:

D(e,) = (o. + o P —1) + (nP —1)e, +g(0, 0; e,)[(o, —1) + (a + oP —2)e, + (o P —1)e', ]
=0 (2.23)
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In deriving the above we have used the following
identity satisfied by the Green's functions":

3.0

z ' Q g(j, 4; ex) =-5qo —egg(j, o; ey) . (2.24)

Numerical analysis of the Eq. (2.23) ha, s been
presented by many authors. ' The perfect-crystal
Green's function that appear into Eq. (2.23) is
known over the whole parameter e, range, and in
our calculations we shall use the tabulated values
for a simple cubic lattice given by Yussouff and
Mahanty. " For our present purposes it is suf-
ficient to restrict ourselves to solutions of Eq.
(2.23) whose energies may appear above the top
of the spin-wave band (e, ) 1); i.e., to the localized
s-like modes. A criteria for the existence of
these localized spin-wave modes can be derived.
First, we note that D(~, ) is a monotonically in-
creasing function of e„and that

(2.25)

2.0

0.0 I I I I I I I . I I I I

0.0 2.0 4.0 6.0 8.0 10.0 I2.0

D(e, = 1) (0 . (2.26)

From Eq. (2.23) we can see that this condition
can be satisfied if

Hence, we have at most one solution in the region
cs) 1 lf

FIG. 1. Isoenergy curves for the s-like localized
modes in the n g plane, where u =J'/J and P =S'/S.
The number associated with each curve denotes the
dimensionless energy &, of the localized s mode. The
dashed line shows the boundary curve which is obtained
as a limiting case of Eq. (2.27). Localized s modes
exist only in the regions above this boundary curve.

1 F(—1) —1
2E(-1) —1 ) (2.27)

where E(-1)=1.51638- ~, defined by

(2.28)F(n) = X-' P (1 —y, )",

which has been evaluated by Watson. " The
boundary curve in the o.-P plane for the appear-
ance of the s-like localized modes as well as
isoenergy curves for these modes are shown in

Fig. 1.
Now, we address ourselves to the task of ob-

taining the spin-wave mode amplitudes associated
with s-like localized modes at the impurity and at

I;(j}= p, I-v,5,,+ (1 —v, e,)g(j, 0; e,)],
where

p, , = V,/2JSz; v, = zV~/V, .

(2.29)

(2.30)

The factor v, can be determined from Eq. (2.22c)
and the relation (2.24)

its neighboring sites, as well as deriving an as-
ymptotic expression for 1;(j)with large rj. Using
the symmetry properties' of the s-mode (V, e 0;
V, = V, = ~ ~ ~ V, =—Vz) and Eq. (2.24}, we can rewrite
Eq. (2.18) as follows:

(np —1)+[(~p —1)+(~p —1)e.]g(0, 0; ~,)
o p'"+(np —1)e +[(nP'" —1)e + (otP —1)e.']g(0, 0; e )

' (2.31)

while the quantity p., can be obtained using the normalization condition (2.9a)

P = (v8 —2va(1 —v8~8}g(0 I oi &8) + (1 —vs8) P (& )]' (2.32)

where

(2.33)
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In the region of e, &1 an approximate expression
for p(e, ) can be evaluated by expanding the denom-
inator of the Eq. (2.33) in powers of y~/e„which
for a simple cubic lattice reads

I'.(j) = (a/4~)~(~, )(e ""'/r ),
where

(2.41)

Thus, use of Eq. (2.39) allows us to express I;(j),
for sites away from the impurity, in the form

i((e )
—Q e e-2(0+ &)

n=0

where the first coefficients c„are given by

go=1

e, = 3[F(2) —1]

c, = 5[F(4) —6F(2) + 5)

e, = 7[E(6)—15E(4)+75F(2) —61]

(2.34)

(2.35)

~s~s —1x
0 0 I'0 242

[Note that, as expected, I', (j) has the expected
damped form. ] With the aim of studying explicitly
the dependence of some quantities with the energy
e„we will write the inverse range parameter K,
as an approximate solution of Eq. (2.40), i.e. ,

K, =a '[z(e, —1)]'", (2.43)

Here

$ = (1/v, ) (1 —v, e,)g(0, 0; e,),
q = v', —2v, (1 —v,e,)g(0, 0; e, )

+ (1 —v, e, )'p, (e, ) .

(2.36R)

(2.36b)

(2.37a)

(2.37b)

The functions F(2), E(4), and F(6) defined in the
Eq. (2.28) have been calculated by Tahir-Kheli. "
So, using Eqs. (2.29) and (2.32) the coefficients
I;(j) at the impurity and at its neighboring sites
are found.

which is valid for values of e, in the range
1& e, &1.5.

Before concluding this section, let us consider
the correction to the energy of the s-like localized
modes due to the presence of a static magnetic
field. The shift of energy levels of a ferromagnet
containing an impurity atom due to the magnetic
field has been analyzed by Ishii et al. ' and by
Izyumov and Medvedev. " Here, we shall concen-
trate our attention on a first-order correction of
the energy of the localized s-modes. In the spin-
wave approximation, the exchange Hamiltonian of
Eq. (2.1) must be supplemented by the field-de-
pendent part,

The spin-wave mode amplitude associated with an
s-like mode at any site r,. from the impurity can
be written as

Xz Xg +$Cz

where R~ is the Zeeman host Hamiltonian

(2.44)

I;(j)=
v, —(V — .v. )R'(0, 0; v. ))
x I;(0)g(j, 0; e,), j 00 0 . (2.38)

3Qz =gpaH g a,'a, ,

and K~« accounts for the impurity

(2.45a)

To determine the asymptotic form of I', (j) for
large r, , we use the asymptotic form of the
Green's function G(j, 0, E,) for large values of
r, , which has been discussed in detail by Calla-
way" through application of the method of station-
ary phase. According to this author, and con-
sidering only s-like localized modes (e, &1), the
dimensionless Green's function (2.19) has the
following asymptotic form:

3 a (K,a)' e «0'~
g(j 0 e)= —— 1 — ' r»0,

2m 10 j

SCAN =ggs(5 —l)aa, a, ,

where

(2.45b)

5 = g'/g (2.46)

Here, IJ is the magnetic field assumed to be along
the z dire"tion, p. ~ is the Bohr magneton, and g
and g' are the Lande factors of the host and the
impurity atoms, respectively. Now, the expres-
sion (2.20) for the Green's function of an ideal
crystal is still valid but with the energy of the
spin wave E„, replaced by

(2.39) E,(a) =WSz(1 y, )+gi,H. (2.47)

~k=iK ~s ~ ~ss (2.40)

where a denotes the lattice constant of a sc lattice,
and K, is determined by the equation

To obtain the energy correction of s-like local-
ized modes, we express the Hamiltonian given in
(2.45a), and (2.45b) in terms of the operators az
through the canonical transformations (2.8) and
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pick-up the diagonal part in az. In this manner,
we obtain

(2.48)

e, (H) = e,' + (5 —1)~ r, (0)~ ', (2.49)

where e,' is the dimensionless energy for the case
of zero field. It is worth mentioning that (in con-
trast to P and d states) the energy shift of the s-
like modes, besides the usual amount gp~H, de-
pends also upon the g factor of the impurity.
Thus, to take into account the presence of the ex-
ternal magnetic field, the dimensionless energy
e, that appears in the previous equations must be
replaced by tha, t given in Eq. (2.49). [Henceforth,
for simplicity, the explicit indication of the de-
pendence on the field H of e, (H) will be omitted. ]

spin-deviation operators using a higher-order ex-
pansion of the Holstein-Primakoff transformation
given in Eqs. (2.4) and (2.5). We shall limit our-
selves to the lowest-order terms of interest,
i.e., those with three operators, since they give
rise to the first-order nonlinear process, and
therefore, are responsible for providing the lowest
critical threshold. Thus, neglecting terms higher
than the third order, X~ becomes

X, = —(2S)"' P (F,,a, ata, +.F,,a.ta, at)

-(2$)"'(6 —1) g (F»a,.a, ao+Fo,aoaoa,.).
j(~ o)

-(2$)'~' ,'(5n——1) P (Fo,a, a, a, +.F„a., a., a,).
j( & o)

III. VERTEX OF THE INTERACTION

Xy Ky +Xy

where X~ is the dipolar host Hamiltonian,

(3.1)

&g=
2 Q (gP, s)'~, ,'[5, ~ S,

Akhiezer" was the first to show that the dipolar
interaction in ferromagnetic crystals can induce
transitions between spin waves. From this theo-
retical analysis, it has been possible to explain""
the nonlinear behavior of the ferromagnetic res-
onance' ' at high rf magnetic fields. In this sec-
tion we present the derivation of the vertex of the
interaction between a localized s mode and two
spin waves, which will be used in the remainder
of the paper. The coupling between the localized
mode and the magnons takes place via the dipolar
interaction.

The whole Hamiltonian of the system under
study, is now assumed to include, in addition to
the exchange and Zeeman parts, the dipolar inter-
action

where

-(2$)"'(5n"' —1) P (Fo,a,a, a, +Fo,.a,. a,.a, ), . .

~( ~o)

(3.3)

(3.4)

This Hamiltonian can now be expressed in terms
of the operators az, through the canonical trans-
formations (2.8) which can be conveniently re-
written in such a way as to separate out the ele-
mentary excitations of the system

a,. = Q I'~( j)a, + Q I'„(j)a, , (3.5)

Xt "'" = Q [V(k, k', v)a, a~a~~. +H.c.], (3.6a)

where

where a, is the destruction operator for the per-
turbed magnons of the host energy band, and a,
is the localized magnon operator. Retaining only
the terms which can destroy the localized modes,
we obtain

—3(r,, ~ f,.)(r, , %,)x,,2], (3.2a) V(k, k'; v) =N 'F(v)F(k')v(k, k';K, ) (3.6b)

and K„' takes account of the presence of the impur-
ity, i.e.,

X,'=(gp, ~)' Q ro,'f(5%,' 5,) ~ 0,.
~( &o)

and

K, , = a '(o,) '~'; o, = [z(e, —1)] ',
(3 'I)

(3 8)

(3.2b)

Here r, , is the relative position vector connecting
the ith and jth sites, and 5 is defined in Eq. (2.46).
The Hamiltonian (3.1) can be written as a sum of
terms involving an increasing number of coupled

F(v = s) = —A(e, ); F(k) = (2S)' g F,,e'" '
'~~ .

(3.9)

In arriving at these results, we have neglected
the contributions of the last three terms of Eq.
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part of the dipolar interaction on the energies of
the localized modes, since it is very small com-
pared to the corresponding part of the exchange
interaction. The parameters u~ and v„ in Eq.
(3.11) and Eq. (3.12) are defined in Ref. 33. In

Eq. (3.10a), 5&@, is the energy of the localized
s mode and S~~ is the dispersion relation for rnag-
nons. Note that throughout this paper we have
assumed that we are concerned with impurity
crystals exhibiting a sufficiently small concentra-
tion of impurities, so that the effects of the mag-
netic impurities on the magnons of the host energy
band can be neglected.

IV. PARAMETRIC EXCITATION OF SPIN WAVES VIA

LOCALIZED MAGNON MODES

The experimental nonlinear excitation of mag-
nons (i.e., perpendicular pumping) was discovered
in connection with ferromagnetic resonance ex-
periments. ""In these experiments, a subsidi-
ary resonance and a saturation of the main reso-
nance were observed at high power levels. These
effects were explained by Suhl"" as arising from
a transient growth of the spin-wave population in-
volving three-magnon and four-magnon transitions,
respectively. In particular, the first-order Suhl
instability (three-magnon nonlinear process) is
due to the dipolar interaction and occurs at lowest
critical threshold. This mechanism has proved to
be a very useful parametric excitation process,
which has been employed for studying relaxation
mechanisms of spin waves. In these experiments,
from direct measurements of the critical field, it
is possible to obtain information about coupling co-
efficients among spin waves, as well as their re-
laxation rates.

In the discussion of Sec. III, we concluded that
the dipolar interaction in ferromagnetic crystals
containing impurities can induce transitions be-
tween localized modes and host spin-waves modes.
So, in analogy to the well-known first-order Suhl
instability, if a localized mode is pumped by a
strong enough electromagnetic field, one finds
that beyond a critical value of the field, the spin-
waves modes, directly coupled to the pumped
localized mode, grow parametrically, causing in-
stabilities. When this condition is satisfied, the
growth rate from pumping exceeds the decay rate
from the various relaxation processes. In what
follows we shall deduce the critical number of
photons, n',"', at the threshold of the nonlinear
process.

In order to study the resonance process, we
take the Hamiltonian (3.10a), andwrite it in the form

X~ = Q K(d)) C)) C), + Q h(dc Cc cc
(=s )

and

f, =o, E(v=s) (4 3)

f =N "/'h 'E(k)u'. (4.4)

The threshold condition, which results from the
third-order term in the Hamiltonian (4.1), can be
obtained either from the equation of motion" or
the instability criterion. " Using the fact that in-
stability occurs when the number of quanta in the
k mode required to maintain equilibrium becomes
infinite, White and Sparks" have established a
general instability criterion which can be applied
to any boson-boson process. Using the results of
these authors in our case (for a fuller account, the
reader is referred to Ref. 35), we find that the
critical number of the pumped localized mode
n,""at the threshold is given by

(4.5)

Here q, denotes the relaxation rate of a potentially
unstable k mode. [Note that the conservation of
energy is required; i.e., 5 ~, = 25(d„with, of
course, the restrictionh(d, ~2h&u„(h+ —=E ).]

The external excitation is given by an electro-
magnetic pumping field, which is perpendicular
to the static one. The perturbing Hamiltonian is
given by

x ~(t)

g]]s g— K„(t)S," g']) sh„(t)S,'-*.
,

J(~o)
where the magnetic field operator can be repre-
sented in the form

(4.6)

X (he-([((c/c}v-(ct] h tel[((c/c))) (ct]) (4 7a)-
or

h„(t)=h'e' '+h e ' (4.71)

Here b and b are interpreted as creation and
annihilation operators of photons. In Eq. (4.7a),

++8'[P(k; s) c, c~t ct, +H.c.], (4.1)

where we have considered only the processes in
which k = —k', since it produces the lowest thresh-
old. In Eq. (4.1), P(k; s) is the coupling coefficient
which depends upon the impurity parameters

(4.2)
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K, ~
= —ibad(bc,t —H. c), (4.8)

v, is the volume which defines, for n, incident
photons, an electromagnetic energydensityn, hv/v„
c is the velocity of light, and e, is the polarization
vector of the magnetic field. The wave vector of
the electromagnetic field q (Iq ~

=(u/c; qo=q/Iq I ) is
parallel to the y axis. The interaction Hamiltonian
(4.6) can be written in terms of the operators a„
and a~~ using Eqs. (2.4), (2.5), and the canonical
transformations (2.8). The relevant part of this
Hamiltonian responsible for the pumping of the
localized s modes, with Scu =h~, is

@crit Os Ok1
m"*l&,(0&Ilf, I (Rlf, I)

where

A =-, h 'g'pa(2NS')'~'.

(4.14)

(4.15)

Note that after experimental determination of the
physical parameter h"", it is possible to obtain
information about coupling coefficients between
localized s modes and spin waves, as well as,
measurements of the relaxation rates of impur-
ities. In Sec. V, a rough estimate of the critical
power of a far-infrared laser source necessary
to attain the instability threshold will be presented.

y=N ' 'GI', (0), (4.9) V. DISCUSSION

and

G=g'p, 5 '(NS'aha/v )' ' (4.10)

In the above, 1",(0) is the amplitude of the local-
ized s mode at the impurity site rgiven in Eq.
(2.36a)], and N is the number of host sites in
a volume v of the crystal around the impurity.
From Eq. (4.8) we can note that in the stationary
linear region (see, for instance, Ref. 34) the oc-
cupation number of the localized magnons is pro-
portional to the number of incident photons

n, = (y/q, )'n, . (4.11)

~""=(n n, /rl P(h;s)l)', (4.12)

Here q, denotes the relaxation rate (introduced
phenomenologically) of a localized s mode from
the various possible relaxation processes. (In
the Appendix, an order of magnitude estimate of

g, due to the process of splitting into two magnons
will be presented. )

Using Eqs. (4.5) and (4.11) we get the critical
number of photons at the threshold of the nonlin-
ear processes with Se =&co, =2hvk,

As explained in the preceding sections, when the
resonance of a localized s mode is pumped above
a certain threshold, magnon pairs of the host spin-
wave energy band are driven unstable. As the
localized magnon energies lie above the top of
the spin-wave band (a 50 cm '), energy conserva-
tion shows that the magnon pairs" produced by
the decay are close to the edge of the Brillouin
zone. This immediately suggests that the present
process can be used to measure the lifetime of
magnons in this region (h-10'-10' cm '), analog-
ous to the well-known experiments in the micro-
wave range. The mechanism proposed here is
represented schematically in Fig. 4.

To make an order-of-magnitude estimate of the
power of a far-infrared laser source necessary
to attain the critical photon number given in Eq.
(4.13), let us take the following typical values for
the parameters q„and [fJ; q„=10 sec ', [f/=1
sec ', which are valid for yttrium iron garnet
(YIG) and several simple antiferromagnets. For
the impurity parameters we take m =0.1%, ~

I', (0)P
= 10 ',

If, l' = 10', and q, = 10' sec '. The latter
three numbers are valid, for instance, for im-

or, more explicitly,

& crit 1 Os Rk
2

m
I
I'.(0)I'If.l' Glf, l

(4.13)

where nz is the concentration of impurities. As
mentioned earlier, we are considering the case
of small-impurity concentration only. Therefore,
the effect of adding more impurity spins is as-
sumed to be simply additive. "

The amplitude of the electromagnetic field ap-
plied parallel to the x axis [h„(t) =hcos~t] is found
by equating the electromagnetic energy density to
n,'""Ke/v, The result i.s

PHOTON LOCALIZEO S-MO

FIG. 4. Schematic representation of the mechanism
proposed here to excite magnons vrith very large k.
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purities characterized by S' =S, J' = 1.53J, and
5' =2/, J' =1.20J. The order-of-magnitude com-
putation of the relaxation rate of localized modes,
presented in the Appendix, gives q, —-10'-10' sec '.
(It is obtained assuming the relaxation of the s
modes to be due to the splitting process described
earlier. ) Using these numbers, we obtain

W„;,/c 10' —10 W/cm' (5.1)
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APPENDIX: ESTIMATE OF RELAXATION DUE TO
THE SPLITTING PROCESS

where 0 is the sectional area of the beam. There-
fore, for millimeter beams the critical power is
of the order of tens of hundreds of watts, which
is within the power capabilities of present pulsed
far-infrared lasers. The difficulty in the experi-
ments suggested here seems to be the same as
those referring to the direct excitation of local-
ized modes, namely, the tuning of the resonance
to the existing laser transitions.

Finally, it is worth mentioning that although the
calculations presented here apply directly to im-
purities in simple cubic ferromagnets, it is rea-
sonable to expect that the qualitative features of
the problem do not depend critically upon the cryst-
al structure. We also expect that the order of
magnitude of the results should be the same for
antiferromagnets, in which localized modes have
been investigated experimentally.

[The function F(k) is as defined in Eq. (S.11).] Let
us rewrite this in the form

E(k) =gp, s M, Q(k), (A2)

where Mo = (N/V) gpsS is the saturation magnetiza-
tion and P(k) = 1 (see Ref. 38). The probability
that a localized magnon decays into a pair of mag-
nons of the host energy band can be calculated with
first-order perturbation theory. The nonvanish-
ing matrix element of (A1) corresponding to this
process [see Fig. 2(a)] is

Using perturbation-theory procedures, one can
now find the transition probability for the decrease
of one localized magnon mode due to the split-
ting process. If this is subtracted from the prob-
ability for the inverse process, one gets the rate
equation, defining the rate of increase of the oc-
cupation number, i.e.,

dn
d

"=Q [P„,„,(n, -n, —1) -P„„,(n, -n„+1)].
(A4)

Using the golden rule, this gives

(A5)

where

&„((n])=
2 @ p i V(k, k'; v) + V(k', k; v)i'
1 2g

~,ai

&&[n,(n~+1)(n„i+I) —(n„+l)n, n~ ]

X 6(kQ)~+kg) i —kQ) ) (A6)

Note that L, ({n])=0, where n =[exP(S~/kent') —1]-'
is the thermal equilibrium occupation number. So,
the relaxation time 7„ for this process is given by

((q —1), (n„+1), (n„, +1)iSC~in„, n~, n„,)

=[n„(n„+1)(n, +I)]'i'[V(k, k'; v)+V(k', k; v)].

(AS)

In this Appendix we present an order-of-magni-
tude calculation of the relaxation rate of a local-
ized s mode due to splitting into two magnons of
the host energy band. To proceed with this task,
let us take the interaction term of Eq. (S.10a),

K~
""= P [V(k, k'; v)c„c~tc~, +H.c.].

(A1) where

= —g I V(k, k'; v) + V(k', k; v)P

x (ng+ngt+ 1) 6(k~~+h(g~, —@(g )

(A I)
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1 sinh( —,'@co„/ks T)
2 sinh( —'k a»/ks T) sinh( 2@+—» i/ks T)

(A8a)

The integral above was calculated using a linear
dispersion relation for magnons (kryo» =h&oo+Dk).
The result for the relaxation frequency (q, =1/v, )

is found to be

Using Eqs. (3.10b) and (A2), we obtain

@
(gp, sM, )'&u,ksTiI'(v=s)PN '

(A8b)

(A9)

(A12)

where o, is defined in Eq. (3.8). To make an or-
der-of-magnitude estimate, let us take the follow-
ing typical values: H = 10' Qe, M, = 10' Qe, T
= 100 K, g= 2, J=10 "-10 "ergs. For the im-
purity parameters we assume $' =8, J' = 1.53J
and 8'=2S, J'=1.20J. Using these numbers, we
obtain

which gives
q, -10'-10' sec '. (A13)

&&@'(k, k';K, ) 5(&v, —&u» —~»i) . (A11)

1 4p—= —,(gps M, )'up, ks T (E(v = s)P I(K,), (A10) Finally, it is worth mentioning that the total re-
laxation frequency for a localized s mode is the
sum of the contributions from all possible inter-
action processes. However, from a theoretical
point of view, it is possible to obtain localized
modes with energies close to the top of the spin-
wave band in such way that the present process
can be the most important relaxation mechanism.
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