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A simple theoretical treatment for the study of nonlinear processes involving impurities in ferromagnetic
insulators is presented. In particular, the possibility of exciting ferromagnetic magnons with very large wave
vectors is analyzed theoretically. The proposed excitation mechanism is analogous to the first-order Suhl
instability and takes place via nonlinear processes involving localized modes. A rough estimate of the critical
power of a far-infrared laser source necessary to attain the instability threshold is given. It is noted that the
threshold value is within the power capabilities of present pulsed far-infrared lasers, suggesting that the

process is experimentally feasible.

I. INTRODUCTION

During the last few years there has been increas-
ing interest in studying the effect of impurities
as useful probes of the properties of magnetic in-
sulators. It is well known that, under certain
conditions, the introduction of an impurity spin
in a Heisenberg exchange Hamiltonian can give
rise to impurity modes whose energies may lie
above or within the spin-wave band. These energy
states may be classified according to the symmetry
elements of the crystal lattice and are the so-
called localized and virtual modes, respectively.
The conditions for the appearance of localized and
virtual modes associated with impurities in mag-
netic insulators have been studied by many in-
vestigators.!™° The significant thermodynamic
effects of the impurity modes occur at tempera-
tures comparable to their excitation energies. So,
in contrast to the localized!! modes, the virtual
modes contribute dominantly to the thermodynam-
ics of the system at low temperatures, since they
are usually excited at lower energies.

Thermodynamic properties of such impurity
modes have been studied by various authors.!?:!?
Moreover, the presence of the spin-wave impurity
states in magnetic crystals containing impurities
has also been observed by a large number of dif-
ferent experimental techniques, such as optical
measurement, neutron diffraction, and nuclear
magnetic resonance. A recent review with detailed
description of these different experimental tech-
niques has been provided by Cowley and Buyers.*

The nonlinear behavior of the spin-wave modes
beyond a critical occupation number is a well-
known phenomenon (which is manifested as an
unstable growth in the spin-wave population). In
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particular, the transient growth of the spin-wave
population resulting from three-magnon nonlinear
processes is due to the dipolar interaction, and

as was pointed out by Suhl,!® gives rise to the sub-
sidiary resonance effect, observed at high-power
ferromagnetic resonance experiments. In this
case, the uniform mode (with K=0) is pumped by
a strong transverse microwave field and beyond

a critical value %4, the spin-wave modes (with
k+0) directly coupled to the pumped mode, grow
parametrically causing instabilities. This excita-
tion method of spin waves is frequently referred
to as “perpendicular pumping” and allows one to
excite magnon pairs with low wave vectors only.
Another extremely versatile method, which was
proposed by Morgenthaler'® and Schldmann,” is
the so-called “parallel-pumping” technique, where
the rf field is applied parallel to the static field,
instead of being perpendicular to it. The advantage
of this method over the former one lies in the fact
that spin waves can be parametrically excited
with a wide range of K vector. However, it pre-
sents difficulties if K is very large.’® The large-k
magnons in three-dimensional ferromagnets cannot
be excited by this technique, since the exchange
frequency is often considerably higher than the
microwave frequency. Over the past several
years, both techniques have been extensively
employed as a useful means for studying relaxa-
tion mechanisms of spin waves, and considerable
progress in the understanding of the ordered mag-
netic state has thus been made.

The objective of the present paper is to present
a simple theoretical study of nonlinear processes
involving localized modes associated with impuri-
ties in impure ferromagnets insulators. Here we
are concerned with first-order nonlinear processes
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originating in dipolar interaction, i.e., three inter-
acting magnon modes such that one is a localized
mode. In a preliminary report presented some
time ago'® certain simple aspects of the present
problem were examired, and in particular, results
for the case where the magnitudes of the host and
impurity spins are the same, i.e. S=S’, were re-
ported. In the present paper we discuss the prob-
lem in detail and include the case S#S’. In Sec. II,
the Heisenberg ferromagnet with nearest-neighbor
exchange, containing a single ferromagnetically
coupled impurity, is treated in the spin-wave ap-
proximation. By the use of a canonical transfor-
mation, the Hamiltonian is recast in a diagonal
form. Next, some general features of a single
substitutional impurity problem are discussed,
and an asymptotic expression for the spin-wave
mode amplitude associated with s-like localized
modes is derived. The vertex of the interaction
between a localized mode and two spin waves is
derived explicitly (Sec. III), restricting ourselves
to s-like localized modes. The s-like modes are
of particular interest since they are directly
associated with the motion of the impurity spin.
As is reasonable to expect, we find that total

wave vectors need not be conserved in such pro-
cesses.

The main purpose of the present paper is to
investigate theoretically the possibility of local-
ized magnons (excited by an electromagnetic pulse)
producing magnons in a threshold process. For
this purpose, in Sec. IV we deal with the two mag-
nons and one localized s mode coupling via dipolar
interaction and an electromagnetic pulse (in the
perpendicular configuration) from a strong laser
source which enables us to pump the localized
s mode. Under certain conditions, the instability
threshold value is obtained (Sec. IV), and a rough
estimate of the laser source power for some types
of impurities is presented in Sec. V. Finally, in
the Appendix an order-of-magnitude estimate of
the relaxation rate of the localized s mode, due
to splitting into two magnons, is presented.

From energy-conservation considerations, we
can see that such magnons as one produces in
these processes must have high energies. There-
fore, it is worth seeking a deeper understanding
of this mechanism since it offers a possible method
of exciting magnons with very large K. It should
be emphasized that in this paper we have re-
stricted ourselves to looking at a particular im-
pure simple-cubic Heisenberg ferromagnet. Thus,
the present results cannot be directly applied to
known ferromagnetic insulators. However, we
are concerned here primarily with the type of in-
formation which can be anticipated, and should
a need develop to examine a particular lattice
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structure, the work of the present paper could,
in most cases, be readily generalized.

II. SOME GENERAL FEATURES OF A
SINGLE-SUBSTITUTIONAL-IMPURITY PROBLEM
IN FERROMAGNETS

In this section, some features of a single-sub-
stitutional-impurity problem in a Heisenberg
ferromagnet will be discussed. The aim is to
derive an asymptotic expression for the spin-wave
mode amplitudes associated with s-like localized
modes, which will be used in Sec. III to treat the
long -range dipolar terms.

The impurity energy states in a Heisenberg
ferromagnet containing a ferromagnetic impurity
were first examined by Wolfram and Callaway,*
Takeno,? and Li and Zhu.® The present account
is therefore rather brief, and it contains only as
much information as is required to make the
present paper self-contained.

We shall start from the usual isotropic nearest-
neighbor exchange Hamiltonian which contains a
single-substituted ferromagnetically coupled
impurity (characterized by spin S’ and exchange
integral J’ >0), which can be conveniently written
in the form

3, =3¢+ 3¢, 2.1)

where 3 is the host Hamiltonian,
5==7 % 2.8, 8a; (2.2)
i A
and 3C is the impurity Hamiltonian,

5t =208,-J' 85 D 8, 2.3)
A

Here, the subscript j for the lattice vector runs
over all sites, and A is summed over all nearest
neighbors; the impurity site labeled by j=0 is
assumed to be the origin of the coordinate system.

The Bose operators a; and a; for the spin de-
viations can be introduced through the Holstein-
Primakoff transformation,?® according to the re-
lations

St=(28)"2(1 —a]a,,s)"a,, (2.42)

S;=(29)2al(1 - a)a, ;,5)", (2.4b)

Si=s-ala, (2.4c)
and

S5 = (28)2(1 - 6l dg o) ay, (2.52)

S37=(28)Y2al (1 - ag ay s )2, (2.5b)

SiF=8"-ala,. (2.5¢)

Restricting ourselves to the linear spin-wave ap-



proximation, which is valid at low temperatures,
the Hamiltonian (2.1) can be written in a quadratic
form as follows:

0 _ T T t ¥
HKe=Js Z 2 (aja;+aj, N0y, A= a;0;, A= 0], 20)),
i &
(2.6a)

5€t=27Sz(@ - 1)aga,+2J5(ap - 1) Y alan
A

- 2JS(aBY? - 1) Z (alap+alay), (2.6Db)
-y

where z is the number of nearest neighbors,

and « and B are, respectively, the ratios of the
impurity effective exchange and the impurity spin
to those of the host atoms,

a=J'/J, B=S'/S. 2.7 A

The quadratic Hamiltonian (2.6) can be brought to
diagonal form by a canonical transformation, so
that one can separate out the elementary excita-
tions of the spin system. This method has been
used by other authors®'® to treat impurity prob-
lems. The difference here is that we treat the
impurity and the lattice spins in the same manner.
So, we transform the operators a; to a new set of
operators a, through the transformations

a =% Th(al; a;= Y Ti(ay, (2.8)
A . N

where I denotes the complex conjugate of T.
Here, the spin-wave mode amplitudes I'y(j)’s
satisfy the following orthonormality conditions:

2 @y () =8, (2.92)

> TA@TG) =850 (2.9b)
A

The inverse transformations

(l; = Z f)\(])a}- ’
! (2.10)
ax= Z P)\(j)aj
7
define the creation (a{) and annihilation (a,) op-

erators associated with the A mode with eigenvalue
E,, which satisfy the Bose commutation relations

[ay, a{']-=5x)\' s
[a)\,a)\’]-=[a17 a{,]_:O .

With the transformation (2.8), the Hamiltonian
(2.1) takes the diagonal form

(2.11)

%,= > Ealay, (2.12)
A

12 NONLINEAR EFFECTS INVOLVING LOCALIZED MAGNON... 5083

where E, characterize the excitation energies of
the magnons and the coefficients, I'\(j), are
determined by the secular equation

E\Ty(j) =27 Sz (j) +27 S Y Th(j+A)
A

=2JSz(a - 1)T(0)5,,+ 2JS(ap - 1)
x 9 TA(A)5;, - 2JS(aB*” - 1)
A

x 3 [TA(8)8,0+ T, (008,,], (2.13)
A

which is identical to that obtained by Wolfram and
Callaway.! (Note that the right-hand side of this
equation reveals the destruction of the translation-
al invariance of the system due to the presence
of the impurity spin.)

In the particular case of a pure ferromagnet
(e¢=1and B=1), the spin-wave mode amplitudes
reduce to the usual plane-wave form

L,(j) =N"2 ¢k Ty | (2.14)

where N is the total number of spins, T, is the
lattice vector connecting the origin with the jth
site, and K denotes the wave vector of the excita-
tion. In this case the eigenvalue E, also reduces
to the familiar spin-wave dispersion relation (in
the absence of an external magnetic field),

E,=2J5z(1-7v,), (2.15)
where
7=zt Y e Ta, (2.16)
A

The impurity energy states of the problem are
determined by the solution of the z+1 basic secular
equations,

E\T'\(0) - 2JSzT,(0) +2JS ) T')(a)
A

=2JSz(a = 1)\ (0) —2JS(ap*/? - 1) Z r,(a),
A
(2.17a)

E\T\(A) =2JSzTy(A) +2JS D Ty (A+AY)
&

=2JS(aB - 1)T)(A) = 2JS(aB?? - 1)T, (0)
(2.170)
which are obtained from Eq. (2.13), putting j=0
and j=A. The impurity energy states [solutions
of the Egs. (2.17)] due to a single ferromagnetically

coupled impurity in a Heisenberg ferromagnet
have been studies through different approaches by
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several authors.!”® It is found that these energy
states are discrete levels that may lie within or
outside the energy band of the host (virtual and
localized states, respectively), which may be
classified according to the symmetry elements
of the crystal lattice. For instance, in a simple
cubic lattice the site symmetry of the defect is
O, and there exist three types of magnon impurity
modes, s-like (representation®! I';), p-like (T};),
and d-like (I',). Among these modes, we are
particularly interested here in the s-like modes,
which are directly associated with the motion of
the impurity spin characterized by a large ampli-
tude predominantly located at the impurity and thus
excitable by external radiation. Although the en-
ergies of the s-like localized modes have been
previously studied in some detail (e.g., Refs.
1,2, and 4), we discuss this case explicitly for
completeness of our analysis, as well as for pre-
senting an explicit expression of the criteria for
the appearance of this type of localized modes in
a simple cubic lattice. We follow closely the
approach introduced by Ishii et al.® to discuss the
corresponding problem for an antiferromagnetical-
ly coupled impurity.

The solutions of the set of secular equations
(2.17) may be derived if we assume

T\(§) =V,(2JSz)7g(4,0; €,)

+(2J82) ZVAg(j,A;e)\), (2.18)
=

Voll+(a —1)g(0,0; €,) - (@B*” -1)g(A,0;€,)]
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where V, and V, are coefficients associated with
the impurity site and its neighbors, respectively,
and g(j,j’, €,) is a dimensionless Green’s func-
tion defined as follows:

g(4,7'; €,)=(2dS2)G(4,7"; E\), (2.19)

where G(j,j’; E,) is the usual pure-host Green’s
function, i.e.,

eik s (=T

G(j,j3EN) =Ny B, _E,
k kT

(2.20)

Here the £ summation extends over the first

Brillouin zone. The dimensionless energy €,
introduced in the Eq. (2.19) is defined by

e,\=2E)\/Em—l, (2.21)

where E,, (=4JSz) is the maximum excitation
energy of the spin-wave band. (Note that €, =1
and €, =-1 correspond, respectively, to the en-
ergies at the top and the bottom of the spin-wave
band.) Substituting Eq. (2.18) into Eqs. (2.17a)
and (2.17b), we obtain the following set of z+1
secular equations (valid for all cases of cubic
crystals) which determine the coefficients V,
and V,, and the eigenvalues €, of the system:

(35 ver) (@@= eta, 0560 - @87 - D27 (e, 8% €0 ) <0 (2.222)
A Al
Vol—(aB'? = 1)27g(0, 0; €,) + (@B - 1)z *g(A, 0; €,) ]
(2.22b)

+ Z Varldan = (@f? = 1)z272g(A, 0; €,) + (@B - 1)z 7 g(A, A €,)]=0.
A/

In arriving at this equation, we have used the fact that, in cubic lattices, g(A, 0;¢,) and 3 A g(A, A'; €,)
are independent of the direction of the vector ¥,. To solve the system of Egs. (2.22a), and (2.22b), we
shall confine ourselves to the solutions corresponding only to s-like modes which are characterized® by
the site symmetry given by nonzero V, and 3} ,V,. To pick up, from Egs. (2.22), solutions with V20
and 3 AV,#0, we combine the Eq. (2.22a) with the following equation:

Vo[—(ap'’? - 1)g(0, 0; €,) + (aB - 1)g(4, 0; €,)]

. (; VA,> (1 (@B = 1)g(a,0;€,) + (@ - 1)z I g(a, A7 ex))=o,

AII
which is obtained summing Eq. (2.22b) over A. In this manner, the following relationship, which deter-
mines the energy of the s-like modes, is obtained:

D(e)=(a+af-1)+(aB-1)e,+g(0,0;€)[(a - 1) +(a +aB -2)e + (@B — 1)€2]
=0. (2.23)

(2.22¢)
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In deriving the above we have used the following 30
identity satisfied by the Green’s functions?!'®:

271 Y g(h, A5 €)) ==0,0-€,8(7,0;€,) . (2.24) I
A
a

Numerical analysis of the Eq. (2.23) has been

presented by many authors.'™ The perfect-crystal 20
Green’s function that appear into Eq. (2.23) is

known over the whole parameter €, range, and in

our calculations we shall use the tabulated values

for a simple cubic lattice given by Yussouff and

Mahanty.?? For our present purposes it is suf-

ficient to restrict ourselves to solutions of Eq. 1.0
(2.23) whose energies may appear above the top

of the spin-wave band (e,>1); i.e., to the localized

s-like modes. A criteria for the existence of

these localized spin-wave modes can be derived.

First, we note that D(¢,) is a monotonically in- ool o o o
creasing function of €,, and that 00 20 4.0 6.0 80 100 120
lim D(e)=1. (2.25) B —
€ >0
° . . FIG. 1. Isoenergy curves for the s-like localized
Hence, we have at most one solution in the region modes in the & -8 plane, where ¢ =J'/J and 8=S'/S.
€;>1if The number associated with each curve denotes the

dimensionless energy €, of the localized s mode. The

D(e,=1)<0. (2.26) dashed line shows the boundary curve which is obtained
From Eq. (2.23) we can see that this condition as a limiting case of Eq. (2.27). Localized s modes
can be satisfied if exist only in the regions above this boundary curve.
1 F(-1)-1 > -1
a><2+2F(_1)_16 s (2.27)
where F(-1)=1.51638---, defined by its neighboring sites, as well as deriving an as-
ymptotic expression for I'((j) with large »,. Using
F(n)=N"! Z (1=y)", (2.28) the symmetry properties? of the s-mode (V,# 0;
3 V,=V,=+++V,=V,) and Eq. (2.24), we can rewrite
which has been evaluated by Watson.2®* The Eq. (2.18) as follows:

boundary curve in the a-8 plane for the appear-

T.(f)=p=v0,,+(1=-v.€ i, 0; € 2.29
ance of the s-like localized modes as well as s(9) = sl=000+ (1 - v,€)2(4, 0; €)1, ( )

isoenergy curves for these modes are shown in where
Fig. 1. _ L
Now, we address ourselves to the task of ob- s =Vo/2052 5 v=2V s/ V. (2.30)
taining the spin-wave mode amplitudes associated The factor v, can be determined from Eq. (2.22¢)
with s-like localized modes at the impurity and at and the relation (2.24)
—J

(aB - 1) + [(QBI/Z - 1) + (OlB - 1)€s]g(0, 0; €s)

Vs~ ap 7+ (aB - e, +[(ap” = 1)e,+ (@B - 1)e2] (0, 0; €,)’ (2.31)
while the quantity u, can be obtained using the normalization condition (2.9a)
e =12 = 20,(1 — v5€,)2(0,0; €,) + (1 — vee, Pule)] 2, (2.32)

where

ple =N"1 D" (e5+7,) 2. (2.33)
k
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In the region of €,>1 an approximate expression
for p(e,) can be evaluated by expanding the denom-
inator of the Eq. (2.33) in powers of y,/€,, which
for a simple cubic lattice reads

ple)=>" c et (2.34)
n=0

where the first coefficients ¢, are given by
=1
¢, =3[F(2) - 1]
¢, =5[F(4) - 6F(2)+5]
¢, =T[F(6) — 15F(4) +T5F(2) — 61] (2.35)

The functions F(2), F(4), and F(6) defined in the
Eq. (2.28) have been calculated by Tahir-Kheli.?*
So, using Eqgs. (2.29) and (2.32) the coefficients
I,(j) at the impurity and at its neighboring sites
are found.

| T,0)|*=v,(1-£)*/n, (2.36a)
| Ts(a) 2 =038/n. (2.36b)
Here
£=(1/v,)(1 - v4e,)g0, 0; €) (2.37a)
n=1% - 2v,(1 - v4€,)g(0,0; €)
+(1=vgePuleg). (2.37b)

The spin-wave mode amplitude associated with an
s-like mode at any site 7; from the impurity can
be written as

. V€= 1
PS(]) :<Us - (1 —"Us€s)g(0, 0; Es)>
x Ts(0)g(4,0;€), j#0. (2.38)

To determine the asymptotic form of I',(j) for
large 7;, we use the asymptotic form of the
Green’s function G(j, 0, E,) for large values of

7;, which has been discussed in detail by Calla-
way?® through application of the method of station-
ary phase. According to this author, and con-
sidering only s-like localized modes (€,>1), the
dimensionless Green’s function (2.19) has the
following asymptotic form:

S n..y_3a (Ksa)2>e"‘sri
g(]’oyes)_2n<l— 10 ,rj

, 7,»0,

(2.39)

where a denotes the lattice constant of a sc lattice,
and K, is determined by the equation

Y=ik, = €s) €s> 1. (2.40)

sy *~s

Thus, use of Eq. (2.39) allows us to express I'y(j),
for sites away from the impurity, in the form

I(j) = (a/4m)A(e,)(e 7557 /7)), (2.41)

where

A =2 <1 - <Kls(;l)2>

Vg€ — 1
* <vs - (1-v,¢,)g(0, 0; €S)> r0). (2.42)

[Note that, as expected, I'y(j) has the expected
damped form.] With the aim of studying explicitly
the dependence of some quantities with the energy
€,, we will write the inverse range parameter K
as an approximate solution of Eq. (2.40), i.e.,

nye, (2.43)

K,=a Y z(e, -

which is valid for values of ¢, in the range
1<e,<1.5.

Before concluding this section, let us consider
the correction to the energy of the s-like localized
modes due to the presence of a static magnetic
field. The shift of energy levels of a ferromagnet
containing an impurity atom due to the magnetic
field has been analyzed by Ishii et al.® and by
Izyumov and Medvedev.?® Here, we shall concen-
trate our attention on a first-order correction of
the energy of the localized s-modes. In the spin-
wave approximation, the exchange Hamiltonian of
Eq. (2.1) must be supplemented by the field-de-
pendent part,

e, =50% +3¢L (2.44)

where J¢} is the Zeeman host Hamiltonian

5 =gusH Y aja;, (2.452)
i
and JC; accounts for the impurity
3¢, =gup(6 - VHaja, (2.45b)
where
6=g'/g. (2.46)

Here, H is the magnetic field assumed to be along
the z direction, ujpis the Bohr magneton, and g
and g’ are the Landé factors of the host and the
impurity atoms, respectively. Now, the expres-
sion (2.20) for the Green’s function of an ideal
crystal is still valid but with the energy of the
spin wave E,, replaced by

E,(H)=2JSz(1 -v,)+gugH. (2.47)

To obtain the energy correction of s-like local-
ized modes, we express the Hamiltonian given in
(2.45a), and (2.45b) in terms of the operators a,
through the canonical transformations (2.8) and



12 NONLINEAR EFFECTS INVOLVING LOCALIZED MAGNON... 5087

pick-up the diagonal part in @,. In this manner,
we obtain

E (H)=2JSz[1+€,(H)]+gugH, (2.48)
e =<2+ E82 5 _ 1)1 017, (2.49)

where € is the dimensionless energy for the case
of zero field. It is worth mentioning that (in con-
trast to p and d states) the energy shift of the s-
like modes, besides the usual amount gu zH, de-
pends also upon the g factor of the impurity.
Thus, to take into account the presence of the ex-
ternal magnetic field, the dimensionless energy
€, that appears in the previous equations must be
replaced by that given in Eq. (2.49). [Henceforth,
for simplicity, the explicit indication of the de-
pendence on the field H of € (H) will be omitted.]

III. VERTEX OF THE INTERACTION

Akhiezer®” was the first to show that the dipolar
interaction in ferromagnetic crystals can induce
transitions between spin waves. From this theo-
retical analysis, it has been possible to explain!®:28
the nonlinear behavior of the ferromagnetic res-
onance®*® at high rf magnetic fields. In this sec-
tion we present the derivation of the vertex of the
interaction between a localized s mode and two
spin waves, which will be used in the remainder
of the paper. The coupling between the localized
mode and the magnons takes place via the dipolar
interaction.

The whole Hamiltonian of the system under
study, is now assumed to include, in addition to
the exchange and Zeeman parts, the dipolar inter-
action

3¢, =3¢ +3¢% 3.1)

where 3§ is the dipolar host Hamiltonian,

1 - .
3= 3 Z (grs 2Tij3[§i -5,

i=j

—3(Fif‘§i)(fij'§j)7’—2 s (3.2a)

ij

and JC} takes account of the presence of the impur-
ity, i.e.,

5= (gusl Y 7571085 -8,)-§;

i(=0)
= 3[Fo; - (685 = S I[Fo; « 8,172} - (3.2b)

Here T;; is the relative position vector connecting
the ith and jth sites, and 0 is defined in Eq. (2.46).
The Hamiltonian (3.1) can be written as a sum of
terms involving an increasing number of coupled

spin-deviation operators using a higher-order ex-
pansion of the Holstein-Primakoff transformation
given in Eqgs. (2.4) and (2.5). We shall limit our-
selves to the lowest-order terms of interest,
i.e., those with three operators, since they give
rise to the first-order nonlinear process, and
therefore, are responsible for providing the lowest
critical threshold. Thus, neglecting terms higher
than the third order, 3¢, becomes

¥, =—(25)7 Z (Fy;a,a]a; + Fya] aal)

J
i

—(28)2(56 - 1) Z (Fo;a,ad a, +Fy,ad azal)

i(=0)

—(28)2 (6 = 1) Z (Foja}\aiaj+}7‘ alala,

0;i ™
i(=0)

-(28)V%(5at? - 1) Z (Fosa0a;a; + Foala,al),

7
i(=0)

(3.3)
where
Fyy==3(guplrlvi,(ry; —ivi)ri?]. (3.4)

This Hamiltonian can now be expressed in terms
of the operators a,, through the canonical trans-
formations (2.8) which can be conveniently re-
written in such a way as to separate out the ele-
mentary excitations of the system

a;= 3 Ty(iay+ 3 T,(ja,, (3.5)

k

where a, is the destruction operator for the per-
turbed magnons of the host energy band, and a,
is the localized magnon operator. Retaining only
the terms which can destroy the localized modes,
we obtain

5Cy TR = 3 [V(k, k' v)aaal, +Hoe], (3.6a)

R, kW
where
V(k,k';v)=N"'F(v)F(k")o(k,k";K,) (3.6b)
and
a—2
O(krk ’Ky)_ |E+E'|2+K,2,’ (3-7)
K,-s=a""0,)™%; 04=[2(e,- 1), (3.8)

-

F(r=s)=-Ale,); F(R)=@S)"* 3 Fye* Ty,

(3.9)

In arriving at these results, we have neglected
the contributions of the last three terms of Eq.
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(3.3) compared to that of the first term. The rea-
son is that in the first term of Eq. (3.3), the sum
runs over all sites ¢ and j, whereas in the re-
maining terms the summation runs only over the
sites j. On the other hand, we note that this re-
sult should be exact for the case of an impurity
spin with S’ =S, since only the first term of Eq.
(3.3) survives. Furthermore, in writing the above
results, we have used the asymptotic form for
T',(j) given by Eq. (2.41), which is a good approx-
imation for treating the long-range dipolar terms.
(Note that for the perturbed spin waves, we as-
sume plane wave form.)

Equations (3.6a) and (3.6b) represent a process
in which a localized magnon decays into a pair
of magnons of the host energy band (splitting
process), as well as, the reverse process where
two magnons of the host energy band (with dif-
ferent energies and momenta) are destroyed and a
localized magnon is created (confluence process).
Both of these processes are illustrated in Fig. 2.
The presence of the function o(k, 2’;K,) in the
vertex®! (3.6b) reveals that, as expected, wave
vector need not be conserved in these processes.
However, we note that the maximum amplitude
of o(k, k';K,) occurs for k=-K’, indicating that
this is the dominant process. In Fig. 3, the func-
tion o(k, k’;K,) is plotted as a function of agq,
where g = |k +k’|, for several representative val-
ues of the dimensionless energy €,. Examination
of this figure reveals that when the energy of the
localized mode appears near the top of the magnon
energy band, the peak of the function o (%, 2’; K, )
at k = -k’ becomes more pronounced. In this sit-
uation, practically, there exist only processes in
which kK= -K’. Note that from a theoretical point
of view it is possible to obtain localized modes
with energies close to that of the spin-wave energy
at the top of the band if a convenient selection of
the impurity parameters o and B is available
(see Fig. 1).

In order to study the nonlinear process of
interest, it is desirable to rewrite the total Ham-
iltonian of the magnetic system in terms of new
boson operators cI and c,, as follows:

K= Twyel co+ D Hwyeyc,
k

v(=s)

+ Z V(k,k';v)e,cicl +H.c.],  (3.10a)
kR
where now
V(k,k';v)=N"*F(V)F(k')o(k,k";K,), (3.10b)

with
F(k) = F(kY: . (3.11)

(a) (b)

FIG. 2. Schematic representation of the first non-
linear processes involving a localized impurity mode
(dashed line): (a) splitting process; (b) confluence pro-
cess. Note that wave vector need not be conserved in
these processes.

These new operators, c,’s, are introduced by a
Bogolyubov canonical transformation,?

- N
A =UpCp =V Cps

% T
p SUp Cp = VpCpy

(3.12)

which diagonalizes the quadratic part of the Ham-
iltonian of the pure ferromagnetic system including
the contributions from Zeeman, exchange, and
dipolar interactions. Here the transformation
(3.12) has been applied to the magnon operators,
but considered as an identity for the localized
modes operators a and a,. In fact, this means
that we are neglecting the effects of the quadratic

00 10 20 30 40 50
Oq,——_>

FIG. 3. Behavior of the function o(k,%2’ ;K) (see the
defmmon in the text) as a function of agq, where q —Ik
+k’|. Numerical figures denote the values of the di-
mensionless energy €, of the s-like localized magnon
modes.
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part of the dipolar interaction on the energies of
the localized modes, since it is very small com-
pared to the corresponding part of the exchange
interaction. The parameters «, and v, in Eq.
(3.11) and Eq. (3.12) are defined in Ref. 33. In
Eq. (3.10a), 7w, is the energy of the localized

s mode and 7w, is the dispersion relation for mag-
nons. Note that throughout this paper we have
assumed that we are concerned with impurity
crystals exhibiting a sufficiently small concentra-
tion of impurities, so that the effects of the mag-
netic impurities on the magnons of the host energy
band can be neglected.

IV. PARAMETRIC EXCITATION OF SPIN WAVES VIA
LOCALIZED MAGNON MODES

The experimental nonlinear excitation of mag-
nons (i.e., perpendicular pumping) was discovered
in connection with ferromagnetic resonance ex-
periments.??%° In these experiments, a subsidi-
ary resonance and a saturation of the main reso-
nance were observed at high power levels. These
effects were explained by Suhl!®*2® as arising from
a transient growth of the spin-wave population in-
volving three-magnon and four-magnon transitions,
respectively. In particular, the first-order Suhl
instability (three-magnon nonlinear process) is
due to the dipolar interaction and occurs at lowest
critical threshold. This mechanism has proved to
be a very useful parametric excitation process,
which has been employed for studying relaxation
mechanisms of spin waves. In these experiments,
from direct measurements of the critical field, it
is possible to obtain information about coupling co-
efficients among spin waves, as well as their re-
laxation rates.

In the discussion of Sec. III, we concluded that
the dipolar interaction in ferromagnetic crystals
containing impurities can induce transitions be-
tween localized modes and host spin-waves modes.
So, in analogy to the well-known first-order Suhl
instability, if a localized mode is pumped by a
strong enough electromagnetic field, one finds
that beyond a critical value of the field, the spin-
waves modes, directly coupled to the pumped
localized mode, grow parametrically, causing in-
stabilities. When this condition is satisfied, the
growth rate from pumping exceeds the decay rate
from the various relaxation processes. In what
follows we shall deduce the critical number of
photons, n%i, at the threshold of the nonlinear
process.

In order to study the resonance process, we
take the Hamiltonian (3.10a), andwrite itinthe form

Kn= Y Bwpcicy+ Y Hw,cle,
k

v(=s)

+> nlp(k;s)csef Ty +Hee], (4.1)
kR

where we have considered only the processes in
which K= -k, since it produces the lowest thresh-
old. In Eq. (4.1), ¢(k;s) is the coupling coefficient
which depends upon the impurity parameters

¢ (k; s) =N f, (4.2)
where

fs=0,F(v=s) (4.3)
and

Fe=N"Y2-1F(k)u?. (4.4)

The threshold condition, which results from the
third-order term in the Hamiltonian (4.1), can be
obtained either from the equation of motion® or
the instability criterion.®® Using the fact that in-
stability occurs when the number of quanta in the
k mode required to maintain equilibrium becomes
infinite, White and Sparks®® have established a
general instability criterion which can be applied
to any boson-boson process. Using the results of
these authors in our case (for a fuller account, the
reader is referred to Ref. 35), we find that the
critical number of the pumped localized mode
ngit at the threshold is given by

ndit =2/ o(k; s)E . (4.5)

Here 7, denotes the relaxation rate of a potentially
unstable £ mode. [Note that the conservation of
energy is required; i.e., # wg=2Mw,, with, of
course, the restriction iws< 2w, FEw,=E,,).]

The external excitation is given by an electro-
magnetic pumping field, which is perpendicular
to the static one. The perturbing Hamiltonian is
given by

NG
=-glp Y H()S]-g uph()SF,  (4.6)
i(=0)

where the magnetic field operator can be repre-
sented in the form

(2mhw \V?
na0=1(FE) 7 (g3

1
X (pe-ilwley-wtl _ ptotltw/e)y-wtl) (4 73)
or

ho(t)=htet“t +h et (4."T0)

Here b' and b are interpreted as creation and
annihilation operators of photons. In Eq. (4.7a),
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v, is the volume which defines, for #, incident
photons, anelectromagnetic energy densityn,iw/v,,
c is the velocity of light, and &, is the polarization
vector of the magnetic field. The wave vector of
the electromagnetic field  (l¢|=w/c;d,=4/1¢1) is
parallel to the y axis. The interaction Hamiltonian
(4.6) can be written in terms of the operators a,
and a using Egs. (2.4), (2.5), and the canonical
transformations (2.8). The relevant part of this
Hamiltonian responsible for the pumping of the
localized s modes, with Zw =fiw;, is

3, _p=—iliy(bed —H.c), (4.8)
where

y=N-12GT(0), (4.9)
and

G=g'upgl*(NS'nhiw/v,)V2. (4.10)

In the above, I'((0) is the amplitude of the local-
ized s mode at the impurity site [given in Eq.
(2.36a)], and N is the number of host sites in

a volume v of the crystal around the impurity.
From Eq. (4.8) we can note that in the stationary
linear region (see, for instance, Ref. 34) the oc-
cupation number of the localized magnons is pro-
portional to the number of incident photons

ns = (y/nsPng . (4.11)

Here 7, denotes the relaxation rate (introduced
phenomenologically) of a localized s mode from
the various possible relaxation processes. (In
the Appendix, an order of magnitude estimate of
ns due to the process of splitting into two magnons
will be presented.)

Using Eqgs. (4.5) and (4.11) we get the critical
number of photons at the threshold of the nonlin-
ear processes with Zw =flw, = 2wy,

n:‘“=(ﬂsﬂk/}’l¢(k;s)l)2, (4-12)

or, more explicitly,

crit — 1 77s77k 2
ng m| T(0)B]F P (Glfd) , (4.13)

where m is the concentration of impurities. As
mentioned earlier, we are considering the case
of small-impurity concentration only. Therefore,
the effect of adding more impurity spins is as-
sumed to be simply additive.%®

The amplitude of the electromagnetic field ap-
plied parallel to the x axis [4,(¢) =hcoswt] is found
by equating the electromagnetic energy density to
ni"w/v,. The result is

P. FITTIPALDI AND S. M. REZENDE 12
i 1 Ns 7 >
crit _ s Ik 4.14
h = o (R ) (#.14)
where
R =51"g'ug(2NS’ )2 (4.15)

Note that after experimental determination of the
physical parameter £°", it is possible to obtain
information about coupling coefficients between
localized s modes and spin waves, as well as,
measurements of the relaxation rates of impur-

. ities. In Sec. V, a rough estimate of the critical

power of a far-infrared laser source necessary
to attain the instability threshold will be presented.

V. DISCUSSION

As explained in the preceding sections, when the
resonance of a localized s mode is pumped above
a certain threshold, magnon pairs of the host spin-
wave energy band are driven unstable. As the
localized magnon energies lie above the top of
the spin-wave band (2 50 cm™!), energy conserva-
tion shows that the magnon pairs®” produced by
the decay are close to the edge of the Brillouin
zone. This immediately suggests that the present
process can be used to measure the lifetime of
magnons in this region (~10"-10% cm™), analog-
ous to the well-known experiments in the micro-
wave range. The mechanism proposed here is
represented schematically in Fig. 4.

To make an order-of-magnitude estimate of the
power of a far-infrared laser source necessary
to attain the critical photon number given in Eq.
(4.13), let us take the following typical values for
the parameters 7, and |f,l; 7,2~ 10% sec=!, |fpl=~1
sec™, which are valid for yttrium iron garnet
(YIG) and several simple antiferromagnets. For
the impurity parameters we take m =0.1%, | (0)]
~1071, |f,P~10% and n,~10° sec™'. The latter
three numbers are valid, for instance, for im-

—

R,lek
hw= h‘Us = Zhwk

hw hwg

NV —>
PHOTON LOCALIZED S-MODES

-_R.,ﬁagk

FIG. 4. Schematic representation of the mechanism
proposed here to excite magnons with very large k.
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purities characterized by S’ =S, J’=1.53J, and
S’=2S, J'=1.20J. The order-of-magnitude com-
putation of the relaxation rate of localized modes,
presented in the Appendix, gives n,~108-10° sec~.
(It is obtained assuming the relaxation of the s
modes to be due to the splitting process described
earlier.) Using these numbers, we obtain

Wi /0 ~10° = 10* W/cm?, (5.1)

where o is the sectional area of the beam. There-
fore, for millimeter beams the critical power is
of the order of tens of hundreds of watts, which

is within the power capabilities of present pulsed
far-infrared lasers. The difficulty in the experi-
ments suggested here seems to be the same as
those referring to the direct excitation of local-
ized modes, namely, the tuning of the resonance
to the existing laser transitions.

Finally, it is worth mentioning that although the
calculations presented here apply directly to im-
purities in simple cubic ferromagnets, it is rea-
sonable to expect that the qualitative features of
the problem do not depend critically upon the cryst-
al structure. We also expect that the order of
magnitude of the results should be the same for
antiferromagnets, in which localized modes have
been investigated experimentally.
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APPENDIX: ESTIMATE OF RELAXATION DUE TO
THE SPLITTING PROCESS

In this Appendix we present an order-of-magni-
tude calculation of the relaxation rate of a local-
ized s mode due to splitting into two magnons of
the host energy band. To proceed with this task,
let us take the interaction term of Eq. (3.10a),

3(3,'1”"‘”': E [V(k,k'; p)cuc,}'c,j',+H.c.].

Rk, v

(A1)

[The function F(k) is as defined in Eq. (3.11).] Let
us rewrite this in the form

F(k)=gupMyo(k), (A2)

where M,=(N/V)guzS is the saturation magnetiza-
tion and ¢(k)=1 (see Ref. 38). The probability
that a localized magnon decays into a pair of mag-
nons of the host energy band can be calculated with
first-order perturbation theory. The nonvanish-
ing matrix element of (Al) corresponding to this
process [see Fig. 2(a)] is

<(nv - 1)7 (nk + 1)9 (nk '+ l)lscdl Ny Ny nk'>
=[n, (0, + 1)y + D 2[V(E, 5 0) + V(' B V)] .
(A3)

Using perturbation-theory procedures, one can
now find the transition probability for the decrease
of one localized magnon mode due to the split-
ting process. If this is subtracted from the prob-
ability for the inverse process, one gets the rate
equation, defining the rate of increase of the oc-
cupation number, i.e.,

dn
dtu = Z [Ptrans (n,,-‘n,, - 1) —Ptrans(nl}—.nll+ 1)] .
k' ’
’ (a4)
Using the golden rule, this gives
dn,
s =L,({n}), (A5)
where
127 = , =/, 2
Linh = 5 57 20 |V, B ) + V(! s v
kR’
X[, 00 + 1) +1) = (1, + 1) mym 0]
X8 wy +Hwyr —Aw,) . (A6)

Note that L,{7})=0, where 77 =[exp(iw/ksT) —1]!
is the thermal equilibrium occupation number. So,
the relaxation time 7, for this process is given by

1 _oL,(nh
Ty on,,
=% f\_‘;‘: |V, k'; v) + V(R k; V)
X (ﬁk +ﬁk' + 1) 6(ﬁwk +ﬁwk, '—'ﬁ(l)y) N
(A7)
where
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1 sinh(zw,/kgT)
2 sinh(Z7iw,/ksT

(7 +70e +1) =

) sinh(3 7wy +/kp T)
(A8a)
w
E13571 m, kBT>>7'Zw,,'k..
(A8Db)
Using Eqgs. (3.10b) and (A2), we obtain
1 = L} (gupM PwskyT|F(v=s)PN 2
7, R
2(k, k' o*(k, k' Ks)
X — — ? 9
g] h’wkﬁwk: 6(Ws wk wk )7 (A )
which gives
1 4nx 5 2 10
E:ﬁ'—:;(g“-BMo) wskBTlF(v=s)l I(Ks); (A )
where
3 3,7
1K, )_ ff d3kd3k
WrWpe
><0'2(k, k';Ks) 5((")s""‘-’Iz_"")k')' (A]‘]‘)

The integral above was calculated using a linear
dispersion relation for magnons (Fw, =fiw,+DEk).
The result for the relaxation frequency (ns=1/7;)
is found to be

s = 15 Ol Fv=s)F <’Z%:>2 (%if_(’)z(%z)
(A12)

where 0, is defined in Eq. (3.8). To make an or-
der-of-magnitude estimate, let us take the follow-
ing typical values: H =~10° Oe, M,=210% Qe, T
~100°K, g~2, J=~10"1%-10"" ergs. For the im-
purity parameters we assume S’=S, J’=1.53J

and S’ =2S, J'=1.20J. Using these numbers, we
obtain

ns ~108-10° sec™*. (A13)

Finally, it is worth mentioning that the total re-
laxation frequency for a localized s mode is the
sum of the contributions from all possible inter-
action processes. However, from a theoretical
point of view, it is possible to obtain localized
modes with energies close to the top of the spin-
wave band in such way that the present process
can be the most important relaxation mechanism.

*Supported in part by Conselho Nacional de Pesquisas,
Banco Nacional do Desenvolvimento Econdmico and
CAPES (Brazilian Government).

ir, Wolfram and J. Callaway, Phys. Rev. 130, 2207
(1963).

%S, Takeno, Prog. Theor. Phys. 30, 731 (1963); S. Takeno
and H. Homma, ibid. 40, 452 (1968).

3Yin-Yuan Li and Yan-Qink Zhu, Acta Phys. Sinica 19,
753 (1963).

4Yu. A. Izyumov and M. V. Medvedev, Zh. Eksp. Teor.
Fiz. 48, 574 (1965) [Sov. Phys.—JETP 21, 381 (1965)];
see also Yu. A. Izyumov, Adv. Phys. 14 569 (1965).

5p. Vashishta, Proc. Phys. Soc. Lond. 91 372 (1967).

8, Ishii, J. Kanamori, and T. Nakamura, Prog. Theor.
Phys. 33, 795 (1965); for an antiferromagnetically
coupled impurity problem, see also J. B. Parkinson,
Solid State Commun. 5, 419 (1967); Yung-Li Wang and
H. Callen, Phys. Rev. 160, 358 (1967); T. Oguchi and
I. Ono, J. Phys. Soc. Jpn. 26, 32 (1969).

"R. M. White and C. M. Hogan, Phys. Rev. 167, 480
(1968); T. Oguchi, I. Ono, T. Ishikawa, and N. Fuchi-
gami, J. Phys. Soc. Jpn. Suppl. 26, 61 (1969); E. Frik-
kee, J. Phys. C 2, 345 (1969); T. Tonegawa, J. Phys.
Soc. Jpn. 33, 348 (1972); E. Shiles and D. Hone, Phys.
Rev. B 5, 1915 (1972).

8T, Tonegawa, Prog. Theor. Phys. 40, 1195 (1968); S. W.
Lovesey, J. Phys. C 1, 102, 118 (1968); E. Shiles and
D. Hone, J. Phys. Soc. Jpn. 28, 51 (1970).

%S. Miyazima and A. Okiji, J. Phys. Soc. Jpn. 32, 1188
(1972).

107, Tanaka, S. Terakawa, and S. Miyazima, Prog.

Theor. Phys. 49, 1750 (1973).

11 this paper we are concerned with localized impurity
modes. So, the linear spin-wave approach seems to
provide a good description of the present problem, at
least in the limit of low temperatures (T <<T,).

127, Wolfram and W. Hall, Phys. Rev. 143, 284 (1966);
D. Hone, H. B. Callen, and L. R. Walker, Phys. Rev.
144, 283 (1966); H. P. van de Braak and W. J. Caspers,
Phys. Status Solidi 24, 733 (1967); D. Hone and
K. Vogelsang, J. Appl Phys. 29, 1356 (1968).

13D, Hone, D. J. Scalapino, and R. Silberglitt, J. Appl.
Phys. 41, 948 (1970); S. Watarai and T. Kawasaki, J
Phys. Soc. Jpn. 32, 346 (1972); L. R. Walker, B. C.
Champers, D. Hone, and D. Callen, Phys.Rev. B 5,
1144 (1972).

1R. A. Cowley and W. J. L. Buyers, Rev. Mod. Phys. 44,
406 (1972).

154, Suhl, J. Phys. Chem. Solids 1, 209 (1957).

16F, R. Morgenthaler, J. Appl. Phys. 31, 958 (1960).

1"E. Schl6mann, Raytheon Tech. Report No. R-48, 1959
(unpublished); E. Schlémann, J. J. Green, and U, Mi-
lano J. Appl. Phys. 31, 386S (1960).
18y, Yamazakl J. Phys Soc. Jpn. 34, 270 (1973).

197, p, Fittipaldi, S. M. Rezende, and L. C. Miranda,
Solid State Commun. 13, 1797 (1973).

20T, Holstein and H. Primakoff, Phys. Rev. 58, 1098
(1940). -

21Represen’ca’cions are designated according to the notation
of L. P. Bouckaert, R. Smoluchowski, and E. P. Wigner
[Phys. Rev. 50, 58 (1936)].

220, Yussouff and J. Mahanty, Proc. Phys. Soc. Lond.



12 NONLINEAR EFFECTS INVOLVING LOCALIZED MAGNON...

85, 1223 (1965).

23G, N, Watson, Q. J. Math. (Oxford) 10, 266 (1939).

24R. A. Tahir-Kheli, Phys. Rev.132, 689 (1963).

253, Callaway, Phys. Rev. 132, 2003 (1963); J. Math.
Phys. 5, 783 (1964).

26yy. A. Tzyumov and M. V. Medvedev, Magnetically
Ordeved Crystals Containing Impurities (Consultants
Bureau, New York, 1973).

2TA, 1. Akhiezer, J. Phys. (U.S.S.R.) 10, 217 (1946).

28, Suhl, J. Appl. Phys. 29, 416 (1958).

29R, W. Damon, Rev. Mod. Phys. 25, 239 (1953).

30N, Bloembergen and S. Wang, Phys. Rev. 93, 72
(1954).

31 Note that, in the usual case of three-magnon pro-
cesses, a Kronecker 6 appears into the vertex in the
place of the function o(k,%k' ;K ).

5093

23ee, for example, F. Keffer, in Handbuch dev Physik,
edited by S. Fliigge (Springer-Verlag, Berlin, 1966),
Vol. XVIII/2, Secs. 13 and 14.

35ee, for example, M. Sparks, Ferrvomagnetic Relax-
action Theory (McGraw-Hill, New York, 1964).

31, Le Gall, Phys. Status Solidi 28, 495 (1968).

%R. M. White and M. Sparks, Phys. Rev. 130, 632
(1963).

36Note that, as was pointed out by Tonegawa (Ref. 7),
the interference effect between two impurities on the
localized states becomes vanishingly small for large
impurity separation.

3TNote that the process is limited for localized modes
with energies 7wg = 2E,, .

384, 1. Akhiezer, V. G. Baryakhtar, and S. V. Peletmin-
skii, Spin Waves (North-Holland, Amsterdam, 1968).



