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A simple decoupling procedure for the equations of motion of the Green's function relevant to the NMR-line-

shape problem is proposed. Explicit formulas are presented for approximants to the line shape incorporating
the exact values of several moments, In CaF, the approximants containing the second through eighth moments

are found to be in very good agreement with the experimental ' F free-induction-decay signals. Excellent
agreement is also found between the approximants containing the second through sixth moments and the
exchange-narrowed "F line shapes in paramagnetic MnF„RbMnF„and KMnF, .

I. INTRODUCTION

Since the pioneering work of Van Vleck' the in-
terpretation of NMR line shapes in solids has at-
tr acted considerable attention. Although the rele-
vant nuclear-spin Hamiltonians that describe the
interactions between nuclear spins in real systems
are often known to a considerable degree of accu-
racy, the agreement between calculated profiles
and experimentally observed line shapes has not
always been completely satisfactory.

Since the many-body character of the nuclear-
spin Hamiltoni3n makes exact line-shape calcula-
tions in real systems unfeasible, some type of .

approximation must always be employed. Several
approximate techniques, ' ' sometimes of rather
general applicability, have been used in the cal-
culation of NMR line shapes with various degrees
of success. Unlike the line shape, its moments
can be calculated exactly. Such calculations,
however, become increasingly difficult as the
order of moment increases. In practice only a
few lowest-order moments can be expected to be
known exactly in three-dimensional systems.
Moreover, these moments can often but not always
be determined experimentally with accuracy from
the measured line shapes.

The knowledge of the exact value of only a few
moments is by itself not sufficient however, to
describe the details of experimentally observed
line shapes. In spite of this, model functions with
a few adjustable parameters are known to exist, ' '
which fit various experimental line shapes quite
well provided the parameters are adjusted to yield
the correct values of a few of the lowest moments.
However, the choice of these model functions that
fit some experimental line shapes has frequently
been rather arbitrary and somewhat mysterious.
In this paper we present a technique for system-
atically generating approximants to NMR line
shapes based upon the knowledge of the exact
values of a few of its moments. Starting with the

exact set of equations for the Qreen's functions of
the system, we make a transformation that allows
us to express the relevant Green's function in the
form of a continued-fraction expansion. A de-
coupling procedure is introduced which involves
an assumption about the limi. ting behavior of some
functions of the higher moments. Although the
precise conditions for the validity of this assump-
tion are not investigated, it appears to yield cor-
rect results for widely different systems of nuclear
spins.

Two types of experimentally determined line
shapes were adopted as a test of the validity of the
assumptions made and of the accuracy of the re-
sulting approximants: The "F free-induction-
decay signals (FID) in CaF, (related to the line
shape by a, Fourier transformation) and the ex-
change-narrowed "F line shapes in paramagnetic
systems of the type of MnF, . In both cases the
calculated approximants are in excellent agree-
ment with the experimental results.

Slightly different approximants, ' of which the
present ones are a generalization, were known
to describe quite well the FID signals in CaF, .
Our more general approximants, which include
values of the totality of the known moments in Bll
cases, yield in addition, truncated Lorentzian-
like line shapes in the exchange-narrowed sys-
tems. These profiles and the resulting line widths
are also in excellent agreement with the experi-
mental results in the paramagnetic systems.

Ir. GREEN'S-FUNCTION APPROACH TO THE
LINE - SHAPE PROBLEM

A. Hamiltonians

The systems to be studied can be considered as
being a rigid lattice of nuclear spins in a static
field H, applied along the z axis of a rectangular
coordinate system. The spins are also irradiated
by a rotating magnetic field of small amplitude
H„perpendicular to H, and rotating at angular
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frequency cu.

The total Hamiltonian $C for the system can be
written as the sum of three terms:

3C =Xo+3C„+X~,

X'=3C +X

where Xo = -yIIOQ; I,, is the Zeeman energy (in
frequency units) of the nuclear spins of gyro-
magnetic ratio z in the static field H, .

The interaction energy of the nuclear magnetic
moments with the radio-frequency field has the
form

where I, are the usual raising and lowering spin
angular momentum operators.

The term K, in Eq. (1) represents the mutual
coupling ener gy of the nuclear spins and, poss ibly,
the energy of interaction with electronic spins.
We will confine this discussion to two types of
interaction Hamiltonians of practical importance.
The first type describes a system of nuclear spins
interacting via their magnetic dipole-dipole mo-
ments only. If this interaction is only a small
perturbation of the Zeeman energy, the relevant
Hamiltonian X, is a truncated' dipolar Hamiltonian
of the form

X, = Q D()(I; T, —3I(gI;,). (3)

Xg Xg +Xg

The dipolar coupling constant D;& is given by

D;, = —,
' y%(3 .cos'8;, —1)/r';&,

where r;& is the length of the internuclear vector
and 0;, is the angle between r;, and the static field
Ho.

In CaF, the "F spins form a simple cubic lattice
of spin--,' nuclei coupled by magnetic dipole-dipole
interactions, and the Hamiltonian X," of Eq. (3)
adequately describes the system. Using this
Hamiltonian, the second through eighth moments
have been calculated. ' " These moments are in
very good agreement with the experimental values"
that can be determined accurately in CaF, .

The second type of system is characterized by
an interaction Hamiltonian of the form

J»y+»A
will be repeatedly invoked.

B. Linear —response theory

The formalism of the Green's function"' "will
be used to derive" an expression for the rf sus-
ceptibility that determines the NMR line shape.

Starting with a density matrix p whose initial
thermal-equilibrium value is given by

p(0) = e /Tr(e ), (6)

where p =h/kT, one defines a transformed density
matrix

moment of magnetic ions (spins S). The static
field H, along the z axis is assumed to be parallel
to a principal axis of the hyperfine tensor A;, .
The second term K, in Eq. (4) represents an iso-
tropic exchange interaction between the electronic
spins.

The Hamiltonian K~ in Eq. (4) adequately de-
scribes the dominant interactions experienced by
the "F spins in paramagnetic systems of the MnF,
type where the following conditions are met: (a)
Interactions involving nuclear magnetic moments
can be neglected compared to interactions involving
electronic spins. (b) The simple form adopted for
the exchange Hamiltonian is valid because Mn" is
an orbital singlet and terms representing crystal-
field effects are small.

Experimentally determined" "F line shapes in
paramagnetic MnF, and also RbMnF, and KMnF,
are I.orentzian-like over the experimentally ob-
servable range. Thus, the moments of these line
shapes cannot be measured since they are deter-
mined almost exclusively by the behavior of the
unobservable wings of the resonance. However,
the second, fourth, and sixth moments have been
calculated' using theHamiltonian X~ of Eq. (4)
together with experimental values for the exchange
and hyperfine interactions that are quite accurately
known in these materials.

For the paramagnetic systems considered here,
the exchange interaction J in Eq. (4) is much larg-
er than the Zeeman energy in a field of the order
of 10 G. The hyperfine interaction A, however,
can be considered as a small perturbation of the
Zeeman energy in the same fields. These re-
lationships

with v=x, y, s.
The first term K„ in Eq. (4) represents the

hyperfine coupling between the nuclear magnetic
moments (spine I) and the electronic magnetic

X' =Xo+X, is the Hamiltonian in the absence of rf
irradiation [Eqs. (1)-(4)j.

Under the influence of the total Hamiltonian 3C

=K, +X', the equation of motion of the density ma-
trix p has the form'
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d
=i[P,X].dp

(7)
where

I, (t) = e' ' I, e '

The time-evolution of the transformed density
matrix p* can be obtained from Eq. (2) and (7).
The result is

=-—,'i yII„[p*,(I,(t)e' '+I (t)e ' t]], (8)

The linear response of the system to a small
perturbing rf field is obtained by neglecting terms
in II„of higher order than the first in the iterative
integration of Eq. (8). After transforming back
to the laboratory frame the result for p(t) is

t t

p(t ) p(Q) ( iif y) [p(Q) (et z (T-t) I e iR'-&T t& e&MT-geist'(t t& I -eix'&~ t& e--iwt)] dq. (9)

where p( —~) = p(0) = p*(-m).
The quantity of interest in a cw NMR experiment

is the component of magnetization transverse to
the static field H, produced by a transverse mag-
netic field rotating with angular velocity ~. This
can be specified by the expectation value of the
operator I„

(10)

We will use angular brackets to denote thermal-
equilibr ium expectation values:

(Q) = Tr[ p(O)Q].

In the high-temperature approximation appro-
priate to the present experimental conditions,
the thermal-equilibrium density matrix has a
spin- dependent part of the form

p(0) = —PK'/Tr(1) .
Since Tr[ p(0)I, ] =0, Eqs. (10) and (9) yield the
following expression for I, (t):

T, (t) = "
JI Tr[I ( p(0), I, (t —v)]] e ' dr.

(12)

Implicit in Eq. (12) is the vanishing value of the
term ([I,(v —t), I,]) in the high-temperature ap-

proximationn.

Examination of this trace confirms this result
for K, of Eq. (3) and also for $C, of Eq. (4) in the

crystals to be considered.
Introducing a step function B(t),

one can obtain a useful expression for the complex
rf susceptibility X(&d):

T(t)=(-,'itt, y)e '" I ,te(t')((t(t ), t ])e' ' dt, '

(13)

In order to insure convergence of the integral of

Eq. (13) a convergence factor e "(e&0) is intro-
duced into the integrand yielding the following ex-
pression for X(&d):

X(&t&) =lim i ytt (( I„I )) (14)

where

is the retarded double-time Green's function and

((I„I )) „,is its Fourier transform given by

((I„I )) „,=2 JI
e""'""((I, (t'), I ))dt'.

(16)

The line shape is associated with the absorption
of energy from the rf field and is determined by
the imaginary part of the complex rf susceptibility
X(&u) specified by Eq. (14).

C. Equations of motion

The equations of motion for the Green's function

are obtained by taking the time derivative of both

sides of Eq. (15) followed by a Fourier transfor-
mation [Eq. (16}]. The left-hand side of Eq. (15)
is then integrated by parts yielding

(&@+i )((eI„I ))

(17)

By substituting X' =R, +R, into the term (( [I„X'],
I )) „,, Eq. (17) can be further simplified yield-
ing

(18)

where Q =~ —yII, .
Iteration of Eq. (18) yields a hierarchy of Green's

functions G„(Q i+e) of various orders n. The
equations of motion have the form
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(0 + i e )G, = (i /2m)C, + G, ,

(0+i')G, =(i/2w)C, +G, ,

Sg, (s) =g,(s),

Sg4(s) =Mg -g, (s), (22)

(0+i@)G„=(i/2w)C„+G„. ..

where

G„(n+ic) =(([t„x,]„,t ))

and [ I„X,]„denotes the n-fold commutator

[[[.. .[ t„x,],x,],x,].. .x,] .

(19) where 8 =e —iQ.
The correlations of interest in the NMR case

are contained in the zeroth-order Green's func-
tion g, (s). Although all the moments M„are cou-
pled to g, (S) through Eqs. (22), it will be possible
to use the information contained in only a few of
the lowest moments together with a suitable de-
coupling procedure to describe a variety of ex-
perimentally observed line shapes.

In the same manner C„=([[1„X,]„,I ]).
It is clear from Eqs. (19) that the Green's func-

tion G, (Q i+@) and hence the line shape, is deter
mined by the values of the constants C„=([[t„
X,]„,t ]) . Examination of the thermal-equilibrium
averages determining the values of the parameters
C„ in the dipolar case (i.e. , R, =R, ) shows" that
they are proportional to the central moments of
the line shape. This can also be shown to hold
in the paramagnetic systems (i.e. , X, =R~) pro-
vided y Hp»A. Since this condition is satisfied
for the paramagnetic systems considered here,
one has in both the dipolar and paramagnetic sys-
tems

(20)

where b is a proportionality constant and M„are
central moments of the line shape given by'

M„= Tr([R,[R,[X,. . .[X„t„]]].. . ] t„)/Tr(t„').

(21)

In the paramagnetic systems MnF„RbMnF„and
KMnF„ the NMR central moments of the "F line
shapes have been calculated' keeping only the
leading terms in Eq. (21). Since the exchange in-
teraction J is much larger than the hyperfine in-
teractionA, terms in the nth moment of higher
order in A. than''J" ' were neglected.

For the systems of interest C„=0 for n odd.
Defining renormalized Green's functions g„by

g„=i (2w/b)G„(n odd),

g„= (2w/b) G„(n even),

V2 V2 ~ ~ ~ V2-I 2n- r 2n-3 I
2n V2 V2 ~ ~ ~ 2 I 0 I P

2n-2 2n-4 ' '
Vp

v' v' .v'

2n-1 2n-3 I

(23)

with

~, '=T, '=(M )'"= ~v, ~.

The parameters v„ in Eq. (23) which are assumed
to be nonzero' are functions of the moments of the
form"

~&~ =Dc ~Dc+i/Di ~

where D, is the following determinant:

1 0

0 M2

M2 0

0

M llf,

0

M4 ~ ~ ~ M, ,2

0 ~ ~ ~
2+3

M6 ~ ~ ~ M~~4

(25)

D. Decoupling

We assert that in real many-body systems, it is
possible to construct from the sequence of mo-
ments (M„] subsequences (v„] that converge to
a finite limit. This statement forms the basis of
the proposed decoupling procedure. It will be-
come apparent that for the systems considered
here, the convergence of these subsequences is
fast enough to yield good approximants from the
knowledge of only a few moments.

The quantities (r„] are introduced in the follow-
ing manner':

Eqs. (19) take the form

su~(s) = 1 —a'~(s)

sa, (s) = g.(s),

sg, (s) =M, -g, (s),

M~ M~+, M~+2 . M2~

with&, =0 for odd values of j.
We seek a transformation of the set of Green's

functions (g„(s)] appearing in Eqs. (22) into a set
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of modified Green's functions {I„(S)j. The desired
transformation should yield equations of motion
for these modified Green's functions containing
only the parameters {v„j instead of the usual mo-
ments appearing in Eqs. (22).

It is found by simple substitution that with the
parameters {r„j defined by Eqs. (23}-(25) the
equations of motion can be written in the following
symmetrical form':

SI,(S) = 1 —r, 'I, (S),

SI,(S) = ~ [I,(S) —I,(S)],

7
Q'"'=s...~,(s)

Iteration of Eq. (29) for n=1, 2, 3 . and sub-
stitution into Eq. (30) yields the following ex-
pression for the desired Green's function

Sv', +

S73+. . .

(30)

SI2(S) = T2 '[I,(S) —I~(s)],

SI„(S)= r„'[I„,(s) —I„„(S)], (26)

I,„+,(S) =g a2p+', "(7,T, v,„)g»+,(S),

where the modified Green's functions {I„(s)jare
related to the original set {g„(s)jby a linear trans-
formation of the following type:

ln order to produce a decoupling in Eq. (31) the
basic assumption to be made is that the two se-
quences fr,„j and (w,„„jdefined by Eqs. (23)
tend to definite limits. These two limits need
not be coincident. '

In practice only a few parameters 7Q 7, ~ ~ ~ Tp

are known exactly in real systems. In accordance
with our basic assumption, approximants to the
line shape can be constructed by setting

P-1 &+1 &+3 &+5 ' ' limit ~

P TO+2 0+4 P+ 6

I,„(S)= Q a,""'(7,7., ~ ~ ~,„,)g, (S),

n=0, 1, 2, 3.. . .

(27) The continued-fraction expansion of I,(S) [Eq. (31)]
then yields for the Pth-order approximant to the
desired Green's function the following expression:

Since we are only interested in the zeroth-order
Green's function, the exact form of the coefficients
a ', ' for l w0 is not needed. These coeff icients can
be easily obtained, however, from Eqs. (23}-(26).
For the zeroth-order Green's function one as-
sumes aQ'" =1, yielding

g,(s) =I,(s}.
This allows us to write the following expression
for the line shape:

I (P)(s)—

where

STQ +

S7, +

TQ

Srp 2+K(S) '

g "(Q) =lim —,K 1m[i yI, (e —i Q)], (28)

j.
=s „+g(s) '

for n =0, Eq. (26) gives

(29)

where Q =co —yHQ.
A formal solution for I,(e —i Q) appearing in

Eq. (28) can be obtained from Eqs. (26) in the form
of a continued-fraction expansion. " This is most
easily accomplished by defining the ratio

I„(s)jI„,(s) = g, (s).
Substitution of the ratio X„,(S) into Eq. (26) yields
for n~1

K(s) =
1

S7p +K(S) (34)

Thus K(S) in Eq. (34) satisfies a quadratic equa-
tion whose two roots are

( )
STp (S7p) Tp

2 4 (35)

The two roots of K(S) cause only a trivial ambiguity
in the sign of Xp (Q) calculated from Eqs. (28),
(33), and (35). Approximants to the line shape
Ap(Q) = 2yXp' (Q)/b corresponding to various values
of P were calculated and are listed in Appendix A.
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FIG. 1. FID signals in CaF2. The solid lines repre-
sent the fourth-order approximant G( (t) to the spin
autocorrelation function obtained by a Fourier transfor-
mation of A4(Q) listed in Appendix A. The parameters
7'& through 74 used in the computation are listed in Table
I. The solid circles are the experimental ~BF FID sig-
nals in CaF2 at 4.2 K for three orientations of the crystal
with respect to the static field Ho: (a) Hall (1001, (b)
Holi(»», (c) Holi&&jo).

III. DISCUSSION

The validity of the assumptions made in the cal-
culation of our approximants was first tested by
comparing with the experimental FID signals in
CaF, .

Figure 1 shows a plot of the Fourier transform
( '~'(f) of the approximant A, (Q) listed in Appendix
A together with the experimental FID signals"

for three orientations of a CaF, crystal with re-
spect to the magnetic field H, . The parameters
7, through T4 used in the computation of A~(Q) are
listed in Table I.

The theoretical values of (M, )' ' and (M, )'
were obtained from Ref. 18 and the numerical
values of (M, )'~' and (M,)'" were computed from
Ref. 10. Since no information was available about
the accuracy of the last significant figure in the

TABLE I. Parameters for F line shape in CaF2.

Direction of
Hp

n

best fit
(@sec)

(~ )1/2n ~G)

Best fit Experimental Theoretical

[100]

f11o]

11.03
9.82
7.9
7.9

26.62
19.32
17.8
15.1

17.92
14.39
13.95
12.4

3.603
4.349
4.892
5.338

1.493
1.854
2.132
2.368

2.218
2.715
3.070
3.351

3.614 + 0.036
4.352 + 0.046
4.882+ 0.055
5.326 + 0.068

1.508 + 0.019
1.865 + 0.025
2.134+ 0.028
2.367+ 0.033

2.191+ 0.029
2.679 + 0.039
3.026+ 0.052
3.304 + 0.068

3.603 b

4 349b
85c

537

1.493 '
1.854 b

2 11c
2.36

2.218'
2.715 b

3.07
42 c

From Ref. 11.
From Ref. 18.' Calculated from Ref. 10.
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computed values of (M,)"' and (M, )'~', it was
decided to incorporate into our approximants
those values within the uncertainty of the experi-
mental moments that yielded the best fit. The
values of (M ) ~ (M )~~ (M )~~ and (M )~~P

adopted, the experimental values and the theo-
retical values are also listed in Table I for CaF, .

FIG. 2. ieF line shape in MnF2. The solid line repre-
sents the approximant A3(Q) listed in Appendix A. The
parameters 7i through v3 used in the computation are
listed in Table II. The solid circles represent the ex-
perimental SF line shape in MnF2 extrapolated to infinite
temperature with the static field Ho parallel to the c
axis of the crystal.

It appears from Fig. 1 and the values listed in
Table I that the agreement between the fourth-
order approximant and the experimental FID sig-
nals in CaF, is very good for the three orientations
of the crystal with respect to the magnetic field
H„.

Figure 2 shows a similar test using the ex-
change-narrowed "F NMR line shape of MnF, .
A Lorentzian profile representing the experi. -
mentally observed" line shape and linewidth in
Mn "F, with the external magnetic field along the
c crystal axis of this tetragonal crystal is shown.
The experimental data correspond to the para-
magnetic phase extrapolated to infinite tempera-
ture.

Also shown in Fig. 2 is the approximant A, (Q)
appropriate to the MnF, case. The parameters
v, through 7, were computed from the theoretical
values' of M2, M~, and M6 and are listed in Table
II for MnF„RbMnF„and KMnF, . Also listed in
Table II are the half-widths at half-height cal-
culated from A, (Q) and the experimental values"
for the three systems. For RbMnF3 and KMnF3
the values listed in Table II correspond to the
more intense component of the doublet observed
with the magnetic field along a [001] axis of these
cubic crystals.

With the values listed in Table II for the param-
eters r„, the calculated profiles using A, (Q) are
truncated Lorentzian-like functions with half-
widths at half-height 5,„having the following
simple form:

TABLE II. Parameters for ~F line shape in exchange-narrowed paramagnetic crystals.

Type of
crystal

a
7n

(sec)

Theoretical "
(~ )i/2n

(G)

Experimental c

(&cxpt) and
calculated (g,h)

line widths
(G)

MnF2
Hpllc

RbMnF3
H p [[ [l.OO]

KMnF3
H p II &zoo]

(7.93+0.08) x10 io

(1.53 +0.08) x10 ie

(2.73 +0.4) x10

(8.9 $0.3) x10 io

(0.49+0.2) x10 i6

3x10

(8.57+0.1)x10 io

(0.40 +0.05) x10
(3.P 7 + 0.8) x 1P

(5.01+0.05) x104
(2.39 + 0.01)x 108

(1.09 + 0.01) x 10'

(4.48 + 0.1) x 104

(2.92+ 0.1) x 106

(1.47+ 0.09) x10~

(4.63 +0.07) x10
(3.14 +0.03) x 106

(1.60 + 0.01) x 107

6expt 37 2 + 1
o,h =37.5+ 1

&expt =19 7 + 1
~th-17

6e~pt 19 5 + 1
&th=16.7 +3

' Calculated from ()tl&g p" (theoretical) aud Eqs. (23)-(23) of text
b From Ref. 8,
c From Ref. 12.
d From &3(Q) listed in Appendix A of text Ipth pg2)i/2(y2/ y3)i/2]' Half-widths at half-height.
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From the results shown in Fig. 2 and Table G it
appears that the agreement between the experi-
mental line shapes and the profiles calculated
from the approximant A, (Q) is excellent for the
paramagnetic systems considered.

Thus, the simple assumption about the con-
vergence of the parameters (T„} appears to be
justified. Since the amount of computational work
involved in obtaining numerical resu1. ts from the
approximants listed in Appendix A is sma]. l, the
results are highly rewarding. Moreover, be-
cause of the general nature of the Green's-func-
tion approach and the possibility of decoupling the
equations of motion in such a simple manner, it
should be relatively simple to test our basic as-
sumption for types of spin correlation functions
different from the ones of.interest in the NMR
line- shape problem.
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APPENDIX A APPROX IMANTS Ap (Q )

The approximants to the line shape obtained by
an application of Eqs. (33)-(35) have the follow-
ing general form:

for IQI-2/(T, r, ,)'",
(A1)

A, (Q) =0 for IQI& 2/( T~r~, )'",
with P =1, 2, 3, . . .

where the denominators &~ (Q) are polynomials
containing only even powers of Q. The first four
polynomials have been calculated and are listed
below:

~,(Q) =1,

6,(Q) = 1+Q'(r', /r, —r', ),
(Q) =1 +Q (T r+T T'/T —2T ) +Q ('r —T T ),

6~(Q) =1 +Q (2T)T~T3/T4+T~ra/T4

+ 'P)T3/T~ —T)T3 —T~r~ —2T))

+Q'(T;+2T', T,r, + T', r, —2r', T,r, /T,

—2T )T3T~/T4) + Q (T~T3T~/T4 —T)T~T~) .
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