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Field-theoretic techniques and critical dynamics. II. Ginzburg-Landau stochastic models with

energy conservation
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The critical dynamics of a stochastic Ginzburg-Landau model of an ¹omponent order parameter coupled to
a conserved-energy-density field is studied with the help of field-theoretical techniques introduced in previous
work. Our results essentially confirm and refine upon those of Halperin, Hohenberg, and Ma. Scaling laws are
derived (whenever they hold). A better knowledge of the domain structure of the (N, d) plane and the
corresponding critical exponents is obtained, in particular one additional region is shown to be present.
Stability criteria lead to a characterization of the leading corrections to dynamical scaling by extra exponents
which, except for one of them, are related to known static exponents.

INTRODUCTION
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at (la)
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Here the component index + takes values from 1 to
—,'¹'The functional X, which gives the weight of
the equilibrium distribution (proportional to 8 ),
is given by

The dynamical behavior of Landau-Ginzburg
stochastic systems without conservation law in
the critical region has now been studied by sever-
al methods. The field-theoretical approach has
permitted the confirmation of the results of Hal-
perin, Hohenberg, and Ma~ (HHM), the derivation
to all orders in c of dynamical scaling laws, and
the carrying to order E the computation of the ex-
ponent z. Without entering into the discussion of
a purely microscopic approach to systems pos-
sessing slow modes coupled to the order param-
eter, we now proceed and discuss a Ginzburg-
Landau stochastic model where a (conserved) ener-
gy variable E(xf) and a complex order parameter
(II)(xt) are coupled and, as in HHM, satisfy the semi-
phenomenological generalized Langevin equations

The static correlation functions of the order
parameter P are governed by a reduced equilibrium
distribution obtained by integrating e over the
energy field. The result is again a (&f&*Q) model
where go is replaced by

2
go =Co 3&o

Thus the static properties of the order parameter
are the usual properties of an isotropic N-vector
model. '

The dynamics is, of course, dependent upon the
coupling po. The treatment of the dynamical prop-
erties in the critical region follows the scheme al-
ready used in Ref. 2: (a) construction of a La-
grangian which generates correlation functions
equal to those deduced from Eqs. (1) and (2), and

averaging over the sources; (b) characterization of
the primitive divergences and renormalization of
the model from which follows a differential re-
normalization-group (RG) equation satisfied by the
dynamical correlation functions; (c) calculation
of the coefficients of the RG equation, search for
fixed points, and calculation of their domain of
stability; and (d) when stable fixed points are iden-
tified, scaling is deduced, the critical exponents
are computed, and corrections to scaling are char-
acterized.

&((II), Q*, E) = d x ('))' + ro) Q(x) (t)*(x)+—0

&& [&(x) 4*(x)l'+ ~o[4(x) (t'*(x)]E(x)

,'E'(x)+x, E(x)) . -(2)
The random external sources g and g are governed
by Gaussian statistical distributions with zero mean
values and mean-square values determined by the
fluctuation-dissipation theorem. The physical
relevance of such a model is extensively discussed
by HHM.

II. SUMMARY OF RESULTS

For clarity we postpone all technical details
and calculations to the subsequent sections and we
first summarize the results of this work. We lim-
it ourselves to the only nontrivial case (from the
point of view of the renormalization group), i.e. ,
a conserved energy field coupled to a nonconserved
order parameter [case (C) of HHM]. The correla-
tion functions of the order parameter and of the
energy field depend upon the variables u, n, and
~, which are the renormalized equivalents of go,
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ii

c,=4-d

N3X' ~
2

y~, and Ao/I'o. The search for stable fixed points
in the space of the parameters u, v, and ~ leads
to several solutions, which determine several re-
gions in the (N, d) plane (Fig. 1). The first two

variables u and v are fixed points determined pure-
ly by the statics, namely,

(a)

~*=6e/(N+ 8)+ O(~')+ "~, (4}

FIG. 1. Topology of the (N, d) plane near d=4. The
scale is distorted to exhibit the four regions. Regions I~
and Ib are separated by the curve & =0. Equations for
the lines N~(&), N2(&) are given in the text by Eqs. (8),
(9), and (11).

as for the usual Wilson static scaling. It is al-
ways stable. The corresponding static critical
exponent of the order parameter P is the usual

index g.

(b)

0 stable for n& 0 (Region I,),

+O(E~) stable for c. & 0 (Regions Iq, II, and III}.2& 4—
N(N+ 8)

(5a)

(5 )

The corresponding static critical exponent for the
energy field E is g~,

with

T T ck~0

0 for +&0,
gg

—n/v for o&0 .
(7a)

(7b)

Finally, three possibilities are left for the fixed
point ~*.

(a) &*=+~ (Regions I„ lq}, which will be shown

to be stable for N&N, with

N& =4 —e(4+4c)+O(a ), (8)

N2& N& Ng,

N2 =4 —C(4+ 2c) .

It is beyond the scope of the E expansion to assert
whether the two domains constituting the region II
are connected or not.

(c) &*=0 (Region III), which governs the be-
havior in the complement of the previous regions.
Depending upon the relevant values of v*and ~*
the N-d plane is split into four regions with differ-
ent critical dynamics.

Region I,: @*=0, &*=~. Its boundary is G. =0,

in which we have kept the notation c for the constant

c=—6 ln~+ —1.

(b) &* finite (Region II), whose stability domain
consists of two pieces,

N& N, =2+ Ca~Inc~ (10a)

i.e. , N=4 —4e+ O(E ). Since @*=0, the energy
field decouples in the critical regime and we are
led to the same value of s as in Ref. 2,

2 (N+ 8)' 3 )' 2(N+ 8)'

6(SN+ 14)
N+8

(12)

(u(k)-k'(I+A, 'k "+Aak' ' "+A,'k") . (14)

Region II: v*WO, ~*40. In this region we find

the result which coincides with the conventional
scaling theory

(15)

Corrections to scaling now have the form of the
multiplication of the main power by a new poly-

However, the structure of corrections to scaling
is sensitive to the coupling to the energy field; for
instance, the relaxation rate co(k) of the order
parameter behaves as

~(k) -k'(I +A, k' '-«" +A, k~) (»)
in which the A&'s are nonuniversal constants. The
same correcting powers would be present every-
where, in particular in the energy relaxation rate
X~(k).

Region I~: v*40, &*=~. It is bounded by the

two lines (o. =0, N =N, ). The value of the critical
exponent z coincides with the decoupled value of re-
gion I, although the fixed point is different. How-

ever this difference reflects itself in the leading
corrections to scaling which take the form
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nomial

(u(k) =k'(1+A,"k "+A"k"r+A, k"),
of a nonuniformity in the two limits ~ 0 and &-0.
Up to second order the result is a power law modi-
fied by square of logarithms

in which ~~ is a new dynamical correction expo-
nent. Its e expansion is not. the same in the two

subdomains, which constitute the region II.
(a) For N& N, =2+ Ce l in&I, we have

(()(k) =k'ln k,

&=2+a +O(e ), 2& N&4,
2(4- N)

(19)

(()r = o E (2 —N ) [(4 —N)/(N+ 8)] + O(c ) .

(b) For N(& N& No, we have

e (No —N) (N Nq)—
12 4- N-4~

(17)

(18)

and a breakdown of scaling without guarantee though
that it persists to higher orders.

Finally, the role of temperature (neighborhood
of T,) is discussed, and the expected scaling re-
sult follows.

Finally the relaxation rate of the energy mode is
governed by the same exponent z [Eqs. (12), (14),
and (15)].

gegion III: v*10, ~*=0. In that region, the
relevant contributions to the critical dynamics
cannot be obtained by letting ~ go to zero in the
corresponding contributions of region II, because

III. LAGRANGIAN VERSION AND RENORMALIZATION
OF THE THEORY

The construction of a I agrangian equivalent to
the Langevin-Ginzburg-Landau equations (1) and

(2) has been discussed in detail in Ref. 5. The
result is a Lagrangian 2 given by,

& —i~ —Z(d—)',((,(,X]=
]

+ror)o' (,.(,. oA+qo r)) X,.z, .oxozo, o
Q 0

+Q
J

d"xyoE„,(x) P„(x)P+ (x)+ It [P„(x).P+ (x)][/„(x)~ P„*,„„,o(x)], (2O)

in which the v's are the discrete imaginary Bose
frequencies 2imP, and the wave vectors k are
bounded by a cutoff A.

The Green's functions generated by averaging
over the weight e~are shown to be order-by-order
identical to the linear response generated by the
stochastic Eqs. (1) and (2) provided one takes a
"classical limit" ~ and the continuation from dis-
crete to continuous values of the external fre-
quency. The rules to evaluate the diagrams follow
those of Hefs. 2 and 5. According to the general
scheme, the problem now is to study the large A
limit of the theory (which characterizes the criti-
cal region). Thus we have to study the primitive
divergences of the theory and find the counterterms
which remove them. We begin with a discussion
of the static properties.

A. Renormalization of the static correlation functions

F~ ~(k; u, v, g) = ZoI"~~(k; g(), y(), A),

Iss(k' u v /l) = ZsI~ss(kpgo~ yo A),

go = p (uZu/Z e)i yo = &'(vZ u/Z e Zs) .

(22a)

(22b)

(28)

The independence with respect to p. of the bare
theory yields the differential HG equations

+ (p' )'"Z.(e( ) 4'*( ))E( )

+ Zero, &f)(x) Q+(x)+ Z~~ so,E(x), (21)

in which p, is an arbitrary parameter used to fix
the normalizations of the field and the renormalized
couplings. The parameter so, is determined by the
requirement that the expectation value of the re-
normalized field (E) vanishes. The renormaliza-
tion constant Z may then be computed in powers of
u and v (u=u —3v) and the (inverse) correlation
functions of P and E are related to the bare ones
by,

The model is then equivalent to the Wilson theory
with the Hamiltonian given by Eq. (2), whose re-
normalization is well known. At T, the Hamilto-
nian with its counter terms reads in terms of the
renormalized fields [multiplicatively related to
the bare ones of Eq. (2)],

)o((, (",o] = fd'xX, oo((x)x("(x)+X Eo(x)

+ V'(u/8]) Z (0 (x) 4*(x))'

(
8 - 8 8

p —+ W~(u, v) —+ Wo(u, v) —I'~~

= q~(u, v)1 ~ ~(k; u, v, p),

(
8 8 8

p. —+ Wi(u, v) =+ Wo(u, v) —I'sz

= '(]s(u v) I ss(k' u v p)

in which

(24)
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8
TV =p, — u

0
(25a)

The fixed-point value of q is j*=l/v-2. The
E-field exponent g~ is shown in Appendix A to take
the form

8
Sz ——@,

—
8p. p

8
q~(u, v) = p, — InZ~

0

8
qa(u, v) = p, — ln Za,

8p,

(25b)

(28)

W (u, v) = W(u),

in which W(u) is the function calculated for the
statics of Hamiltonian (2) with yp =0,

(27)

W(u) = —au+~ (N+8) u (1+pe) —)p(SN+14) u + ~ ~ ~

(28)
(b)

(29)W, (u, v) = —v(q~(u, v) +2@(u) + c),
in which q(u) is the static contribution associated
with (t)(t)+ for the same Hamiltonian

')j(u) =-~() (N+2) u(1+pe)+g(N+2)u + ~ ~ ~ . (30)

where p(8/ep, )lp stands, in general, for a deriva-
tive taken with fixed values of the bare parameters
(S'p, &p, A,

Simplifications follow from the fact that the ener-
gy field for the statics is essentially like PQ*,
apart from irreducibility and renormalization
questions treated in Appendix A. The resulting
properties are (a)

(31)gs(u, v) = —vB(u),

where the function B(u) already introduced in Ref.
8 is related to the (P, (Ie)P) correlation function

B(u) =-,'N(1+ —,'a)+ O(u, c ) . (32)

Finally, the p-field exponent q~, whose fixed point
value is the usual g, is

q~(u, v) =q(u) $(N+2) u'(I+~a —$(N+8) u)+ ~ ~ ~ .
(33)

B. Renormalization of the dynamical correlation functions

Returning to the bare Lagrangian (20), we apply
the rules, 7 which give the perturbation expansion
once all the internal summations over discrete fre-
quencies are performed. The counting of the super-
ficial degree of divergence of the diagrams is the
same as for the statics, the external frequency ~
being merely an external parameter. The degree
of divergence of the purely dynamical correlation
function (obtained by subtracting its static p) =0
part) is decreased by two since (d has the dimen-
sion of the square of a wave vector. Therefore
the only primitive divergence of the dynamical part
is a logarithmic divergence (for d=4) of the two-
point function of the order parameter and one only
needs a single (multiplicative) renormaiization.
The Lagrangian leading to a finite renormalized
perturbation theory writes, at T= T„as in Ref. 2,

FoZr 0 I'

+ LJz' (
' x)'"xEv. . ( )v( v~x( )("x()() vx.(v.x (xx)( ('v'(x))(('. (x). (".„.v.v(x)) vt',

(34)
—&&[(t), 0*,&j = Q —

~ Z'(Zr —I)+(Z~ —1)&'+rg, Z~ p,„p~„+Q(Z~ —1)E,„E, „
0 r Ag Ql

vg Jd'x(V'v)' '(X„—V)X„(x)(„(x).('," (x)
40 ~

(35)

where we have exhibited the counter terms &2 and
used the renormalized parameter

& = ApZo/I'pZr Za .

The renormalizability expresses the fact that the
dynamical correlation functions remain finite
when the cutoff A is sent to infinity (in d& 4) pro-
vided they are written in terms of u, v, ~, and the
renormalized external frequency

I

The function Zr is then defined by an extra normal-
ization condition, which is conveniently taken as

I"~~(-il, k =0; u, v, X; p) =1.8

(38)
gath this choice Zr is real and I'» is a real func-
tion of —ig, related to the bare correlation func-
tion by

I'„(-i(u/I'„u; g„y„Ap/I"„. A}
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=z~ r»(-iK; k; u, v, &; p) .
The associated RG equation is thus

8 8 8 8 8
p, —+W —+W —+W ——ga q~ 3 8& e r

(39) d' Zr
q (u v A.)=p — ln—

Z

yielding with the definition (36),

W, (u, v, X) = —X[qr(u, v, X) + qs(u, v)] . (43)

x r~~( ii;-k; u, v, &; p, ) =0, (40)

Ws(u, v, &) = p-a
QP, 0

(41)

where W~ and W2 are given by Eqs. (27)-(29) and

The dynamic HG(39) equation will be completely
determined by the new function qr (u, v, &), that is
by the knowledge of Zr given by the normalization
condition (38). The result of the computation de-
tailed in Appendix C is

7)r(u, v, A.) = 1 ——+—ln(1+&) +u c —
4 e+ u

-& N+2, N+8

+uv 1 (1+ Sin, —In(1+ 5.))+ I 3 (1 —A. + 3 ln33 —ln(l + &))
N+2 v~N

6 I+X +

+ 3 ~
1 —A. - A. +3(1+3.)1nss —(2+&) 1n(2A.) —(A+2) ln 1+— +2(X+2) ln(1+3.)

~

v' A.

2(1+~)' ~
2

(44)

In Eq. (44) we have kept the terms of order 7P and
not v, v u, etc. . . because they will play a role
in the vicinity of N=4, for which we will explore
values of v of order u .

C. Consequences of the dynamical RG equation

The dynamical behavior, the role of the fixed
points, their stability, and the corrections to scal-
ing are best displayed by direct integration of the
partial differential equation (39). The method of
characteristics exhibits the behavior under dila-
tion of the solutions. Indeed from Eq. (39) we ob-
tain under an arbitrary rescaling p, - pp, ,

xIg@ —gp py —
y Qp~ &pq ~py JLL . 47

p

At this stage p is still arbitrary and we choose

(48)

In the critical region where k«p, we are then led
to study the differential system (46) in the limit
p-0. When there is a stable fixed point u*, v*,
and &+ (the value &*=~ may be called by exten-
sion a fixed point) Eq. (47) then implies

r~~(- i&; k) k "4(-ir/k') )

with

,

"' dp'r„( ((; a; w, v, ~; g&=exp (- (, n. (M(d(()
p

q = q~(u+),

z=2+qr(u+, v+, X*).

(50)

(51)
x r„(-C(p); &; u(p), v(p), ~(p); Pp),

in Which

(45)
We now solve suc" essively Eqs. (46a)—(46d).

1. Coupling constant u(p)

p
—= g, (u(p))
dp

d'U
p —=W.((p), (p))

dp

p —= %(u(p), v(p), ~(p))
QA,

u(1) =u, (46a)

v(l) = v, (46b)

A(1)= ((. , (46c)

We know from the standard theory that u(p) ap-
proaches, when p goes to zero, its fixed-point
value' u*

6 3(SN+ 14) 1

P d
= —K(p) Vir(u(p), v(P), A(p)) g(l) = f (46d).dg

Canonical dimensional analysis used together with
Eq. (45) then gives

as'

u (p) = u++ Cp'",
0

(53)

r ~ (-if;k; u, v, X; p) = p ex'p — g~(p )
dp

with

~ = W', (u*). (54)
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2. Coupling constant v(p)

Likewise Eq. (46c) yields that v(p) approaches
v*, a solution of

whether W3(X), the right-hand side (RHS) of Eq.
(46) is negative or zero.

Region I,: in which the RHS of Eq. (45c) isnega-
tive, i.e. ,

W, (u*, v+) =0,

8 5'~' (u+, v+)&0.
Bv

(55)
qr(u+, v+, ~)+ q~(u+, v+) &0,

or equivalently

If we return to Eqs. (29)-(31) we find two possible
fixed points: (a)

(56)

z —2 —o./v&0.

A(p) is driven to infinity as

y(p) Cp-(g-2-u/ v)

p 0

(62)

(63)

stable in the region I, of the (N, d) plane, that is in
the region ~& 0.

Region II: the right-hand side of Eq. (46c) van-
ishes for a finite value ~* of A., which is the solu-
tion of the equation

(b)
qr (u+, v +, X+) = n/ v . (64)

(57} The stability of this fixed point requires that the
(positive) &* is such that

stable in the complementary regions (I, II, and
III) of positive n. A direct consequence of Eq. (29)
and v~10 is

~r ———X+ (u+ v+ X+) & 0. (65)

q~(u+, v+) = —n/v. (58)
This stability requirement is fulfilled: (a) if N& 2,
for which we have

Let us note in passing that Eqs. (29)-(31) for
S~ yield a simple structure for the k-dependent
energy static correlation function at T= T,. In-
deed, for n& 0, vf =0, thus pe=0, and BWz/Bv
= —n/v, i.e. , we have

I' =k (1+Ak ' ')

v(p) = v*+ C, p" + C, p' '/'~ . (59)

3. Parameter X(p)

We now have to distinguish between I, (v*=0)
and the rest of the (N, d) plane: (a) If v+ =0,

W~(u+, 0, &) = —A.qr(u+), (60)

in which 2+ qr(u*) is the dynamical exponent for
the system without conservation law calculated to
third order in Ref. 2 and given by Eq. (12).

It follows from Eq. (59) and of the positivity of
qr(u} that X(p) goes to infinity as

&(p)=Cp""" ' (61)

(b) If v*= v2* [Eq. (57)] we still have to distin-
guish between several situations according to

where k is the leading power and k "arises
from the correction power to scaling. Similarly
for c(&0, v~*00, thus 7}g=—o.'/v, and BW~/Bv
=+ o.'/v, i.e. , we have instead

= k "(1+A'k' ")

where now in turn, the constant term arises from
corrections to scaling.

The small-p behavior of v(p) is thus given by

&ur =-, e(2 —N) [(4 —N)/(N+ 8)] + O(z~), (66)

which is indeed positive. (b) If N-2 is of order
~r is again positive but of order e In(1/e),

(c) If N=4 —e(4+P), —,'c& P& —,'c that is N~& N& N„
we have

(ur ——
+(2 E [(Np —N) (N —N()/(4 —4 6 —N)] + O(E )

=(e'/12P)(f -4c)(2c —p)+O(~'). (67)

Region II has, therefore, the topology indicated on
Fig. 2. Integration of Eq. (46c) thus leads to

X(p) —X* = C(p" +Czp "+Cap"".
u-0

(68)

Region III: the right-hand side of Eq. (46c) again
vanishes but for the value ~=0. One should note
from Eqs. (42) and (43) that when & vanishes, W3

vanishes also but contains a term proportional to
~ln~. Therefore ~=0 is not a stable fixed point in
the usual sense. Actually there is a nonuniformity
in performing the limits ~ and e going to zero.
Equation (43) has been derived when it is assumed
that e goes to zero first for fixed &. In fact, if &

is fixed at the value zero, a separate study is
needed. New divergences and hence new counter-
terms are present; the dynamical renormalization
constant Z& acquires a logarithmic dependence in
the frequency g. The problem is, of course, that
we should use the RG equation (46c} starting from
some generic value &(I). Then integration for p
small leads to smaller and smaller values of ~,
where the ~, c nonuniformity begins to be felt.

Indeed, to order v, we have in Eq. (43) for r/r
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m=4-d
we obtain through the p, (d/du, ) differentiation (with
fixed bare parameters) the complete RG equation

a e a a . a
p. —+ 8"~ —+ lV&

—+ W3
——q~ - g t&—

aLL(, 'eu 'ev 'ex ' ' at,

0.

FIG. 2. Region II is near d =4. The boundary near
%=2 is tangent (in fact all the derivatives vanish).
Whether II' and II are connected is beyond the reach of
the ~ expansion.

(74)

p —' = —j(u) t, (p), (75)

The discussion of the fixed points is the same as
before. The variables t, and t& evolve under dila-
tion as

a term —v In& if & is nonzero, whereas if & is
fixed at zero, the renormalization of the theory
to the same order yields the singular term
—2v ln(-i g/p2) Int.egration of the RG equations
(46c) and (46d) 'hus yields a relaxation rate of the
order parameter

p d
' = 2(vE(~, ~)+ ~) t2(p)-

QP

Consequently from Eq. (75) we obtain

4{p)
p 0

and from Eq. (76),

(77)

~(k) - k'(1 + A (ink) ),

with

(69) tp~-j~' n &0
t {p) t pl/2l+cE(Q, 'c)3

v-0 tp'i n(0 (78)

D.

Away
iltonian
critical
iltonian
terms

Renormalization group equations for T near T,

from T, two modifications appear in Ham-
(2): xo and so are no longer fixed to their
values xo„so,. In the renormalized Ham-
(21), we thus have the following extra

5Ã(x) = t,Z Z Q(x) @+(x)+ u
't t Z't E(x), (71)

where the two parameters

ti =(~o-&o.) Z ',

t2 = (so soc) ZE u y

1/2 6 jS (72)

are proportional to t, which is a measure of
(T —T,). Z is the renormalization constant neces-
sary to renormalize the Q ~ Q+ insertions (Appen-
dix A).

From the relation between bare and renormalized
correlation functions

I'cc(&o —&oc, So —Soc)
B

C ~CC(('Vo +Oc) Z
y (So —Soc) PZE )y (,73)

z —2 =2&(4 —N)/N(N+8)+0(e ), 2& N& 4. (70)

Whether Eq. (69) should be interpreted as a sum of
powers whose combination generates the log-
squared terms or rather —and more likely-as a
breakdown of scaling is beyond our present under-

standingg.

Note, finally, that the exponent z is continuous
across the boundaries of the various regions and
that z, —2&0& o/v, z» —2& o./v, z„—2 = n/v, and

[if Eqs. (69) and (70) are meaningful] z«, —2
& o/v.

Integration of Eq. (74) replaces Eq. (47) by the ex-
pected scaling equation (when there is a stable
fixed point)

r„(-ig; k, t; u, ~, ~; p)

= k "I'qc(—if/k; tk t'; u*, v*, A+; p). (79)

In the case of a negative o.', Eq. (78) leads to a
correction to the main divergence of the correla-
tion length t ", proportional to t "'

IV. CONCLUSION

Our calculation confirms and refines upon the
HHM theory on the following points: (a) It pro-
vides to all orders in e a derivation of the dynami-
cal scaling laws (except for the singular region III).
(b) Region I is split into I, and I, governed by iden-
tical values of the critical exponent z but different
leading corrections to scaling [due to the different
small-p behavior of v(p)/A(p) j. (c) In region I, and

I„z is given up to order c'; in region II the scaling
result z = 2+ n/v is derived to all orders in e, and
(d) stability of the fixed points is characterized and
the association correction-to-scaling exponents are
computed, introducing a new dynamical correction
exponent ~r.

The authors thank Dr. B. Halperin for helping
them to correct an error in Eq. (44).

APPENDIX A: RENORMALIZATION OF THE STATIC
CORRELATION FUNCTIONS

In this section we discuss the renormalization
of the static correlation functions when we choose
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r"'l, , =o, (A 1)

p(2) I ]
gp2 I p2 g2 (A2)

not to integrate over the energy field (theory I).
Clearly the theory has connections with the theory
II in which the E field is integrated out; the E field
of theory I is, in a sense which will be made pre-
cise below, similar to the Q field of theory II.
However, the HG equations that we are dealing with
hold for the one-particle irreducible (1-PI) ver-
tices both on the &f& and the E lines, and this creates
a few differences. For short we indicate the num-
ber of P fields by a superscript.

The primitive divergences are: (a) a quadratic
divergence of the two-P inverse correlation func-
tion 1 ' ', leading to mass and field-strength re-
normalization; (b) a logarithmic divergence of the
four-P vertex I'4', leading to the renormalization
of the coupling constant g~; (c) a logarithmic di-
vergence of the E-PP vertex rB+& and the associate
renormalization of the coupling constant yo; (d) a
logarithmic divergence of the two-E inverse cor-
relation function 1"~~, and the corresponding E-field
strength renormalization; and (e) a logarithmic di-
vergence of the (lP pQ) 1-PI function and the cor-
responding &jP renormalization.

Let us first note that there is in the Hamiltonian
a source linear in the E field which is such that at
the critical point the expectation value of E van-
ishes. Finally, the corresponding renormaliza-
tion conditions, and the relations between the bare
and renormalized quantities are

I'2( 2 2(/), 2 2=1,(2) I

r(n& Z(+) Zll/2 r(ll&B
$2 y2

r, a ,2 l,a,a = o,

I 2 2 =Z I' a 2+ p 'A(u).

(A 17)

(A18)

(A19)

(A 20)

Expressing that the (bare) correlations of the field
Q in both theories are the same we obtain

Z, (u, v) =Z(u). (A 21)

The same result holds for the Q renormalization

zoo(u, v) = Z(u). (A22)

Then we write the bare correlation function (EQQ)
with truncated legs on the lP lines alone, that is
(rBBB) (I'B ' ). These diagrams coincide with those
of the 1-PI (p lPQ) diagrams of theory II within a
factor yo,

y r(2& B(rB )
& r(2&B (A23)

If we express this relation in terms of the re-
normalized vertices of theories I and II and choose
the normalization point P, =P, = 4 q = p, , we obtain

Z„(u, v) = ZB (u, v) Z(u) Z(u) . (A 24)

Therefore if we take the logarithmic derivative of
this relation as well as of Eq. (A9) with respect to
jtL, keeping the bare parameters fixed, we obtain

Wa ——v[qB(u, v) + 2&7(u) + ej, (A2s)

in which &l(u) = I/v(u) —2 is given by the usual static
theory II. Similarly the bare correlation func-
tions of two E fields satisfy the relation

I (n) Zn/2 +(n

r , 2=1gg p2 4/3
BIzs=&zIzz~

(4) l

I 0 0 =(1/3)u (4~&&-1)

go = p, '(+Z„/Z o ),

(A3)

(A4)

(As)

(A6)

(A 7)

(r,', )-' =I+ y,'I'...2,

from which we deduce

ZB =1+vA(u),

and thus

&)B(u, v) = —v B(u),

(A 26)

(A27)

(A 28)

rB (Vi P& Pa)la, =a'=&2/4& * =(P v) (A8)
which shows in particular that &7B(u, v) vanishes
with v.

y o
= I/ (vZ /ZB Z )

2 (Vl P&l Pa) l
&la pl ~2/4&&2 &la

= 1,(2)

I (2) =Z 2g I'(»B

(A 9)

(A10)

(A 11)

I oa=o =o

BP
', r 'l,.„.=l,

r (tl & Z ll / 2(+) r (II & B

2 6
I pgpj-(1/3) p. (4&) g-1)

go=@, +Zi/Z

(A 12)

(A13)

(A 14)

(Al 5)

(A 16)

whereas for theory II, which depends only on u
=u-sv, they are

APPENDIX 8: TWO-LOOP CALCULATIONS OF THE
DYNAMICAL RENORMALIZATION GROUP

It has been established in Secs. I-III and Ap-
pendix A that the dynamical properties of the theo-
ry are entirely determined by the static functions
and by one new quantity which is &ir(u, v, X) defined
by Eq. (41). This function is computed from the dy-
namical renormalization constant Z~ whose magni-
tude is fixed by the normalization conditions (37) and
(38). Therefore, we have to compute the dynamical
correlation I'~~ as a function of f and ~, taking into
account the counterterms (35) and fix the value of
Zr by the condition (38). This calculation has been
done up to order va, vu, and ua (the ua term is known
from previous work2). The result is
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lnZr = — ' ' —
2 (1 —&)(u+3v) ln —— 3 2 1+ ———X(X+2)ln-v(1 —~&+ 2@ ln(l+ &)) N+2 -

2 4 Nv c 3& 4&

e 1+& 24m 3 4e 1+&

N+2 uv e 3& 4
6&' (1+X)2 2 2 3 2e (1+X)s

A. ')I

x I X —3e X(1+ X) 1 + —
~

ln ———(X+ 2) ln2X —e 1+— ln 1+—
~

-- (& + 4 & —1) + 2&(l + &) ln(1+ A) ~,
2 j 3 2 2 2)

(B1)

tive [Eq. (36)],

For instance we have

d " d'q (1+ &)

d(-i&) „2 ~ q (1+&)—iK

I ——+-ln(1+X)+ O(e )).g(l+ 1) 2 2
(B2)

Likewise we have

FIG. 3. Diagrams from which (Bl) is derived.

and this yields by the differentiation Eq. (41) the
result (43) for qr. The fact that qr is finite in four
dimensions is a test for the dynamical renormaliz-
ability of the theory. %e list in Fig. 3 the results
for the diagrams from which (Bl) is derived. Dia-
grams D3 D4 and D, stand in fact for a sum of all
possible time orderings allowed by the rules of
Ref. 2, Appendix A. They are evaluated for zero
external wave vector and external frequency &.

The function Z~ is then determined by their deriva-

Dz = —z~(N+ 2) [(u+ 3v) /e] (1 —c) ln f, (B3)

D, =+ [(N+ 2)/12~'] [(u+ 3v) v/(1+ ~)]

x (1 —~ z + e ln(1+ &) + 2e X ln &), (B4)

D4 =+ (N/4e ) [v /(1+ &) ]

x 1+2~+~1+2' ln 1+x -- 1+4' ~—xaln-3&, 4
2 2

(B5)
D, = —[v /2e (1+&)'] (3+4&+2&

—2 e (&+ 2) 1n[&(A + 2)] + ~ e A (1+X) ln f
—z e(3& + 6&+ 5)+ e(2& + 5&+ 5) ln(1+ A))

(86)
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