
PHYSICAL REVIEW B VOLUME 12, NUMBER 1 DECEMBER 1975

Field-theoretic techniques and critical dynamics. I. Ginzburg-Landau stochastic models without
energy conservation
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Renormalization techniques of field theory are used to prove (order by order to all orders) dynamical scaling
laws on a Ginzburg-Landau stochastic model studied by Halperin, Hohenberg, and Ma. The dynamical

exponent is calculated to order e and so is the new exponent ~&, which governs the vanishing of the imaginary

part of the (renormalized) kinetic coefficient, and appears among the corrections to scaling. Difficulties of
previous calculations taking a microscopic approach to the critical dynamics of a Bose system are commented

upon.

I. INTRODUCTION

Wilson's ' theory of static critical phenomena
has been recently reformulated3 using the tech-
niques of field renormalization. This approach,
although less general in scope, has the advantages
that capitalizing upon the known results of field-
renormalization theory, yields simple expressions
for the renormalization-group equations and allows
a simple and complete derivation of all scaling
laws, of the critical exponent expressions and cor-
rections thereof (irrelevant variables of Wilson
and Wegner ). We wish to show here that this ap-
proach can be extended to time-dependent Landau-
Qinzburg stochastic models studied by Halperin,
Hohenberg, and Ma" (HHM) yielding a derivation
of dynamical scaling and an expression for the
dynamical exponents. We exhibit the method by
considering the simplest of the dynamical models
discussed by HHM and others, ' i.e. , a model
which contains no external (energy) conserved
field. More precisely the (complex) order param-
eter y» '(f) satisfies the Landau-Ginzburg time-
dependent equation

aft» (t) = —f 0(i++0)

"squared mass" (or a bare inverse susceptibility)
and the critical region of interest is characterized
by k«A, F «A, A being a cutoff and z the renor-
malized "squared mass. " The space-time corre-
lation function G»(t) of the order parameter is cal-
culated by solving (1) for y&»

' I'0, &], averaging over

g with a Qaussian weight and taking the linear de-
pendence in h,

5
G,(f) = „„()(0',"'(f))

with

(q,& '(f)) =x-' d$qfd(q+]

x exp — 210 dt's~ t g*„ t p~ t

(4)

X= d q d g* exp — 2I'0 dt's„ t g~ t

(5)

The use of standard renormalization techniques
is difficult with the above equations, but it has
been shown" that the system (1)—(3) is strictly
equivalent to a standard Lagrangian system, in its
classical limit, namely, we compute instead

g&n)(~) (p&(M&yg&(M))

where the effective Qinzburg-Landau-Wilson Ham-
iltonian is as usual,

&I.V'~ P*]=Q (&o+ & )0'» '
&(&'»

d q d y* expZg, q q

d p d p* exp 2 p, p*

with

(6)

+&,
' d"x g(x) y*(x)]' . (2) z(p p (=P ( ( b

+o ~)( 'p

q&»
' is the o(th component (o(= l, 2, . . ., n) of the

order parameter of the external field and g~
' of

the Langevin noise source governed by a Qaussian
probability distribution; I'0(1+Qo) is an inverse
complex time scale. ' Finally, xo is a bare

+~'P d'x(q (x) y* (x)')

(y„,(x) y*, „,,„,(x)) . (8)

4945



C. DE DOMINICIS, E ~ BRE ZIN, AND J. ZINN- JUSTIN

Here i stands for isgnim(&u). The frequency
index ~ takes the values (d = 2' m, p = 0, + 1, + 2,

The field variable is now indexed by com-
ponent (n), wave vector (k), and frequency ((d).
The classical linet of Eq. (6) means that we ne-
glect quantum effects, i.e. , the smallest wave-
length A ' is supposed to remain much bigger than
the thermal wavelength, with our units I 1+ ibDI
xroAh«1. Knowing Gh((d) at the discrete points
2piv, one has to take its analytic continuation Gh(z)
to be identified, as usual with the Laplace-Fourier
transform of the retarded commutator of p, p*
(i.e. , the linear response in h, h*).

The passage from Eqs. (1)—(5) to Eqs. (6)-(8)
will allow us to use, with appropriate changes,
the field-renormalization methods already used in
the static limit.

We shall first recall the general form of the per-
turbation series for the system (6)-(8) and in Sec.
II apply the technique of field renormalization to
derive the general functional form of the correla-
tion function Gh(z). Section III is devoted to the
renormalization-group equations satisfied by Gh(z)
and the resulting scaling form, characterized by
a dynamical exponent directly rela, ted to a renor-
malization factor, and by Wilson functions whose
zeros are the fixed points of the theory. Section IV
contains results to lowest order in & and N ' for
the dynamic exponent already given by HHM, and
the slope ~, of the Wilson function at the fixed
point (which together with the slope of the static
Wilson function ' governs corrections to scaling).
Results of the so-called microscopic approach to
He are likewise recovered and shown, at any rate,

not to be in correspondence with any attractive
fixed point" (except for the I/N expansion near
dimension 2). Finally, Section V contains the next
to lowest order results in &.

II. RENORMALIZATION OF THE DYNAMIC

CORRELATION FUNCTION

Let us first briefly recall the general form of the
perturbation series for the equivalent Lagrangian
system (6)-(8). It suffices to consider the inverse
correlation function (one-irreducible two-point
Green's function),

where Imz&0. The mass operator Z(z, k) expanded
in powers of go is given a sum of diagrams S whose
detailed form is recalled in the Appendix and whose

contribution can be written as (before summation
over wave vectors and within standard weight fac-
tors),

Here the first bracket is the Wilson standard con-
tribution, the product being over all lines l of the
diagram and &, =go+ l . In the second bracket we
have ah „=—ra& (1+ ibo) associated with particle and
hole lines. In the denominators these 4~ „a.re
summed over gll particle and hole lines present in
each interval j between two successive interaction
vertices, in the numerator the summation is re-
stricted to those lines directly connected to the
earlier vertex of the interval.

The main point, however, is that the degree of
superficial divergence is the same as for the static
case, i. e. , the explicit-frequency summation that
transforms the Feynman perturbation expansion of
(6)-(8) into (10) does not affect power counting.
This result, which has been explicitly constructed
for I'~ ' is also valid for the 1-irreducible n-point
correlation functions X'~"'. It remains valid so
long as the propagators [-i +zg hh(&&+Ah)]

' cannot
add singularities to power counting. "

Let us now separate the correlation functions
I'~"' into a static and a dynamic part

We know that the dynamic part must vanish when
all the external frequencies go to zero. Given the
structure of the I'p Fg dy therefore acquires,
perturbationwise, powers of internal momenta
amounting to (ro& )

' (since external frequencies
are homogeneous to 1 oh ). In the conserved case
(ro-k ) this yields four extra powers of internal
momenta, which is enough to wipe out, in four
dimensions, all superficial divergencies from
Fp Qy and make the dynam cs of the conserved
case trivial. In the nonconsexved case (ro-C) it
yields taboo ext a poshness of internal momenta.
Thus, in this case, only I ~ 'd„remains superfi-
cially divergent (like a logarithm) after we have
made the subtractions implied by the (static) re-
normalization theory, and we therefore need only
one extra subtraction to render the theory finite
(i. e. , in the Wilson recursion method, rs 'd„„ leads
to an additional marginal variable to be kept in the
iterations). To this effect we write the interme-
diate Lagrangian g, (resulting from wave-function
renormalization y Z'„'hy) as
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+L[(r,z. ~)+»'(s. —()Iz,„i",.+g'(z. —() —,QJs i' )s z")&'~
k, co », »)

(12)

C =Z (I+ib)/(I+ib ) —1 (is)

The second line contains all the standard counter
terms, and its last term affects the needed extra
subtraction with

from the fact that the frequency summations in the
Feynman expansion do not change the structure of
perturbation expansion in respect to power counting.
For completeness, removal of these leftover di-
vergencies is exhibited explicitly in the Appendix.

b() ——bZ~,

and, as in the static case

gp = p, uZ~/Zy ~

(14)

(is)

III. RENORMALIZATION-GROUP EQUATION

FOR DYNAMIC CORRELATION FUNCTION

From Eq. (13) we immediately obtain the re-
normalization-group equation satisfied by r"'

Normalization conditions relate the bare and re-
normalized parameters, i.e. , they yield Z„and
Z„as functions of u, and Z~ and Z, as functions of
u and b (and Z„,Z„,Z„, and Z, as smooth functions
of 1z/A). These conditions are conveniently chosen
in analogy with the static case and if we work at
the critical temperature (x=o), as

8 8 . 8 8
+ W +iw» . —

zlzz
—(yz —z4)f

Bp, Bu Bib 8$

&&r' '(-if, k;ib, u, p, ) =0,
where

d
W„= p, —u

u, ~

(23)

(24)

r"&~ =o,
k=o

8 (2)
2 I',

q
——1,

k2=u 2

r'4' = p. 'uSt S.y~

(16)

(17)

(18)

and

d
W =p. —b

q = p. —lnZ =W —lnZ8 Bu

(as)

(26)

I' '(- ig, k;ib, u, p, , C),
with

r =eZy/rpZr ~

(IS)

(ao)

we choose the extra normalization condition as

(where now, the I'"' are the renormalized ones).
Noting that perturbation expansion (10) implies,
together with (12) that I'~' has the functional form

yz = p —lnZz =W. lnZz + W» —lnZz (27)
8

dp. Bu

Zz, (u, b2; p. /A) being defined by (12)-(14), (20) and
(21). Note that static normalization conditions
[Eqs. (16)—(18)] are enough to determine com-
pletely W„and g„, which are thus identical with
the corresponding static functions. If there exists
an infrared-stable fixed point (u*, b*) such that

Bi(
I'3' (- if, k = 0)

1
1+ib

(21)

With this choice, Zr and Z~ are determined as zeal
functions of u and b, and I' ' is a zeal function of
—ig and ib, related to the original, bare correla-
tion function 1 ~2' by

r',»(- ie/r„k; ib„u„~„,A)

=Z,'r"'(—ig, k;ib, u, lz) .

W„(u+) = W, (u*, b+) =O,

then the asymptotic solution of (23) is given by
(n*, =n)-

I'"(- ig, k) = p, '(k/)Lz)' "

x@[( ig/u)(tz/k)""r "'],

(28)

(29)

(22)

Indeed, once the functional form (22) is obtained,
together with a proof that the p, /A dependence is
smooth in the renormalized function I' ', scal-
ing, closed form for critical exponents, etc. ,
follow immediately. Thus everything depends
upon the fact that the extra subtraction correctly
does the job of removing the leftover superficial
divergences and insertions thereof. This is clear

OI' +I' 8y

1 1+2 lip 7

(si)

(32)

one may now vary the temperature in the vicinity
of T„with3

which establishes the scaling form' with the stan-
dard dynamical exponent

(d„(k) =(k/p, ); e, =2+yf —zl . (so)

Letting
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t = (T-—T,)Z„/Z z (33)

[ just like we had g =-zZ„/I'oZr, Eq. (20)], this
yields

8 8 ~ 8 8 8
p + wu +i' ~

—g —gz g —gt
8p, "8u 8ib " 8& 8t

W, =QN+ 2)(in/)u'b .
Hence b* =0, together with the static value u* = 6«/
(N+ 8), is an attracti()e infxaxed fixed point in

(u, b) space. " At this fixed point which is stable
because BWb/sb& 0, one has

xr")( ig, a;ib, u, t, t)= 0,

whose asymptotic solution is
ai'-"r"'(-i~, t) =t ' —

~P]

t p. —if p.

(34)

(35)
z„—2=)7[61n(b) —1]=0.72609)) . (42)

yr =T'(((N+2)u* Ro

= «z[3(N+ 2)/(N + 8)z] in(+b),

which coincides with the value obtained by HHM

and several authors, '

Z"&» ",p, T-T, =y'—

Z' y A + iz ~~'&r
(36)

Returning to the original bare correlation function,
we obtain

At this point one may also recover a result com-
mon to several authors, ' who have applied the
matching Wilson-Fisher' method to the micro-
scopic model of an interacting Bose system. In-
deed, it is obtained by letting I p

= b p
= 0 on the

model used here, and their pseudoexponent y~ is
then given by

where the full scaling form is now established.

IV. CALCULATIONS TO LOWEST ORDER IN e AND N '

yr =T'(((N+2)u* R(+~)
= «z[(N» 2)/(N+ 8) ]2 ln2

z, —2=q(41n2 —1) .
(43)

Let us first consider the lowest-order terms
already computed by HHM using the step-by-step
Wilson-Kadanoff procedure.

A. e expansion

In the E expansion, we get to lowest order in u
and &

However, it is clear from the above that b =+ ~ is
not a fixed point~' and that Eq. (43) is meaningless.

B. N ' expansion

In the N ' expansion in the lowest order Eq. (39)
remains valid. At the fixed-point value for the
coupling constant u* = 6/Na(«), it yields

r("(-g, a=o) r"'(o, o)=r,")( ig, u=o)

-g N+2 -Q -' u'D,
1 +1+ib 36 p, z(1+ ib) «

where

. Wb(b) 2 1 1
1+ib N a-D a (44)

. C(ib, u),ig
1+zb (37)

1 ——'« I' (1 ——,'«) I'(1+—,'«)
I'(2- «)

(45)

with

Do= . ln2- — . ln(3 —ib)
3-ib 13-ib
1 —zb 21- zb

is a function related to the exponent q by q = 2«/
N(4 —«)a(«), and where

r(2 —,'«)r(I+-', «)

ln(1+ib) =R+iJ,1 1+ib
2 1-zb (38)

and where C(ib, u) is determined by the normaliza-
tion condition (21). Together with definitions (25)
and (27) one finds, to lowest orders

Also

D(ib, 0) =D() .

() (b)&J(1 —x )
(46)

(47)
. w,y„+i '. =- W„,—C(ib, u),1+ib " 8u

that is

y, +i '. =~(N+ 2)u'[R(b)+i«b)]1+zb

(39)

(4o)

~ow «b) has a unique zero on the real axis, with
a positive slope. Near the origin we have W, = (0b b, (ub = (6+)/N)T', (49)

In three dimensions

D(ib, 1) = 4iwln2[1 —ib —i(3+ 2ib+b )' ], (48)

and W,/(1+ bz) vanishes when the imaginary part
of D vanishes or becomes infinite. It vanishes for
b* = 0, and in that vicinity
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yf =4/Nn='2q, (50)

is an infrared-stable fixed point. At that point,
with (44) one has

tractive fixed point (besides the fact that for b ' =0,
we return to the microscopic Lagrangian and its
associated hydrodynamic singularities). For that
value, one has, '

i. e. , as in HHM

1
zy 2 —2g (51)

yr ———8/Nm = —3q,
z„—2 = —4g,

(53)

(54)
The imaginary part of D becomes infinite for
b =+ ~. Switching to the variable Q, one has then
in the vicinity of 5 ' = 0,

again a meaningless result.
For comPleteness we quote the results for

0 ~ & & 2. For 5* = 0, one obtains

4
1+1/bo 7(lnb '' (52) o), =—[a(e) —D(0, e)] ' . (ib; e)

2 3 BD

z y p
(55)

that is a zero, but too weak to give rise to an at- with

( ) ( )
2I (2 &)F(1+ E) F (1 &)

I'(1 —c Pp

cV/6

(cose)' 'de)

(57)

hence yI('(e) with (44). Likewise for b =+~, we have'o for 0&q~ 1,

2 'I' (1 ——,'e) i7)2 'I'(1+ c)a(a) —B(+,a) = V(2 —-'c)V(1 ~ —'al
&V(2 —c) 2l'((+ 'c)(1 —c))

(58)

that is

y +iW, (b ' =0) =q(a) (1 —2' ' —2' '8'"),4-&

(59)
showing a zero of W»o for e = 1 at b ' = 0, the (soft)
behavior around this zero being given by (52).

Instead, for 1~&&2, [a(a) —D(+~, z)] '=0 and

yr+iW, (c=0)=—71, z„—2= —(4/E)q .
(60)

Again, W», (b ' = 0) vanishes, but now as (1/b)' '.
Qnly in the two-dimension limit would this zero be-
come attractive enough for scaling, a limit in
which the whole procedure used here breaks down
anyway. Actually, this limit (and the whole re-
gion 1 & e ~ 2) deserves better attention. Ikami'o
has computed directly the leading logarithms in
the 1/N expansion up to order (I/N)o, and verified
exponentiation with the power z~ of Eq. (60), a
power identical to the one obtained with a rnulti-
component ]3ose model by Halperin. 2 If these re-
sults are indeed identical, it means that the sin-
gularities associated with hydrodynamic modes are
less harmful than anticipated, below three dirnen-
sions, for the 1/N series. o'

V. CALCULATION TO NEXT ORDER IN 6

To the next order in the e expansion, Eq. (39)
remains valid and one finds

. W, N+2,yr+i . =
8

u D —c(Do —E())1+zb

N+ 8 r ai u 4zbDo
(61)

where D(ib, e) given as above by (45) and (46)
should be retained to first order in E, and Do is
D(ib, 0) from (38) and (47), also

I

" dx d(i b, x) —d(i b, 1)Eo-
i

i x x-1 (62)

1 —zb

1+zb (64)

At the fixed point value

6& 3(3N+ 14) 1
N+8 (Ã+8) 4

one has

The fixed point 5* = 0 is unchanged and remains
attractive, with a slope

(65)

with

d(ib, x) = ln(1+x) —
2A ln[x(1+A)+A]

1+x x(1+A) +A
2

+ ln[x(1+A)]+ ln(x+A), (63)
x(1+A) x+A.
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N+8

which yields

6(3N+ 14)
(N+ 8)'

N+8

6(3N+ 14) 91nv,
(N+ 8)z N+ 8

the corresponding value of y$ is

(67)

removes the internal (logarithmic) divergences ap-
pearing along with subdiagrams (insertions).

Let us complete the rules given with Eq. (10).
Diagrams are time-ordered, time grows from left
to right, the creation vertex of the mass operator
Z(t, k) is at 8 = 0, the annihilation vertex at 8 = t.
Its Fourier-Laplace transform Z(z, k) is, thus,
the sum of all distinct time-ordered diagrams,
and with each diagram is associated a contribution
X), which is calculated within standard weight fac-
tors, with the following rules.

A. Dynamic part (between 0 and t)

y$=
&2 x 3.20 m 10 z(1 —0. 216&) + O(e ) for N = 1

qzx3. 45x10 z(1 —0. 275m)+O(&4) for N=2 .
(ss)

The parametrization used by HHM, i.e. , z„—2

=pc(&), is clearly only possible to lowest and next
to lowest order, since, in general, t." ought to de-
pend on both E and N. To the order considered
here, this parametrization reflects the poor con-
vergence character of the & series for q,

c(E) = 0. 7261(1 —1.687&) + O(e ) . (69)

+y =
very

= 1e 413 (70)

If one takes this value seriously, it implies a yP
ten times as large as given above [Eq. (68)], an
improbable result. Representation of dynamical
effects through the exponent & is not very conve-
nient, since it is insensitive to the dynamics con-
tained in yz*, , and if one tries to get z„—2 from (70)
the result is very sensitive to errors on &~. For
completeness we give & = vz„ in powers of c

& = I+-,'z + 0.0931&' —0. 167&'+0(c'),
that is & = 1.243 in three dimensions.

(71)
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APPENDIX

In this appendix we first recall the detailed rules
for the perturbation series expansion of I' ' de-
fined by Eqs. (6)—(9). We then show how the extra
counter term introduced in Eq. (12) effectively

Comparison with "experiment" can be attempted
for the Ising system (N = 1) (with a dynamic a la
Glauber equivalent to the HHM model considered).
Using high-temperature series, Yahataa has ob-
tained, in three dimensions

(i) With each vertex associate

-ao Q ~~p+r'a)
P, h

where the sum is over holes and particles lines
incoming to or outgoing from the vertex and at the
left of it, &~ „=I"Oc (I+ ibo).

(ii) With each interval between successive ver-
tices associate the propagator

(
-1

jg+
p, h

where the sum is now over each hole and particle
present in the interval.

B. Static parts

Defined as each part of the diagram which can
be separated by cutting any number of lines at a
time Go, such that 6)0 can be freely moved to
60= —~ (keeping fixed the creation vertex 8=0,
the annihilation vertex 6 =t, and the relative order
of vertices internal to each static part). These
static parts are to be looked at as Feynman-Wilson
diagrams with their associated rule:

(i) vertex: (—go)
(ii) line I: (e', ) '.
If we work with the intermediate Lagrangian 4„

Eq. (12), then iz is replaced byizZ„&~ „by
I'OZre (I+ ib), and &, now means x+ I, that is,
the effect of the main terms [first line of Eq. (12)]
of 2, is to give rise to contributions to I"' ',

„„TT1 TT g,„(,&e (I+ ib)
—ig+g„e (I+ib)

with g =zZ„/I'OZr, the summations being as ex-
plained above. The effect of counter terms [last
term of Eq. (12), besides the standard static ones]
is obtained by replacing (1+ib) by (I+ib)/(1+C),
and (1 —ib) by (1 —ib)/(1+ C*), and expanding in
powers of C and C*, C is defined by the normaliza-
tion condition (21). In the following, to abbreviate
we write e, —= e, (1 + ib) .

Let us now look at divergences and how they are
compensated by counter terms. As an example,
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(a)

",e=o

FIG. 1. Second-order diagram contributing to the
mass operator.

we work out in detail the case of second-order in-
sertions in the second-order diagram (Fig. 2).

1. Second order (Fig. 1)

Main term: We have for the contribution to I' '

n, (1) = —p."u' dl d2
18

(
ig 1X1+. ~000—Zg+ E1+ 62+ E3

-=—~'"(-8) =- —(E.",'+ E('„,'(- C) ] . (A1)

The divergent term (in four dimensions) of the
dynamic part is thus [Eq. (37)]

(2) . if,„,(- K)=- „.b
with

(A2)

FIG. 2. Fourth-order diagrams with a second-order
insertion.

2 N+2 R +iJ
36

(A3)

Counter term: —ifC/(1+ib) and the normaliza-
tion (21) imposes

C= —5,
thus compensating the divergent term.

(A4)

2. Fourth order (Fig. 2)

Main term: The contribution of Fig. 2(a) can be written

(As)x)~(2a) = — p M dld2 . ~ g p p p Z (-'Lf+E2+'E3)%+2 2, 2 cg+Ea+E3 1 (~&

—if+ 6)+ t2+ef egE2eg

The quantity Z' ' gives rise to a static part whose divergence is removed, as usual, and a dynamic part
which as in (Al)-(A3) gives rise to the divergent contribution

(ig —&, —ef)s.
The contribution of Fig. 2(b) is

b~ (2b)=(— 2 'u d1d2 . '
D ~ p Z '(—1K ~ 4~ ~ 4f)—Zg+ 61+ 62+ 63

with

Z'"(-12)=( u'2" ((+12)f d442 .
2 e a 0 a)l—i/+ 64+ 6g+ E6 64&566)

(A6)

(A7)

(A8)

Again using (A1)-(A3) one may write the divergent
part of Z'2)(-if) as S. That is, besides a factor
identical to the first bracket of (A6), one obtains

for (A7)

~)
—i/+ 6y + ep+ E3

(6 +6+ 52 3 61+ ~2+ 63
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+if
6g+ 6p+ E3+

(A9)

Finally, the diagram of Fig. 2(c) contains no dynam-
ic divergent part. Putting them all together, we
get the first bracket in (A5) multiplied by

are more tedious to display directly. A general
proof is, as usual, made easy by working line by
line, and more precisely, on Fourier-I. aplace
transforms of line propagators. Let, g~(—iz, ), be
that transform for the particle line 1, we write

Counter terms: they are obtained by expanding
K)(1), where e, is replaced by e,/(1+C), to first
order in C. We again get the same common factor
as in (A5) multiplied by

g~(- iz, ) = &(- iz, )@'(-iz,),
with~4

r( fz) = fz+ Z (,z),1+ib (3)
1+C 1+C

(A11)

(A12)

&AC
+gg

&i+ &a+ &3
(Ala)

(A13)

that is, with (A4) a term cancelling exactly, (A9).

3. General term

For the hole line 3, we would have

(A14)
The above cancellation of divergent parts is

easily shown to operate for any number of inser-
tions made on the same line. When those inser-
tions are made on two or more lines, cancellations

Finally, the global contribution for any number of
insertions made on the lines of Fig. 1, can be
written

u p.
' d 1 d2 e' ' dt dz dz dz 8 '"'i"~"3'%+2

1 18 1 8 3

xr( fz,)r(-fz, )1 (+fz, )[C'( fz, )C'(-zz, )C' (+fz, ) C-(-fz, )C-( fz, )C- (+ized)], (A15)

where in the last bracket, only the terms linear
in e should be retained {terms independent of and
quadratic in & drop out, cubic terms in & are not
retained in accordance with rule [a(i)] above).

Using (A2), that is,

= 1 I'„(-iz),+

C'(- fz) = (1+ —.'~+ (1+sf )Ã"'(fz))1+C

(A18)

Z'"( fz) =fzC/(I+if)+I~"'(fz), (A18) , ~C'(-fz) .1
(A19)

Z'"(- fz) = —C+Ã"'(fz), (AIV)

I'(-iz) = [-iz+ e —(1+ib)R'"(iz)]1+C

where R' ', and&' ' are regular parts, we have

It is then obvious that, in {A15), it is correct to
replace everywhere the 1"'s and the 4 "s by the
coxxesPorufivg regular expressions I'~ and 4'„.

The above procedure is trivially extended to any
type of insertion or iteration thereof, proving thus,
that the extra counter term of Eq. (12) is enough to
renormalize 2~3'.
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