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Crossover scaling function for exchange anisotropy: Heisenberg to XY-like crossover
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The crossover behavior of the susceptibility g"" of the classical Heisenberg model with XY-like
anisotropic exchange coupling is studied following the methods of Pfeuty, Jasnow, and Fisher. The
universal scaling function is obtained and, from it, the crossover of the effective susceptibility exponent

y,„ is found.

Recently, Pfeuty, Jasnow, and Fisher' reported
the calculation of various susceptibility scaling
functions for the crossover from Heisenberg to
Ising-like behavior in the classical anisotropic
Heisenberg model. Subsequently, Singh and Jas-
now' reported a similar analysis for the X Y and
planar models. In this paper, the above program
is carried out for the Heisenberg model, for the
crossover from Heisenberg (n=3) to X Y-like (n
=2) behavior. We have employed essentially the
same techniques as used in Refs. 1 and 2 for cal-
culations. Hence we shall discuss the scaling
theory very briefly and present the results; the
reader is referred to Refs. 1, 2, and 4 for further
details.

We shall deal with three-component classical
spins on the fcc and sc lattice interacting with a
nearest-neighbor ferromagnetic exchange in the
absence of magnetic field. Let o(R) be such a
spin at lattice site R. The isotropic Hamiltonian
is given by

the extended scaling hypothesis' 4

x""(T,g)=At 'X(Ifg/f'),

where we have defined

t = (T —T„)/T,o . (4)

X(o) =1,
d (o) =-

(This choice of normalization leads to the identit'i-
cation of A and B with the corresponding param-
eters in the case of Heisenberg model with Q, or
Q, anisotropy, used in Ref. 1.)

As stated previously, the susceptibility has the
following behavior in the two limits of interest:

The parameters A and B are nonuniversal as is
T„, but the crossover exponent Q is universal and,
like y, is characteristic of the isotropic system.
The scaling function X(x) is also expected to be
universal. We shall use the normalization

X,=--,'J g go(R) ~ a(R+6),
x""(T,O)=At ~, g=0, t-0
x""(T,g)=A(g)f ', g &o,

(6)

(7)

where (5] are the nearest-neighbor lattice vectors
and J is a positive exchange constant. The aniso-
tropy is introduced through" ' 3'. =Xo+gX„where

-2o, (R)o,(R+ 5)], (2)

where g is the anisotropy parameter. (This corre-
sponds to the case of axial anisotropy Q, with g,
=0, g, =-g& 0 in Ref. 1.) In the isotropic case,
g=0, x"" (=x '=x") diverges at a critical tempera-
ture T„with a critical exponent y. For fixed small
g&0, x"" (=x") diverges at a new critical point
T, (g) with a new exponent y. On going farther from
the critical temperature however, the susceptibil-
ity appears to diverge with an isotropic exponent

This crossover behavior can be described by

where we have introduced

t = [T —T,(g)]/T„. (6)

where we have written

x = Bg/[f, (g) ]~, (10)

The scaling hypothesis (3) guarantees the equality
of (ttwith the shift exponent g, which is defined in

(12)

Further, it can be shown that" in the scaling rep-

Equation (6) follows from (3) and the normalization
(5). To reproduce (7), the scaling function X(x)
should satisfy' ' '4

X(x)=X(1—x/x) & as x
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TABLE I. Reduced susceptibility coefficients for g"" for the Heisenberg model on the fcc
lattice [see Eqs. (15) and (16)].'

~p(g) =q ~~(g) =-, +yg4 2

gn (g) = 4.888 888 889 + 5,155 555 556g + 1 .155 555 556g

a3 (g) = 17.244 444 44 + 2 8,497 7 77 78g + 13.19111111g +2.026 66 6 667g,

g4 (g) = 59.486 419 75+136.003 950 6g+96.433 439 15g +30.981 305 11g3+3.272 028 219g4,

g (g) =202.2484656+596.8173263g+574.190686 8g +284.385 142 9g +62.22820055g
+ 5.754 831 948g

a~ (g) = 680.700 137 2 + 2479.624 503g +3029.55 8 989g 2 + 2042. 118645g ~ + 684.653 717 Og
4

+131.667947 9g +8.648 713 642gs,

a, (g) = 2273,984 280 +9912.374 753g +14 748.31127g'+ 12 637.841 80g' + 5738.745 767g '
1698 611340g + 229 712 947 38 6+ 16 468 190 16g

aa{g) = 7553,120 310+38 502.819 96g+67 767.868 97g + 70 707.465 82g +40655.173 80g
+ 16 355.718 10g ~ +3381.665 689g ~ + 500.879 486 3g 7+ 20.532 640 95g,

as (g) = 24973.767 74+ 146 265.4618g+ 298 108.2774g +367 634.7066g + 256 519.5038g
+131007.4948g +36625.02806g +8336.114 752g +699,3981008g8+51.579518 83g,

g(p (g) = 82 267.51540 +545 853 ~ 1327g+ 1 267 350 ~ 529g + 1 807 558 464g + 1 486 396,765g
+922 929,8468g ~+326 142.8975g~ +100 878.9320g 7+12 893.593 39g +1954.333428go
+30.974 595 40g ~

~ Forms for as(g) and a&p(g) have been kindly provided by W. J. Camp and J, P. Van Dyke
(Ref, 5).

resentation

The parameters x and & „are nonuniversal, where-
as i and X are expected to be universal.

In order to calculate the nonuniversal and univer-
sal parameters and determine the scaling function,
we have used the high-temperature series expan-
sion' of the form

type of anisotropy (Ising like or X Y like). j Omit-
ting the details of calculation, "the results are
as follows. The nonuniversal parameters A and I3
are found to be

A = 0.2799 s 0.0004, 8 = 1.143t 0.007 (fcc),
4=0.3182+0.0004, B=1.328+0.002 (sc) . (18)

The uncertainties are for extrapolation only and do
not include uncertainties in the isotropie param-
eters y and P. The universal amplitudes'2 R, in

the expansion'

0=0
(15)

1 A x2 A2A xs
X(x) =1+ —x+ —,' — + —'; -' — + ~ ~ ~

2 2I 2 3f 2
(19)

with

for the Hamiltonian Ko+gX, . The coefficients
a„(g) are available' ' to k = 10 for the three cubic
lattices. (We have, however, restricted our anal-
ysis to the fcc and the sc lattices only. ) The
coefficients a,(g) for the fcc case are given in

Table I. We have used the following previously
determined' parameters in our analysis:

y = 1.38, Q= 1.25, y= 1.315 (fcc and sc);

K„(=J/keT„) = 0.3147 (fcc), 0.6916 (sc). (17)

[Note that the exponent Q is independent' of the

TABLE II. Universal susceptibility ratio estimates.

Ratio Universal

R)
R2
Rg
R4
Rg

1.521
1.581
1.169
1.425
0.954

1.504
1.586
1,172
1.421

1.512
1.584
1.170
1.423
0.954

are listed in Table II. The estimates for &, &,
and the 8, agree well with the ones presented in
Ref. 1. The estimates for R, also agree closely
with Pfeuty's preliminary renormalization group
calculations also presented in Ref„1. The expan-
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~,&t(g) =g "'(I -&,(g)/&.o), (22)

are listed in Table III. Extrapolation' ' of e,ff(g)
to g-0 yields

~= O. 436 ~ O.O25 (fcc),

+=0.492+0.030 (sc).
(23)

This allows us to determine x. . The results are,

x=3.23+0.23 (fcc),

x=3.22+0.25 (sc). (24)

Universality is satisfied to the indicated uncertain-
ties. For further analysis, we choose the value

x= 3.255 . (25)

%e note that the ratio of x in the present case to
the value calculated in Ref. 7 for the Heisenberg-
Ising crossover (Q, anisotropy) is x(n = 3 to n = 2)/
x(n =3 to n = 1)= 2.51. This is consistent with an
estimate due to Fisher, ' arising from the study of
bicritical phase diagrams in spin-flop transitions.
From the critical temperatures for finite g, we
can get an estimate'' for the shift exponent P. Our

sion (19) now becomes

X(x) = 1+ 2 x+0.1890 x'+ 0.0754 x'+0.0264 x'

+ 0.0105x'+0.00334 4,
(20)

with uncertainties of at most 0.3% 1.3/0 3% 8/0 and
13/0 in the coefficients of x'-x", respectively. The
form (20) agrees with Eq. (5.15) of Ref. 1 under the
transformation g--g (or x- -x). A preliminary
analysis'' of the series (20) gives

x=2.901, X=1.075. (21)

%'e turn now to the 3nalysis for small finite g.
The critical temperatures and the corresponding
ut„,(g), defined through' '

analysis is consistent with Q = p= 1.25; a direct
analysis of g yields at best P = 1.21m 0.07.

The results of the finite g amplitude analysis''
are now tabulated. Table IV lists A(g) and A, ff(g)
[defined from (13) in analogy with (22)]. Again,
extrapolation to g=0 gives

A„=0.255+ 0.010 (fcc),

A„=0.288+ 0.015 (sc) .
(26)

Using (14), (18), and (23) we can determine X.
The results from two separate calculations are

X=1.157+0.050 (fcc),

X= 1.159' 0.065 (sc) . (27)

Again, universality is verified to the indicated un-
certainties. We adopt, for further analysis,

X= 1.158 . (28)

as a polynomial in z to z'. Next, we construct"'
Pads approximants to P(z), subject to the con-
straint P(1) =X. This gives us a representation
of P(z), and hence, of X(x), valid in the region
0 ~z ~ 1. As in earlier work, "we have examined
two sets of Pads approximants (i) using values of
x and X obtained directly from X(x) [see Eq. (21)],
(ii) using the parameters determined from a finite-

As a check on extrapolation consistency, we have
repeated the above amplitude analysis for the func-
tions" ' s}t/sg and (s}t/sg)/ g. In addition, we have
estimated the universal parameters x, X by mak-
ing the assumption that the coefficients a, (g) [see
Eg. (16)I themselves have a scaling form. ' The
results are consistent with the estimates presented
above,

Now we have all the necessary information to
construct the full scaling function. To do this, we
first determine the amplitude function P(z), de-
fined by

P(z) = (I —z) fx(x), z = x/x (29)

TABLE III. Critical point shifts and u, ff (g). The
critical points have uncertainties of about 0.1'. The
uncertainties shown for u, ff (g) are in the last decimal
place quoted.

TABLE IV. Anisotropic susceptibility amplitude
estimates using j=1.315.

E (g)
fcc

K, (g)
sc

jeff(g) A (g)
fcc

&off (g) A (g)
sc

&en (g)

0.02
0.03
0.04
0.05
0.06
0,07
0.08

0.308 59
0.306 18
0.303 91
0.301 75
0.299 63
0.29761
0.295 64

0.444 (22)
0.44 7 (16)
0.450 (12)
0 .452 (10)
0.455(9)
0.456(8)
0.457(7)

0.676 59
0.67O69
0.665 56
0.660 28
0.65509
0.650 41
0.645 58

0.496(3O)
O.5OO(22)
0.494(17)
0.497(14)
O.5O1(12)
0.500(11)
o.5o2(1o)

0.02
0.03
0.04
0.05
0.06
0.07
0.08

0.313
0.3065
0.301
0.2975
0.2935
0.290
0.286

0.255
0.255
0.255
0.255
0.254
0.253
0.251

0.352
0.343
0.3405
0.335
0.3295
0.327
0.322

0.287
0.286
0.288
0.287
0.285
0.285
0.282



g analysis [see Eqs. (25) and (28)]. The results
are very similar to those in Refs. 1 and 2. In the
former case (i), most Pade approximants are de-
fect free. ' In addition, all of them agree with one
another to within 0.1% for 0 &z & 1. So we adopt,
quite arbitrarily, the approximant,

1 + 7.9645z + 39.521z' + 31.078z'
1+7.8292z + 38.571z'+26.619z"

(i)y=1.315, z=2.901, X=I.O75. (SOb)

In the second case, about half of the entries in
the Pade table are defect free. Most of them show
a maximum near z = 0.8 —0.85. In the [4, 3] Pade
approximant, the maximum is near z = 0.65. The
approximant [3, 4] forms a special case. It first
grows to a maximum near z = 0.5, then drops to
a minimum nearz = 0.8 before rising to the re-
quired value at z =1. (A single maximum in simi-
lar ca,ses has been reported previously. ' ') We
adopt the following approximant,

1 —0.803 58z —2.4239z' +2,7187z' +0.481 14z
1- 1.1011z —2.1488z'+3.0894z

(Sla)

(ii) y = 1.315, z= 3.225, X= 1.158.

g«1 for arbitrary values of the ratio g/f . By
the time f, reaches, say, 0.1, we are receding
from the critical (scaling) region, and for t ~ 0.1

alternative (conventional) analysis is possible for
the behavior of the anisotropic susceptibility. "
%'e have also plotted in Fig, 1 the isot~opic y„ff vs
log t. For small g, the isotropic and anisotropic
curves should merge when t = t is of order unity.
Hence it can be seen that the full crossover from
y = 1.315 to y =1.38 is not completed within the
scaling regime unless g~ 10 '. This indicates
that for physical anisotropy of a few percent, ex-
periments in the range 10 '& t & 10 ' may yield
an intermediate value of the susceptibility expo-
nent.

Finally, it should be noted that the crossover
region (defined in a reasonable manner) in the
present case is narrower than in the n =2 models
presented previously. ' This is consistent with the
scaling theory, as the width of the crossover re-
gion is proportional to g' with 1.175 = P(n = 2)
& Q(n=s)= 1.25.

In concluding, we note that we have presented a
calculation of the universal scaling function for
the susceptibility g""(T,g) of the Heisenberg n = 3
model with X I'-like (Q, ) anisotropy. This, along
with the work of Ref. 1, completes the study of the
two independent crossovers in the n =3 Heisenberg
model, that is Heisenberg to Ising (n = 3 to n = 1)
and Heisenberg to XF (n= 3 to n=2).

The approximants given in (30) and (31) and the
linear approximant,

(iii) P(z) = 1+(X—1)z, (32)

using the value of X= 1.158 from parameter set
given in (31b), differ from one another by at most
(in the vicinity of the peaks) 18% in the range
0 ~z ~ 1. The effective exponent"'

(33)

I.BS

I.5 I 5

Heisenberg Model, fcc

rather than changing smoothly from y= 1.315 to
the isotropic y= 1.38, shows considerable struc-
ture when calculated from any of the three approxi-
mants. The structure is probably spurious and
traceable to the lack of detailed knowledge of the
shape of the scaling function near x=i. On the
othel hand, Bufflc1ent details are known near x=0
to guarantee a smooth fall from y =1.38 as z in-
creases.

In Fig. 1 we have plotted yf&. Vs log&0 t fol' val'ious
values of g, using the approximant (30). Results
based on (32) are similar; in both cases the mini-
mum is probably spurious. It should be recalled
that the scaling function is valid only for t «1,

(,o5—

g=0
g =lO

g =lO

g=lO 6

g=lO"
g =lO

l

l

l

I

0 2

FIG. 1. Plot of y„ff vs log&0& for various values of g.
Also included is y,&&

vs log&ot for g=o. (Note 1=I' when

g=o).
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