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The superconductive penetration depth 8 (7,H) has been studied as a function of temperature and field in
single tin spheres, 15-30 uwm in diameter. A mutual-inductance method was used with the 75-kHz measuring
field parallel to the static field. When properly normalized, the variation of the transition signal with T and H
is then proportional to d[8(T, H) X H]/dH, where § is the penetration depth averaged over the sphere
surface. The results are independent of sphere diameter, and thus characteristic of bulk tin. In zero field, we
find 8(T) = 8,/[1 — (T/ T,)*]""?, with 8, = 520 + 30 A. The field dependence was studied for temperatures

close to T, and fields up to the ideal bulk superheating field Hy, =~ 2.76 H,,

corresponding to a Ginzburg-

Landau parameter k = 0.093 = 0.001. The penetration depth increases sharply as the field approaches Hy,, but
stays finite, while its derivative diverges. We find 8(H,,)/8(H = 0) = 1.51 +0.04. Averaged over the sphere, we
have §(H,,)/S(H = 0) = 1.19 = 0.01. The field dependence is rather well described by one-dimensional Ginzburg-
Landau theory in the low-k limit. The results indicate that the surface order parameter s is depressed by (30-50)%

at Hy, . In “weak” fields, H < 1.5H,,

I. INTRODUCTION

The superconducting state is characterized by
two fundamental microscopic lengths: the co-
herence length £ and the penetration depth 6. The
latter describes the decay of a static magnetic
field from the surface of the superconductor to-
wards its interior. Historically, the existence of
the penetration depth was established in the 1930’s,
after the discovery of the Meissner effect in 1933.

The early studies'™ of the penetration depth
in type-I superconductors established a very strong
temperature dependence. Empirically, 6(T) is
roughly proportional to y=1/(1 — %2, Later and
more precise experiments are still well described
by this original experimental law, although there
is a small deviation at low temperatures.*”® The
field dependence of 6 is much more elusive. Pip-
pard’ first established a small but definite field de-
pendence in 1950. His experiments on tin gave an
increase in & on the order of (1-3)% as the field
was increased from zero to H,. Later experi-
ments®® have confirmed this small effect, giving
a quadratic field dependence of the form 6~1
+aH?, which is also predicted from Ginzburg-
Landau (GL) theory in the weak-field limit.*°

The present experiments extend the penetration-
depth measurements into the metastable region
above H,. Ideal superheating, i.e., persistence
of the superconductive state up to the field H,
where homogeneous nucleation of the normal state
occurs, was first observed by Feder et al. in ex-
periments on In powders.!! The powder method
was subsequently used to investigate a number of
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the data are consistent with the customary quadratic field dependence.

materials. (See Refs. 12 and 13, and references
therein). The experimental method was further re-
fined by measurements on single, flawless spheres
of diameters 5-30 um.!*!5 This gives sharp, es-
sentially widthless transitions, and moreover per-
mits the determination of the penetration depth as
well.’® Single-sphere experiments have so far
been carried out on Sn, In,'* and 8-Ga.!® These
experiments show that an ideal tin sphere will not
go normal until the equatorial field reaches Hy,
=H,/(k/2)"/2=2.16 H,, close to T,. The single-
sphere method offers a unique opportunity to study
the metastable states above H, which are usually
inaccessible to observation because of nucleation
by defects.

Information about the temperature and field de-
pendence of the penetration depth is extracted
from the variation of the transition signal between
the superconducting and normal states. Two fac-
tors complicate the analysis. First, the spherical
geometry gives a demagnetizing field, causing the
total field to vary over the surface of the sphere.
Any measurement of the penetration depth is thus
an average over the spherical surface. Second, an
ac tickling field parallel to the static field was
used. This gives a much greater sensitivity than
a perpendicular field, but it necessitates an inte-
gration over field to obtain the penetration depth.
We shall show that these difficulties can be over-
come, and that 6(7, H) can be extracted from the
data. The results will show that &(H) increases
by about 50% to a finite value at H,, while its first
field derivative diverges. Thus, the penetration
depth of a type-I superconductor in “strong” fields
has been measured for the first time.
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II. THEORY
A. Penetration depth

For a 75-kHz measuring field, we have 7Zw/A(0)
~5x1077. We need therefore only consider the
static limit where no frequency corrections are
necessary. The penetration depth for static mag-
netic fields is defined by

1 ”

where H(0) is the field at the surface, and x is the
distance from the surface of the superconductor.
The definition is general; it does not assume any
particular law of penetration. In particular, it
gives the intuitive result for an exponentially de-
caying field, as obtained from the London equa-
tions. It is also correct for the nonphysical case,
where H remains constant to a depth 6 and then
drops discontinuously to zero. We shall exploit
this fact in making the approximations of Sec. IIB.
The earliest estimate of the penetration depth
is that of London, and is based on the free-elec-
tron model

A (T) = [mc?/ane’n (T) M2, (2)

where ng is the density of superconducting elec-
trons in a two-fluid model. The values of a,(0) for
the elements are on the order of 100 A, which is
typically lower than the experimental values by a
factor of 2 or 3. Pippard!® was the first to explain
why the observed penetration depth was larger
than the London value. In type-I superconductors,
A.(0) is much smaller than the coherence length
£,, so that the local London equations must be re-
placed by nonlocal relations. The BCS theory gives
a nonlocal relation equivalent to Pippard’s. The
BCS expression for the penetration depth in the
limit A, (0) < &, is?”

8,=[(V3/2m)E%(0) ]2, ®3)

(4)

6(T) _ [A(T) tanh[A (T)/2kT] ] -/
oy a(0) )

A plot of the right-hand side of (4) against the
empirical function y=1/(1 - t9/2 is virtually lin-
ear, except for y<2. The small deviation at low
temperatures has been observed.*® We shall see
that the present experiments are very well de-
scribed by 6(7)=08,y, so we will not use the exact
BCS expression.

The field dependence of 6 is most easily treated
by Ginzburg-Landau theory, where a depression
of the surface order parameter y, will lead to an
increasing penetration depth as the field increas-
es. Noticing that n,=¢*, we have in the London

limit, from Eq. (2), writing y for |y,

8(H) ~ [ws(H) /o] 7" (5)
In the nonlocal limit, from Eqgs. (2) and (3),
S (H) ~ [ws(H)/ 9] /2, (6)

where ), is the (constant) order parameter in the
interior of the superconductor. For weak fields
and k<1, the original GL theory'® gave

Ys/bo= 1 - (k/42)(H/H,) . (7
Combining Egs. (5)-(7), we obtain
6(H)/8(0)= 1+ (k/4V 2)(H/H,)*
(weak field, local theory), (8)
o(H)/6(0)=1+(x/6v2)(H/H,)*
(weak field, nonlocal theory), (9)

Thus, in both cases, 8(H)~1+a(H/H,)?. For tin,
k=0.093 (Sec. IVC). This gives ¢ =0.016 and 0.011
for the local and nonlocal cases, respectively.

A perfect sample can be kept superconducting
in fields much larger than H,. The limiting field
for the metastable, superheated state for k<<1 is
given by*®1°

Hy =H,/(k/2)V2 (10)

This is the field at which homogeneous nucleation
of the normal state occurs. For tin, this gives
Hy, =2.T6H,at t=1. In “strong” fields approaching
Hg,, the weak-field approximation used to derive
Eq. (7) is no longer valid. A one-dimensional cal-
culation was made for k<1 (see Ref. 19), and the
GL equations were solved for all fields. The re-
sult is

[0s(B)/ Yo = 3{1+[1 - (H/Ha P %} (11)

For weak fields H/H, < 1, this reduces to Eq.
(7), as it should. Close to Hg,, the ratio ¥/, ap-
proaches the finite value 1/¥2, while the deriva-
tive dy,/dH diverges. This last prediction is, in
fact, typical for any mean-field theory giving an
expression for y(H) as the field increases towards
the limit of metastability. At this limit, the two
curves in the y-H plane which describe a local
minimum and a local maximum of the free energy
F, join in a single point which is an inflexion point
in the F-¢ plane. Therefore, one would expect
dH/d=0 at this point. The present experiments
will provide the first observational test.
Combining Eq. (11) with Egs. (5) and (6), GL
theory predicts

5(Hsh)/6(0)={

1.41 (local case),
1.26 (nonlocal case).

Furthermore, the derivative of 6 at Hy should di-
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FIG.1. Recorder trace of field sweep for a 15.4-um-
diam tin sphere, with the ac measuring field parallel to
the static field. In the superconducting state (top) the
signal shows a marked depression close to the super-
heating field Hy, whereas in the normal state the signal
is constant (bottom). Signal depression is caused by the
increase with field of the superconductive penetration
depth 6.

verge in both cases. A weak-field expansion gives
5(H)/6(0) =1+ &(H/Hy)* +c5(H/H )" - - -
(local case), (12)
6(H)/5(0) = 1+4;(H/H,)* + 13 (H/H)* - - -
(nonlocal case). (13)

Expressing H, in terms of H, and «, the quadratic
terms in Eqs. (12) and (13) reduce to those of Egs.
(8) and (9).

B. Variation of signal with temperature and field

1. Vetr approximation

Let S be the observed difference in mutual-in-
ductance signal between the superconducting and
normal states. As the penetration depth varies
with temperature and field, the effective super-
conductive volume of the sample will vary, and
hence S will vary. Figure 1 shows an experimental
hysteresis loop for a 15.4-yum-diam tin sphere
close to T,. Sis seen to decrease markedly close ’
to the superheating transition. This decrease is
caused by an increase of the penetration depth
with the field. The transition itself is sharp, ir-
reversible, and always reproducible, ruling out
the possibility that the decrease in signal preceding
it could be due to dissipative effects. Indeed, any
normal domain would immediately nucleate the
full transition to the normal state. A study of the
3rd harmonic signal further supports this con-
clusion. When a sphere is in the intermediate
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FIG. 2. Demagnetization coefficient 2(T) =Hequatoria]/

H,ppiiea for two tin spheres [Eq. (16)]. Increasing penetra-
tion depth causes k2(T) to decrease with temperature.
For a large sphere, & = 3.

state, the 3rd harmonic signal has been observed
to be strong and irregular. For the tin spheres
presently investigated, the 3rd harmonic signal
was small, giving a clean hysteresis loop similar
to that of Fig. 1 except for a higher noise level.
Thus, the sphere is in the Meissner state all the
way up to the superheating transition.

The question is how to relate changes in signal
S to changes in the penetration depth. Changes
with temperature at #=0 are simple to analyze,
but the analysis of the field dependence is non-
trivial, and has not been carried out before. It
is made complicated by two factors: (a) the use
of an ac measuring field parallel to the static
field; (b) the spherical geometry which makes the
surface field vary with the polar angle. Any mea-
surement of the penetration depth is thus an aver-
age over the surface.

We first observe that even very close to T, the
sphere radius R is much bigger than 6(T,H). In
fact, at 1=0.998, 6(T)/R=0.07 for the smallest
sphere. We can therefore define an effective su-
perconductive volume V as follows: At a point
on the surface with polar angle 6, there is a local
field Hy and a local penetration depth 6(T,Hg).
Imagine this penetration depth shaved off the
sphere, giving an ellipsoidal body flattened at the
equator. This body can be treated as perfectly
diamagnetic, with a volume

/2
Vc"(T,H)=3"—nf d6sing[R -6(T,Hy)P. (14)

0

This simplification is justified by Eq. (1) and by
the fact that 6/R is so small that the surface is
“flat” on the scale of 6. The field distribution
Hg is not known for the general case of a field-
dependent penetration depth. However, for a
constant penetration depth, the boundary-value
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problem was solved by London,?® giving to second
order in 6/R

Hy=H,, sin@=k(T)H sin6, (15)
k(T) = 3[1 - (8,9/R) +(8,y/R)*]. (16)

Here, H is the applied field, and we have assumed
8(T)=8,y, where y=1(1-t%/2. This assumption
will be justified by the experimental results. Fig-
ure 2 shows the ratio k(T)=H,,/H for two of the
spheres investigated as a function of y. Since the
penetration depth increases with H, Egs. (15) and
(16) are only valid as H— 0. For any finite H, the
field penetrates further at the equator than at the
poles, giving a ratio H,/H slightly less than k(T).
However, we will show that only a small error is
induced by using Egs. (15) and (16) for all fields.
We anticipate from the experimental results that
§ increases by about 50% from H =0 up to the su-
perheating limit. For fields approaching Hg, a
more realistic angular field distribution than Eq.
(15) would be

Hg=~[k(T)cos?6+k'(T) sin®§]H sing,

where %’(1') is obtained from Eq. (16) using the
equatorial penetration depth 6(T,H) ~1.55,y.
This modified field distribution in fact probably
overestimates the correction due to the field de-
pendence. Anticipating Eq. (26), the measured
quantity will be the penetration depth averaged
over the sphere surface:

6—(8152_)0) = lrlzdésinef(ge),

eq

where f is the field dependence we seek. Using

the GL expression, with f~1/y, from Eq. (11), we
obtain for the 15.4-um sphere at t=0.99 an aver-
aged penetration depth 5(H,,)/6(0)=1.171 using

Eq. (15), and 1.179 using the improved field dis-
tribution. The difference is less than what the ex-
perimental error will turn out to be (Sec. IVB).
We are therefore justified in using the London field
distribution for all fields. Equation (14) then sim-
plifies to

m/2
Ve (T, H) =%7R f d0sin6(R® - 3R5 +36%),
0

6=06(T, k(T)H siné) . an

Here, we have included terms up to 62.
The signal measures the derivative of the mag-
netization M~HV . Thus

S(T, ) ~a% [V, (T, m)]. (18)

Here, we assume the amplitude of the measuring
field to be negligible compared to the static field.

If the measuring field is perpendicular to the sta-
tic field, ’

dVeff

ag = °

to first order, because the scalar value of the total
field does not change. Thus

SJ_(TaH)~chf(T>H)’ (19)
whereas for a parallel measuring field

S”(T,H)"chf(T,H)+H‘Z/T°H. (20)
As we shall see, the second term in Eq. (20)
dominates, and makes it advantageous to use
parallel fields to increase the sensitivity. Thus,
in Fig. 1, the signal depression close to H, for
perpendicular fields would have been only about
& of that shown, making the field effect almost
undetectable. This explains why no field effect
was seen in our previous experiments on 3-Ga,
where perpendicular fields were used.

2. Temperature dependence

For H=0, S~V in both of the above cases, and
the analysis is straightforward. Assuming again
5(T)=8,y, we get from Eq. (17)

S(T,0) _1-306,y/R+3(8,y/R)*

5(0,0)  1-35,/R+3(5,/R)? 1)

Fitting this equation to the experimental results
gives S(0,0) and §,. In practice, we use the signal
at the supercooling transition where the field effect
is negligible, so that S(T,H )= S(T,0).

3. Field dependence

To extract the field dependence, it is necessary
to normalize away the temperature dependence of
the signal. Let

6(T,H)=6(T,0)f(H/H,), 22)

where f is the unknown function to be determined
by experiment. Define a reduced signal

é‘E[SO_S(T,H)]/[SO_S(T,O)], (23)
where
S$°=5(0,0)/[1 —360/R+3(60/R)2]. (24)

S° is the hypothetical signal for the case of zero
penetration depth and is determined experimentally
by extrapolating Eq. (21) to y=0. Next, define a
reduced field

h=He/H.=k(T)H/H/(T). (25)

Substituting from Eqs. (17) and (19) into Eq. (23),
we get for perpendicular fields, and to first order
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in 6/R,

/2
él(h)gfo d@sinéf(h sin6)

=f(n)=8()/6(n=0). (26)

Notice that, to first order, the reduced signal

¢, is a function of % alone, not of T'. In fact, ¢,
is seen to be an average over the spherical sur-
face of the function f, with a weight factor siné
which makes the region around the equator con-
tribute most to the integral. We shall denote this
average by f or by 6()/6(0). To second order,
we find

.= fdesinef(hsine) (1—9% [f(hsine)—1]>.

@7)

To an excellent approximation, f in the right-hand
factor can be replaced by f and brought outside
the integral. This gives a self-consistent equation
which can be solved with respect to 7, yielding

F-t, (1+§%0—)(§L—1)>. (28)

Compared with the first-order expression, Eq.
(26), the second-order correction gives values
for (f —1) which are (3-4)% higher for a 15-pm-
diam sphere at t=0.99.

Turning to the case of parallel fields, Eqgs. (17),
(20), and (23) yield, to first order,

/2
§,|(h)%£-(hfo dosin6 f( sin6)>. (29)

To second order, we get

d v
g,,=% [h fo dosinbf

x(p@(f_l)ﬂ. (30)

We define a new function Z(%):
1 h
zw=r [ e, (31)
0

After integrating Eq. (30) with respect to the field,
we again get a self-consistent equation for f,
leading to

Fny=2 (1 +5—(—%ﬁ(2_1)>. (32)

Notice that f =Z to first order.

We have now laid the foundations for analyzing
the data. For the parallel-fields case, this analy-
sis proceeds as follows. From the data S(T,H),
we calculate the reduced signal ¢,, Eq. (23). To
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first order, this is only a function of the reduced
field 2 =Heq/Hc. The integration over the field,
Eq. (31), can be carried out model independently
by joining all the experimental points ¢, (%) by a
zigzag line, and integrating under this curve from
0 to &, thus obtaining Z(z). From Z(k), f(k) is
calculated correctly to second order in §/R, using
Eq. (32). The final step consists in determining
the unknown function f (%) from f (), using the de-
fining Eq. (26). We have not succeeded in invert-
ing this integral analytically, so at this point f(%)
must be determined either by trial and error, or
by expressing f(2) as a sum whose terms can be
individually inverted, for instance as a power
series.

The above concepts can be illustrated by as-
suming f =1+ a(H/H,)". Withh=H, /H, ~3H,,
this gives

e M)=Zn)=1+jy, ,ah”,

(33)
gyr)=1+(N+1)jy, ,ah",
where
m/2
jNEf sin¥0d6. (34)
(1]

We see that the field effect for parallel fields is

(N +1) times enhanced. In particular, for N=2,

the observed effect in parallel fields is enhanced
by a factor of 3, as pointed out in the original
Ginzburg-Landau paper.® If the field dependence
could be described by such a simple power law,
there would be no need for the elaborate machinery
of Egs. (26)-(32). However, we shall see that f
has a singularity at Hg, so that a general analysis
is necessary.

III. EXPERIMENTAL

The tin®*! spheres were produced by sonoration
of the molten metal in pure 1-2-6 hexanetriol, and
repeatedly rinsed in pure alcohol. Single spheres
were selected under the microscope. Sphere
diameters were measured in the microscope to an
accuracy of +0.5 um.

The cryostat and detection system have been de-
scribed before.'®** A germanium thermometer
calibrated against *He vapor pressure was used.
Temperatures could be stabilized to about 0.1-0.2
mK. T, was determined for each sphere from a
zero-field sweep of the type shown in Fig. 2 of
Ref. 22. This gives T, with a relative accuracy of
+0.2 mK. Field sweeps at temperatures close to
T, were reversed so as to eliminate small axial
remanent fields. The effect of the tickling field
was corrected for by doing sweeps for different
tickling fields, and extrapolating to zero. The
75-kHz tickling field was typically 0.2-0.6 Oe
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peak to peak and parallel to the static field. Some
experimental parameters for the three spheres
investigated are given in Table I.

It was necessary to measure the signal difference
S between the superconducting and normal state as
accurately as possible (see Fig. 1). Measuring S
directly from the hysteresis loop is not good
enough since the signal will often drift with time.
The following procedure was therefore used. The
field sweep was stopped at the desired value of H,
and a 100-msec current transient was applied to
the solenoid, causing a transition in the sphere.
After 10 sec, when all electrical and thermal
transients had died out, the signal difference was
measured. To improve accuracy, each transition
was repeated 5 or 10 times. This permitted mea-
surement of S(T, H) to respective accuracies of
about 2 and 1% for the 15.4- and 28.4-pum spheres.
Measurements were performed for H,, <H <H.

A problem was encountered in that the total out-
put signal, of which the transition signal is only
a small part, was found to decrease slowly with
time on the average by 10% in 4 h. This is prob-
ably due to the sinking He level, which changes
the resonance conditions in the detection system.
However, it was established that the transition
signal was always proportional to the total signal.
The total signal was therefore monitored, and the
transition signal corrected proportionally.

IV. RESULTS

Experiments were performed on the three tin
spheres of Table I. The main series of measure-
ments was carried out on the 15.4-um sphere.

A few measurements on a 17.1-ym sphere con-
firmed that the results on the first sphere were
reproducible. Both these spheres showed ideal
superheating and supercooling. Finally, to see

if the field effect depended upon the size of the
sphere, a series of experiments was carried out
on a 28.4-um sphere. Unfortunately, this sphere
had some surface defects, and only superheated
to about 2.5H,. The results below this field, how -
ever, are in accordance with those on the smaller
spheres, and show the field dependence to be a

TABLE I. Experimental parameters for three tin
spheres.

Diameter Peak-to-peak
Sphere (Hm) T, K) tickling field (Oe)
Sn-~1 15.4 3.7239 0.48
Sn-2 17.1 3.7195 0.62
Sn-3 28.4 3.7231 0.28

bulk effect. In the following, we first report the
results on the penetration depth 6(T, H) and then
give the results on the superheating and super-
cooling.

A. Penetration depth: temperature dependence

At H, the equatorial field is less than 0.4 H,,
so any field effect is negligible. We therefore use
the temperature variation of the supercooling tran-
sition signal S(T', H) to determine 5(T). Assuming
8(T) =6,y, where y=1/(1-1%)2 we can fit the ex-
perimental data to Eq. (21) to determine §,. The
results for the 15.4- and 28.4-um spheres are
shown in Fig. 3. We see that the signal depres-
sion from ¢=0 to £=0.998 is about 19 and 11%, re-
spectively. At least-mean-squares fit gives
8,=500+40 A for the smaller sphere and 6,=530
+30 A for the bigger one. The best experimental
value is thus

6,=520£30 A.

The theoretical curves in Fig. 3 are calculated
from this value, and are seen to fit the experi-
mental points very well. The agreement with
previous experiments is excellent: our value of
8, is identical with that obtained by Laurmann and

0.90 0.99 0.998
T T T
_ 10 Sn sphere 28.4 um
5 O~ .
E \'\
= .
~ oo} \ 4
: \\
;‘;" +
1 1 1 1 1 1 1 Il 1 1 1 1 1
1 3 5 7 9 " 13
y=1/V1-8
090 ogg * 0.998
T T T
10‘\( Sn sphere 15.4 um S
Q
C ooF .
n
~
=
vosf -
%]
1 A 1 1 1 1 1 1 1 d 1 1 1

-

5 7 9
y=1/Vi-t#
FIG. 3. Temperature dependence of the signal, re-
flecting the temperature dependence of the penetration
depth 6. Solid curves correspond to 6 (T) =6,/(1 —t4!/2,
with 6,=520 A. Signal is seen to decrease by about 20%
for the smaller sphere from =0 to £ =0.998.
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Shoenberg® and with the value obtained by Schaw-
low and Devlin® above y=1.7. However, it must
be emphasized that this is no absolute determina-
tion of the penetration depth at T=0. Instead, we
have measured ckanges in 6 with temperature and
found that these can be described by 6(T)=56,y. An
absolute determination of 6(7 =0) is impossible
from this kind of experiment, as pointed out by
Tedrow et al.?®

B. Penetration depth: field dependence

In the following, we will extract the field de-
pendence f(H/H,) of the penetration depth from the
experimental data S(T, H) proceeding as outlined
in Sec. IIB3. While data were collected down to
t=0.6, we will use only the data close to T, in this
analysis. The main reason is that the changes in
signal are proportional to the product 6(T)f(%),
and thus the experimental resolution of the field
effect is proportional to y=1/(1 —#*)!/2, Hence,
going from £=0.996 (y=8) to t=0.88 (y=~1.6) de-
creases the experimental sensitivity by a factor
of 5. Also, the superheating may not be ideal far
from T,. On the other hand, if field sweeps are
taken too close to T, the temperature stability
becomes critical, and the tickling field can no
longer be neglected compared with the static field.
We therefore choose for analysis the data for
which 0.965<¢<0.996. This still corresponds to
a large spread in the values of y, which range
from 2.7 to 7.9.

Figure 4 shows the reduced signal ¢ for the
15.4- and 28.4-um spheres. Each data point is
the average of 5 or 10 transitions, as explained in
Sec. III. Thus, the 74 points shown for the smaller
sphere represent a total of 460 individual transi-
tions. ¢ is plotted as a function of the reduced
field h=H./H.. H, is taken from the literature
(see Sec. IVC), and H., =k(T)H, where H is the
applied field and k(T') is the demagnetizing coef-
ficient given by Eq. (16) and plotted in Fig. 2. The
asymptotic value H3"%/H,=2.76 is determined from
the GL parameter x(t=1)=0.093 (Sec. IVC). Since
k changes slightly with temperature even in the
small temperature range represented in Fig. 4,
all values of z have been scaled to give H'%=2.76
H,., which is strictly true only at {=1. Otherwise
we would have a “fuzzy” asymptote which would
move to slightly lower values of z for the data
with lower ¢ because of the increase in k. As Fig.
4 now stands, it is chavacteristic of bulk tin at
t=1. The same is true for all subsequent figures.

As explained in Sec. IIB 3, the reduced signal
¢ should be a function of % alone, to first order in
8/R. Figure 4 contains data for different tempera-
tures, which indeed fall on a universal curve with-

in the experimental accuracy. These results are
unchanged by halving the tickling field. For the
smaller sphere, we see that ¢ increases from its
initial value of 1 at 2 =0 to values approaching 3
close to the bulk superheating field. The increase
is scarcely noticeable below % =1, but becomes
very strong close to gy, =2.76. The reproducibility
of the data for the 15.4-um sphere was established
by experiments on two other spheres. The few
measurements on the 17.1-um sphere (not shown)
gave values for ¢ of 2-2.8 in the vicinity of the
superheating transition, in agreement with Fig.

4. The results for the bigger sphere, 28.4 um in
diameter, are given in the upper part of Fig. 4.
Unfortunately, this sphere had surface defects
preventing ideal superheating. However, as seen
from the figure, this sphere gives values of ¢
around 1.6 at #=2.5, in very good agreement with
the data for the smaller sphere at that same re-
duced field. We can thus draw the conclusion that
the field effect is reproducible and independent of
sphere diameter, i.e., characteristic of bulk tin.

The results presented in Fig. 4 lead to an im-
portant conclusion which is not readily apparent.
Namely, the field effect is governed by the bulk
superheating field H%'* and not by the actual super-
heating field Hy. For an ideal sphere, these
fields are identical for temperatures up to about
t=0.985 for a diameter of 15.4 um. At this point,
even in an ideal sphere, a size effect in the co-
herence length sets in which reduces the width of
the observed field hysteresis and makes the pa-
rameters k. and kg apparently diverge. This
effect is well known from earlier experiments!*!®
and is observed in the present experiments as
well. (See the superheating/supercooling results,
presented in Sec. IV C and Fig. 9.) However, the
results for £(#) do not seem to be influenced by
this size effect in the coherence length. For in-
stance, the superheating transition at £=0.982
occurs at 2 =2.72, very close to the bulk value of
2.76, and gives £ =2.62. At {=0.996, well into the
size-effect region, the observed superheating
transition occurs at % =2.58, giving £=1.77, which
falls very nicely on the universal curve of Fig. 4.
We conclude that the field effect is governed by
HY'%, even as the observed Hy, <H"%', because of
the size effect in the coherence length.

In the subsequent analysis, we will use the data
for the 15.4-um sphere only, as they are the most
complete, and extend to the ideal superheating
field. Figure 5 shows the results for the mean
penetration depth g(h) averaged over the surface
of the sphere [Eq. (26)]. The points in Fig. 5
were obtained by connecting all the data points
in the lower part of Fig. 4 by one continuous zig-
zag line and then integrating under this curve with
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respect to . This in turn yields Z(z) [Eq. (31)]

and f(r)=8(k)/6(h =0) [Eq. (32)]. The data of Fig.

5 were adjusted to give 5(2)/6(0)=1 at 2 =0 by
means of a least-mean-squares fit of 6 vs 42 for

h<1.9, correcting for the term in 4* [Eqgs. (12)
and (26)]. It is apparent from Fig. 5 that the inte-
gration over field has greatly reduced the experi-
mental scatter, especially at high fields z#>2.3,

1.20 , , ,

196

192

0)

/ 8(h

1.08

5(h)

1.041

FIG.5. Average value §
over the spherical surface
of the penetration depth.
Extrapolation gives 6/6(0)
=1.19 at the superheating
limit, Figure was obtained
by graphical integration of
Fig. 4, as explained in the
- text.

1.00p——o=*=
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where the sensitivity is largest. However, the
field effect itself is now seen to be quite small, at
least when averaged over the spherical surface.
The two solid curves in Fig. 5 give 5(k) as pre-
dicted from the one-dimensional GL theory [Eq.
(11)] for the local and nonlocal cases. They were
calculated by numerical integration of Eq. (26),
with f(z) given by Egs. (5), (6), and (11). They
are in fair, but not complete, agreement with the
experiments. The “nonlocal” curve, given by
6~z/)s'2/3, gives the best description at low fields,
whereas at high fields the experimental curve
increases faster than either of the theoretical pre-
dictions. Thus, at the superheating field, 5exp
lies slightly above even the “local” curve given
by 6~ygt.

The final step in the analysis is to invert the
integral expression for f(k), Eq. (26), so as to ob-
tain the unknown function f(z) =6(%)/6(% =0) from
the averaged quantities. We are unable to do this
analytically, and therefore proceed empirically by
defining a deviation function D(%) such that

Oexpl)/6(h =0)=flh) = (Ys/ o) ™' = D(R) . (35)

Here, i, is the GL expression [Eq. (11)]. When
averaged over the sphere by Eq. (26) this gives

Few®) = (/09 ™y = D) . (36)

The first term can be calculated numerically, and
is given by the upper solid curve in Fig. 5. D(z)
is determined empirically as the difference be-
tween this curve and the experimental points. We
notice that this difference is zero at #=0 and %
=2.66, with a maximum around %z =2.3. We there-
fore try a deviation function of the form

D(r)=0.0058%2[1 - (/2.66)8] . (37)

The numerical coefficient comes from the least-
mean-squares fit of f vs 4% for low fields. The
exponent 8 is chosen so as to make D a maximum
close to #=2.3. The resulting function describes
the experimental data of Fig. 5 quite well, smooth-
ing out the “noise” at low %, and following the
points for 2<2.3 very accurately. It can also be
written

D(r)=0.04418( /h, )?
~0.05936(1/h 4,)*°, (38)

where 7, =2.76. We notice that the two theoretical
curves in Fig. 5 give finite values of f of 1.171 and -
1.110, respectively, at the superheating field. The
experimental value is obtained by extrapolating
Eqgs. (36) and (38):

5(k)/6(h=0)=1.19+0.01.
Using Eq. (26), D(2) is readily calculated, yielding
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D(r) =(0.04418/J,)(H/H , )?
- (0.05936/J,,)(H/H)*.

Here, J,=% and J,, =0.3694 are obtained from
Eq. (34). The end result is

8 oxp(H)/3(H =0)
= (@s/%0) ™ - 0.0663(H/H,)? +0.1607(H/H ;)*°,
(39)

where H, = H,(k/2)}/2=2.16H,, and y,(H/H,) is
the GL expression [Eq. (11)]. We emphasize that
Eq. (39) is a purely empirical fit to the data.
Strictly speaking, it is only valid up to the last
experimental point at # =2.74, and not all the way
to the superheating limit. However, the experi-
mental curve is so similar to the theoretical
curves (Fig. 5) that we permit extrapolation to
the superheating field, 2.76H,. In Fig. 6, we
have plotted the experimental curve for f(H/H,),
together with the prediction f=y;'. We believe
that the uncertainty introduced by the approxima-
tions made, by the choice of an asymptote, by the
tickling field and by the experimental scatter,
amounts to no more than 8% in (f- 1) at the super-
heating limit. Thus, using Eq. (39), we have

5(H,,)/6(H =0)=1.51+0.04.

The use of a more realistic angular field distribu-
tion Hg (Sec. IIB 1) would reduce the above value
by an amount at most equal to the error given. Our
value is slightly higher than [ (H,)/¥,] 1 =1.41,
but considerably higher than (¢,/3,)2/3=1.26. In
the weak -field limit, Eq. (39) reduces to

8(H)/6(0)=1+a(H/H,),

where o =0.008 + 0.004 from the least-mean-
squares fit. This is less than the value of 0.0165
and 0.011 predicted by GL theory for the local and
nonlocal cases, Eq. (8) and (9). Experimentally,
Sharvin and Gantmakher® found « in the range
0.014-0.020 for tin, with the lower limit as the
most reliable. However, the “noise” in the ex-
perimental points for low % in Fig. 5 show that the
error in our value of ¢ may be greater than given
by the fit. Thus, our rather inaccurate value of
a is in reasonable agreement with GL predictions
and the previous experiment.

Since theory predicts that the derivative /(%)
diverges at the superheating field (Sec. II), it is
of interest to look more closely at this derivative.
Figure 7 shows the experimental results for 7'(),
the derivative averaged over the sphere. It is de-
fined by

/2
I”(h)=j0 dosin? 6 f'(h sing) . (40)
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Field dependence of penetration
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FIG. 6. Final results for
the field dependence of the
penetration depth at ¢~ 1 in
tin. Experimental curve was
obtained from Fig. 5 by em-
pirically inverting Eq. (26).
Theoretical curve is based
on Y, (H) as given by the GL
calculation, Eq. (11).

100

As seen from Eq. (29), it is obtained to first or-
der in 8/R simply by subtracting the data points
of Fig. 5 from those of Fig. 4, and then dividing
by &:

Fr=/n)e-7). (41)

Figure 7 shows that f’(%) is sharply increasing
close to the superheating limit, where it lies con-
sistently above the values given by f~;!, which

0.8 T T T T T

o
o)
T

5(h)/5(0)
o
+

o|lg 0-2[

-01 - . .

h = Heq / Hc
FIG. 7. Average over surface of the derivative of the
penetration depth. Experimental points indicate a di-
vergence at the superheating limit. Solid curve is based
on f~yl.

itself has a divergent derivative f’(k). Hence, in
all probability f'(H) diverges at H, although this
of course cannot be proven rigorously.

Finally, in Fig. 8, we present results on the
field effect for temperatures down to {=0.78. As
the sensitivity drops rapidly with a lower {, we
only present the reduced signal ¢ at the super-
heating transition. We are not including data
above {=0.98, because of the size effect in Hy,,
as explained earlier. Figure 8 shows that the re-
duced signal at H decreases slowly as the tem-

T T T T T
Signal depression at superheating transition.

"

SO —~S¢h
S0 —5¢c

»
)
T

L(hgpn)

I Il | 1 1
0.80 084 o88 092 096 1.00

FIG. 8. Reduced signal at the superheating transition,
as a function of temperature down to ¢ =0.78. Tempera-
ture dependence is seen to be slight.



4896

perature is lowered. However, the uncertainty

in the slope is seen to be considerable, and part
of the decrease could be caused by deviations
from ideality at the lower temperatures. We con-
clude that the field effect shows no marked change
with temperature down to £=0.78. In particular,
we see no signs of the marked structure at ¢
=0.80-0.85 reported in Pippard’s early work.”

C. Superheating and supercooling

]
The superheating and supercooling results are
analyzed as usual™?!® in terms of the experimental
parameters

K, =0.4172(H,_/H,) , (42)
Ko =3V 2(H,/3H ) =0.3143(H,/H ,)* , (43)
wb =2 2{H./ [T ¥, (44)
k3 =0.4974{H /[R(T)H ,]P*/* . (45)

Here, Hy, and H, are the observed fields. Equa-
tion (43) assumes a spherical demagnetization co-
efficient of 2, as for a large sphere. Equations
(44) and (45) use the correct coefficient 2(T,H,)
<3, where

R(T,H,)=31-8/R+(5/R}],
(46)

5(T,Hy)=1.195,y .

Here, we have inserted the factor f(hsh) =1.19
from Sec. IVB. The importance of using the cor-
rect demagnetization factor for the smaller
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spheres was established in the earlier experi-
ments on 8 —Ga.!® Equation (42)-(44) require an
accurate knowledge of H (), which must be taken
from the literature. We have used®*

H,(t)=Hy(1 - £)(1-0.118),

where H,=305.5 Oe. This gives H, accurate to
1 or 2%.

Figure 9 shows the superheating and supercool-
ing results for the 15.4-um sphere. The size ef-
fect in the coherence length close to 7', gives the
customary increase in all «’s close to T,. Neglect-
ing this size effect, we see that « and «§ con-
verge towards approximately the same values at
t=1, as they should. The extrapolated values in
fact differ slightly, but a reduction of 1% in H (T)
would make them coincide, and this is less than
the accuracy with which A, is known.

To determine the GL parameter «at f=1, we
use the parameter «3, Eq. (45), which does not
require knowledge of H,(¢) nor a precise deter-
mination of T,.”® As shown in the upper part of
Fig. 9, Kg is extrapolated to {=1 using the data
0.86<t<0.98. The result for the GL parameter
is

(47)

Ky (£=1)=0.093 +0.001

in excellent agreement with Feder and McLachlan’s
value' of 0.0926 +0.001, from their single-sphere
experiments. It is also in fair agreement with

the value of Smith et al. obtained on tin powders.!?
They found g, =0.087+0.002, but they may have a

T T 1 T T T T T T T T T T T T T T
- Sn sphere 15.4 um _
012+ * B
K i
0.0k e
L K(t=1)=0.093 FIG. 9. Superheating and
] supercooling results for the
Q.08 4+ 15.4-pum sphere. Different
k’s are given by Egs. (42)—
. ol (45). Ginzburg-Landau
0.4 : 4 parameter at ¢ =1 is de-
? . termined by extrapolation
K o . . o] of kg (upper right), Notice
O.12L ° ol onset of size effect at
° . : . . t ~0.985.
T oK ° ° < T LA
ook - Ks:‘ ° e e o Do "....";
3 . IR IR X
- *Kgp (corrected with §=5204) .
008 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1
) 082 084 086 088 090 092 094 096 098 1.00

t
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small systematic error due to the width of the
supercooling transition in the powder experiments.
Thus, within experimental error, all these mea-
surements agree nicely as to the value of « at
t=1. Substituting our value of « into Eq. (10) gives
H%k=276H, at t=1, which is the value used
throughout the analysis of the field effect.

Finally, we give the (extrapolated) slopes of the
different «’s at £=1. We find values of (1/k)(dk/dt),
of -1.5, -2.0, and -3.2 for k.., k3, and K3, re-
spectively. The slope of k., compares to a theo-
retical value of —1.0 for the GL parameter. Our
value is identical to Feder and McLachlan’s,*
and is also in agreement with that obtained from
the powder data of Smith et al. as inferred from
Fig. 8 of Ref. 12.

V. DISCUSSION

The observation of a singularity in the field de-
pendence of the penetration depth at Hy provides
yet another strong indication that we are indeed
observing ideal superheating, i.e., the limit at
which the normal phase is formed by homogeneous
nucleation.

It is quite remarkable that both the temperature
dependence (Fig. 3) and the field dependence (Figs.
4-6) of the penetration depth are unaffected by
the onset of the size effect in the coherence length,
which starts around ¢=0.985 for the 15.4-um-diam
sphere (Fig. 9). We have shown that even in this
size-effect region, the field dependence is gov-
erned by H5'X  although the actual H is reduced
because of the size effect. However, this is not too
surprising. The size effect in the coherence
length becomes marked at 1 —¢~1072. Since the
penetration depth is roughly an order of magnitude
smaller, and diverges as 1/(1 —#)*/? near T,, a
similar strong size effect in the penetration depth
would not be expected to occur until 1 —¢=~10"%,
which is much closer to T, than any of the present
experiments.

Turning to the observed field dependence f(H/H,)
of the penetration depth, Fig. 6, we can now in-
vert Eqs. (5) and (6) to get a picture of the depres-
sion of the surface order parameter ¢, as a func-
tion of the field H. This gives 3,/¢,=/) " and
F(h)™3/2, respectively, for the local and nonlocal
cases. Figure 10 shows the resulting curves for
¥s/P, based on 6.,,, as well as the theoretical GL
prediction, Eq. (11). The latter curve gives a val-
ue of 0.707 for ,/y, at Hy,, while the experimen-
tal values are 0.663 and 0.540 using the local and
nonlocal equations, respectively. Figure 10 thus
indicates that the GL prediction, Eq. (11), is
rather good, but that it may underestimate the de-
pression of the order parameter at the super-

1.0
09+
0.8
5
o7
(2] e i . (4
> Field depression of surface
order parameter in tin. 663
06- K=0.093 |
.540)
O.E S 1 1 1 1
0 2.0 276

1
1.0
H/Hc

FIG. 10. Depression of the surface order parameter
s as a function of the field H. Broken curve shows GL
prediction [Eq. (11)]. Full curves are based on the ex-
perimental values of 8(H), with §;~ 06" and y;~ 67/ for
the local and nonlocal cases, respectively.

heating field. Although we do not know the exact
relationship between 6(H) and ¢ (H), we can con-
clude on the basis of Fig. 10 that the surface or-
der parameter i, is depressed by (30-50)% at
Hg.

It would be of interest to determine how fast
f'(r) and y/(r) diverge near H, to look for devia-
tions from mean-field theory, which predicts a
divergence as (1 - H/H,) */?. However, such an
analysis is made complicated by the averaging
over the spherical surface, and by the effect of
the tickling field. The only conclusion that can
be drawn is that the data seem to be consistent
with a mean-field theory type of divergence near
Hy .

VI. CONCLUSION

In experiments on single tin spheres 15-30 um
in diameter, we have carried out the first mea-
surements of the field dependence of the penetra-
tion depth up to the bulk superheating field, which
is 2.7T6H, for tin at /=1. In weak fields up to H,,
we find the customary weak quadratic field de-
pendence. As the field increases towards the su-
perheating limit, §(H) increases greatly, reaching
a value 8(H,,)/8(H=0)=1.51+0.04. The experi-
ments indicate that the first derivative of &(H)
diverges at Hy, although this cannot be rigorously
proven. The analysis indicates that the depression
in the surface order parameter i, is (30-50)% at
H, . Experiments are in progress to extend the
measurements to different materials with a dif-
ferent «.
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