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The phase diagram of a magnetic-superconducting sandwich below the Curie temperature of the magnetic side

is considered. A coupling parameter between the two order parameters is determined from the microscopic

properties. For strong coupling the superconducting transition is first order. It is shown that one is always in

the weak-coupling limit when the magnetic material has localized spins.

I. INTRODUCTION

The possibility of coexistence of superconduc-
tivity and magnetism has recently attracted a
new interest due to experiments on superconduet-
ing systems containing magnetic impurities. ' '
Entel and Klose' calculated the dependence of the
second-order superconducting transition tem-
perature on the concentration of magnetic impuri-
ties. Taking into account short-range magnetic
correlations in the vicinity of the Curie tempera-
ture, they found that the system can go normal
between two superconducting regions.

In this article we consider the proximity effect
between a superconducting film and a magnetic
slab. We use a Landau-Ginzburg theory to examine
the competition between the magnetic and the
superconducting order parameters in the mag-
netic slab. It is found that the supercondueting
transition may be of the first or of the second
order, depending on the strength of the coupling
between the two order parameters.

To lowest order, the coupling between the spon-
taneous magnetization and the gap function is bi-
quadratic. Landau-G inzburg models with biquad-
ratic coupling between two order parameters have
already been discussed in the literature. Imry
et al. ' considered a one-dimensional model in-
cluding fl.uctuations and found that there is a pos-
sibil. ity of mixed phases as well as of pseudo-first-
order transitions. Levin et al.' used a similar
model to examine the incompatibility of BCS
pairing and Peierls distortion. Although these
models describe a homogenous system while we
consider sandwiches, the main results are in a
sense very similar. However, there is much more
experimental flexibility in the proximity-effect
situation because the coupling strength can be
varied and adjusted by using different types of
magnetic layers.

The parameters which determine the strength of

the coupling are assumed to be temperature inde-
pendent. These parameters can be calculated
from a microscopic theory. ' They do indeed have
a weak dependence on the temperature except in
the vicinity of the Curie temperature 7.'~. This
is due to the spin-flip scattering rate 1/T, ap-
pearing in them. 1/T, has an anomalous behavior
near TE because of long-range correlations among
the spins of the magnetic impurities. ' As a result,
the strength of the coupling is changed in the vi-
cinity of Tz and this affects the order of the tran-
sition.

In Sec. II we find the conditions which determine
the order of the superconducting transition. This
is done as follows: We construct a free-energy
functional that yields Landau-Ginzburg equations
for the m3gnetie-superconducting sandwich. We
then look for a second-order superconducting
transition. The second-order transition tempera-
ture T~ given by this solution is the one resulting
from the usual Werthamer approximation, ' modi-
fied by the presence of the ferromagnetic order.
It is found that a second-order supercondueting
transition exits only when the coupling between
the two order parameters is weak. ' We then show
that when the coupling is strong, ' there exists a
solution with a finite supercondueting order para-
meter at T~ which has a lower free energy. In
this case a first-order transition occurs at a tem-
perature higher than T~.

Section III includes a discussion of the coupling
strength in real systems, as a function of the
ratio T~/T„, where T„ is the transition tempera-
ture of the bulk superconductor.

II. DETERMINATION OF THE ORDER OF THE

TRANSITION

We assume that the superconducting slab of the
sandwich is of finite width d, and occupies the
region 0&x&d, while the magnetic slab is semi-
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infinite and occupies the region —~& x& 0. The
assumption that the magnetic slab is infinite is
made in order to simplify the calculations; the
results hold as long as the magnetic slab is much

thicker than the depth of penetration of Cooper
pairs. The interface between the two slabs is
at x =0. The functional of the free energy of the
sandwich is

F =A. dx " +k'6 + —6 +@A'h'+ah'+ —h' —A. 6' 0

4p

Here 4„, ~, are the superconducting order para-
meters in the magnetic ("normal" ) and the super-
conducting slabs, respectively, and

1 d6„ 1 da,
A., =—

6„ dx ' &, dx (2)

The terms containing &„, A, in Eq. (1) describe
the surface energy which has to be included in
discussing a finite slab. It is convenient to sepa-
rate them in this way. These terms, as well as
the boundary conditions at x =0 will be discussed
below. h is the magnetic order parameter. We
assume that h is position dependent only through
its coupling to &„, i.e., that the magnetic coher-
ence l.ength is short compared to k „'. The cou-
pling between ~„and A is biquadratic with y& 0.
In the absence of magnetic order, k„' gives a
measure of the depth of penetration of Cooper
pairs into the normal metal (see Hauser et aE.').
k, ' gives the effective variation range of ~, on
the S side. ' The parameters P and P, are positive
and assumed to be independent of the temperature.
We also assume units such that

a = T/T» —1,

where T~ is the Curie temperature of the mag-
netic side. A„and A. , are constants.

The boundary conditions satisfied by ~„, 4,
are' (i)

dh„dh,
dx ~ ~ dx

S

(ii) &/NV is continuous at x=0, where N is the
density of states at the Fermi level and V is the
BCS interaction potential; (iii) (D/V) (db/dx) is,
continuous at x = 0, where D is the diffusion co-
efficient of the electrons. From the last two con-
ditions we obtain

(4)

x„= (D, N, /D„N„)x, .
The terms A„&'„(0) and A.,&', (0) in (1) are needed in
order that the variation of F will give the Landau-
Ginzburg equations for &„, 4, . These "surface
energy" terms describe the influence of the super-

conducting metal on the normal metal and vice
versa.

The variation of F with respect to ~„, &, , and
b, together with (2), (4) gives

d 6,d,' = —k, &, +P, ~, ,x (6)

d26
2" = k„4„+pb„+y'b„h',dx2

h(a+yb. '„+bh') = 0. (8)

In the strong coupling case,

q'& Pb, (10)

we shall show that at T~ the lowest F is obtained
for a solution with h(0) =0 and a finite &„(0). Thus

Equations (6), (7) can be derived from a micro-
scopic theory. Such a derivation gives explicit
expressions for the parameters, and especially
their dependence on 1/v, .' Equation (8) can be
deduced from a calculation similar to the one of
Gorkov and Rusinov, including spin-spin correla-
tions of the magnetic impurities.

We consider Eqs. (6)-(8) at temperature below
T», i.e. , a= —~a~. Since the penetration depth
of Cooper pairs into the normal metal is finite,
it is clear that h(x) cannot vanish everywhere on

the normal. side. However, the value of h at the
interface x =0, h(0) will in general be different
from its bulk value (h" =

~
a~ /b) and may even van-

ish. The only case where b'(0) = ~a~ /b is when

4„=~,=0. When there are, at a certain tempera-
ture, and for a certain choice of the parameters
0„, A.„, P, b, and y several possibilities for the
values of h(0) and b.„(0), the system will choose
the possibility which gives the lowest F.

We shall first look for the temperature (T~) at
which ~ can go through a continuous second-order
transition. It will be shown that such a transition
occurs only when the coupling between 4„and h,

is weak, '

y'& Pb.
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at a certain temperature higher than T~, the sand-
wich must undergo a first-order transition. In
the limiting case

and at T~ the solution changes from a second-
order transition solution to a first-order one.
Thus when (11) holds, T~ is a tricitical point.

We begin by classifying the types of solutions
that are possible for &„(0)and k(0). There are
two different situations occurring on the normal
side at a certain temperature. Either k(x) van-
ishes beyond some point —lx, l (x, may be zero),
or k(0) c 0. In the first case

~'. (- Ix.l) = ll/w. (12)

In this case the first integral of (7), using (8)
gives

—k' 62 ——&4 — ~'+ —~' = COnSt = 0,P, rl~l . r'
1l

Q
fI 2Q 7l

—~& x& — xo

(13)
2

—k '„4'„-—&„'=const = (A. '„—k'„) 4'„(0) ——&„'(0),

—l, l&x 0.

The constants in the first and second equations
are determined by the values of 6„, db, „/dx at
x= —~ and x=0, respectively. In the second case,
where k(0) w 0, the first integral of (7) is

rK B, &I~I ~2B, r'
Pl~I ' bK '

P& (19)

A, =k, tank, d, . (20)

It can easily be verified that this approximate
solution causes the free energy of the supercon-
ducting side, F, [the second term on the right-
hand side of (1)], to vanish. Now consider the
free energy of the normal side, F„I the first term
on the right-hand side of (1)]. For the solution of
type (i), F„=F~'~ is j-ust the magnetic free energy

'
(

I~I*) (21)

The free energy of the normal side corresponding
to the solution of type (ii) is F~ "~:

The product A'B' is temperature independent and
its magnitude compared to 1 determines the
strength of the coupling. (The case where A.' =B' =1
is treated separately later on. )

At the second-order transition the solution is of
type (i). Just below second-order transition the
solution of type (ii) must hold and at the transition
it has to go continuously into the solution of type
(i). We now show that this can occur only in the
weak coupling case and that the second-order
transition temperature is the one obtained by
Werthamer approximation. ' Near the second-
order transition the cubic term in (6) may be neg-

lected. Then by solving (6), using (4), we obtain

co& X& 0

(14)

0
E " =E +A„2 dx k'„&'„+— a~&'„

4
x'

4

It is convenient to transform to new variables

k'(0) =(I~I/&)g,

6,'„(0)= (K/P)f, K= i.'„—k'„.
(15) = E~+A„2

~„(0)
da„k'„a'„+ ~ lain'„

There are three types of solutions for g and f.
Equations (8) and (14) have two types of solutions:
(I)

+ - &„' -—a„' - X„~'„(0),

(22)

2(l —B ) I -A'(2 —B )
&-A2B" ~ i-A2B2 (17)

where we used (14). Performing the integration
and using (15), (17), and (19) we obtain

E(jj) E 2K 1

P 3(1-A B )

Equations (12) and (13) have a solution of one type:
(iii)

—(B' —1 + —")

A —B(f —1)'= ~2, a=0. (18)
x p+2(B' —1+ —") . (23)

Here Thus E„"' is l.ower than E„' only in the weak cou-
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pling case where A'B'&1. From (23) we see that
the second-order transition temperature T~ is
at B' =1, i.e., from (19)

y ) a ~ /b = K = A.'„—k '„. (24)

Equations (5), (20), and (24) are just Werthamer's
equations' for the superconducting second-order
transition. In the absence of magnetic order
A.„=k„and we obtain the usual solution. ' (Note
that the normal side of the sandwich is semi-in-
finite. ) When there is a magnetic order, the depth

of penetration of Cooper pairs into the normal
metal is reduced because of the y~ a

~ /b in (24).
We now consider a system in which the coupling

is not weak (A'B' & 1), at the temperature T„,
where B' =1. We shall first compare I„",given
by (23), to F~"'~. We then examine the solutions
of the special case A' =B' = 1 and finally discuss
the behavior of ~„.

The calculation of E„"'is described in the Ap-
pendix. The result is

~3/2 1/A — g2 1/2

du —,
' (1 -A') u'+ ~K u' —

~K
u

0

(25)

We show in the Appendix that the second term on

the right-hand side of Eq. (25) is negative. From
(23) we have

Z&"~ =Z('~ =S„B'=1, Z'&1 (26)

[ 2(1 —B') —(1 A'B') f ]f-= 0

and thus for A =B' = 1, f can have any value.
From (8) we find that in this case

(27)

(28)

and therefore f and g can have any value between
0 and 1. All the solutions of (28) have the same

(29)

from (23) or from the Appendix.
Now consider the behavior of 4„(0)at B' =1.

From (15) we see that a finite value for f implies
that &'„(0) is finite, as long as K differs from zero.
The connection between &„and K results from the
solution of (7). When k vanishes at a certain point
on the magnetic side, &„(and therefore K) is de-
termined by the first two terms on the right-hand
side of (7). If b, „ is sufficiently large so that the

Thus in the strong coupling case (A'B'& 1), solution

(iii), with f 1 has the lowest F„at T~. For this
solution k vanishes at a certain point —

~ x, ~
on

the normal side. One can show that when A.' be-
comes smaller and approaches 1 from above, the
point x0 approaches the interface. At g = B = 1,
we have from (12), (15), (18), and (19) that f = 1
and x0=0. The caseA'=B'=1 is the intermediate
case between the strong and weak coupling cases.
In this case Eqs. (16), (17) [solutions (i) and (ii)]
do not hold since from (14), (15), and (19) we
have

l

P&'„ term is important, ~„ok„and therefore K
diff ers from zero. On the other hand, when 4„
is small and the P4'„ term is negligible, A.„ap-
proaches k„and consequently K- 0. From these
remarks we conclude that the behavior of ~„at
B' = 1 is as follows: For A'& 1, f = 0 and K is
finite [Eq. (24)] and the transition is of the second
order, i.e., &„(0)=0. As A' passes 1 and in-
creases, the transition cannot be of the second
order and thus the value of &„(0)at B'=1 starts
to increase. For A &1, &„ is still very small
and therefore although f is finite, K-0, which is
consistent with the fact that &„ is very small. As
A' becomes much larger than 1, &„ becomes
larger so that the P&'„ term in (7) is not neg-
ligible and K differs from zero. A finite value for
4„ implies of course that &, is finite. This means
that F, must be negative (whereas at a second-
order transition it is zero). Note also that since
k(0) =0, A,„and consequently A., are smaller than
in the case where k(0) x0 [i.e. , a solution of type
(ii)]. This is because a finite k(0) reduces the depth
of penetration of Cooper pairs. We conclude that in

the strong coupling case and atB2 = 1, &„(0)is finite
and therefore a first-order transition will occur at
a certain temperature higher t han T~. At A =8 = 1
the transition is changed from first order to sec-
ond order and this point is a tricritical. point.

III. DISCUSSION

We have considered a superconducting-magnetic
sandwich below the Curie temperature using a
I andau-Ginzburg theory, and have shown that the
competition between ferromagnetism and super-
conductivity in the normal side of the sandwich
may lead to a first-order superconducting trans-
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ltlon. The order of the transition is determined
by the strength of the coupling between the two
order parameters. In the weak coupling case
where y'/Pb& 1, a second-order transition is pre-
dicted and the transition temperature T~ is the
one given by the Werthamer approximation. ' In
the strong coupling ease, y'/Pb& 1, and at T~,
the magnetic order parameter vanishes at the
interface and &„(0) is finite. Thus at a certain
temperature higher than T~ a first-order trans-
ition will occur. When y'/Pb =1 there is a tri-
critical point at B = 1.

At T=T~ (B'=1) the coupling parameter may
be written from (19) as

fC'/P B =1
I+I /b (30)

This shows that the coupling is qualitatively the
ratio between the densities of the superconducting
free energy and magnetic free energy of the nor-
mal side. The numerator cannot be l.arger than
the density of the free energy of the supereon-
ducting side. Therefore

y /Pb& hF, /b. F», (31)

where ~I, , &E„are the condensation energies
of the superconducting and the magnetic order
parameters, respectively.

The inequality (31) implies that it is virtually
impossible to attain strong coupling conditions.
For a localized spin ferromagnet one has

EE, T,/T»
AF~ T

and one would require T, /T» large enough to com-
pensate for the factor T, /T» on the right-hand
side, to attain strong coupling.

The situation would be quite different for an
itinerant electron ferromagnet. One then has

so that the Fermi temperature cancel. s:
~F, T

APPENDIX: FREE ENERGY OF THE MAGNETIC SIDE OF

A SOLUTION OF TYPE (iii)

Solution (iii) describes a situation where the
magnetic order vanishes at the interface x =0.
In this case

(f —1)' = (A' —B')/A' . (A1)

Therefore this solution exists only for A.'& B'.
Since h(0) =0, this implies that h vanishes at a
certain point —lx, l in the magnetic slab (l x, l may
be zero). The free energy E„"' of the magnetic
side is I from (12), (13)j

which can be large. " It would be interesting to
investigate this possibility more closely and in
particular to check if the approximations we made
can also be justified in this case.

In the theory presented here the magnetic order-
ing is treated in the mean- field approximation (MFA).
Its explicit dependence on position as well as its fluc-
tuations in the vicinity of the Curie temperature are
neglected. The theory can be improved by calculating
y and P from a microscopic theory. ' In this way the
behavior of the coupling y'/Pb near the Curie tem-
perature can be obtained. y and P depend on 1/T, ,

the spin-flip scattering rate' which has a max-
imum at the Curie temperature 7'~. The increase
in I/w, in the vicinity of T» tends to lower the
value of y'/Pb, ' and thus to make the coupling
weaker. This can change the quantitative details
of the transition but can have no drastic effects
when the coupling is weak in the first place.

dx 2

At the point —
l x, l we have

&'. (- Ix, l) = l~l/y.

Using Eqs. (8), (12), (13), (15), and (19), Eq. (A2) becomes
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F„=A„dx —— + 2 du —u + —u +Bu —-A Bu + —"u — "u(iii) a i' Z'~
2b p 0 2 2 sc Mz

+ du 2
—u + u + u — u (A3)

The first term on the right-hand side is just the
magnetic free energy E~. We now show that when
B' =1, (i.e. , at T = T„) and in the strong coupling
case A'B'&1, i.e., A'&1, the integrals give a
negative contribution. For B' =1 the integrals
are

~ z/w —
1 g2 t/a

du —u'(1-A')+~ u' —~ ui
MQ

+ du, + —(u' —1)'+ —"u' —~ u
y/A

(A4)

The two integrands are never positive in the region
of integration. The first integrand vanishes at
u =0 and is negative for 0(u( 1/A since A') l.
At u =1/A the two integrands are equal. From

Eq. (Al) it seems as though f has two values

(A5)

However, for B'=1 and A'&1 only the solution with
the + sign is valid. This is because in order that
h(0) = 0, A'f )1[from Eqs. (8), (15), and (19)]. For
A'& 1, this condition is not satisfied by the other
solution of (A5). As a result the second integrand
in (A4) is also negative and vanishes at u = v f .
Thus the two integrals in (A3) are negative for
B'=1 in the strong coupling case.

When A' =B' = 1, xo =0 and f =1 [ from (12), (18),
and (19)]. In this case the second integral in (A4)
disappears while the first integrand vanishes.
Thus for A'=B'=1, E„"' =E„.
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