Crystal-field effects on the superconducting transition temperature of LaSn₃:Pr, LaPb₃:Pr, and LaTl₃:Pr

P. Lethuillier

Laboratoire de Magnétisme, Centre National de la Recherche Scientifique, B.P. 166, 38042-Grenoble-Cedex, France (Received 5 May 1975)

The crystal-field effects on the superconducting transition temperature of matrix LaX₃ (X = Sn, Pb, Tl) containing praseodymium impurities are examined. Using the theory of Fulde, we have taken into account all the crystal-field levels of the impurity. Exchange integrals Γ are evaluated from the depression of the superconducting transition temperature T_c in La_{1-n}Pr_nX₃ solutions. The large value of Γ found in La_{1-n}Pr_nSn₃ is in agreement with the observation of a Kondo effect in these compounds.

INTRODUCTION

Fulde and co-workers¹⁻⁴ have calculated the superconducting transition temperature T_c of a matrix containing rare-earth impurities with crystal-field-split energy levels. In particular, they consider a two-level system $|i\rangle$ and $|j\rangle$ with energies E_i and E_j ($\delta = E_j - E_i$). They suppose that the system has no magnetic moment in the ground state and that there is a nondiagonal Van Vleck term connecting the two levels as follows:

 $M_{ij}^2 = |\langle i | \vec{\mathbf{J}} | j \rangle|^2$.

For instance, in the case of a cubic symmetry,

 $M_{ij}^2 = 3 |\langle i | J_z | j \rangle|^2$.

The variation of T_c with the impurity concentration n is given by the following formula, in this case of inelastic exchange scattering¹:

$$\ln(T_c/T_{c0}) + \Psi(\frac{1}{2} + \rho) - \Psi(\frac{1}{2}) = 0$$
(1)

where ρ is the pair-breaking parameter

$$\rho = \frac{1}{4\pi k_B T_c} \left(\frac{1}{\tau_{ij}}\right) y\left(\frac{\delta}{T_c}\right)$$

and

$$1/\tau_{ii} = \frac{1}{2} \pi n N(E_F) \Gamma^2 (g-1)^2 M_{ii}^2$$

 $N(E_F)$ is the density of states of the condition band at the Fermi level for one spin direction, Γ is the interaction between conduction and 4f electrons $(\mathfrak{K} = -\Gamma \ \mathbf{s} \ \mathbf{S})$, and $y(\delta/T_c)$ is a function calculated by Fulde *et al.*² (Fig. 1).

Taking into account all the levels (magnetic and nonmagnetic, that is, elastic and inelastic exchange scattering), we have used for ρ the following expression

$$\rho = \frac{n N(E_F)(g-1)^2 \Gamma^2}{4\pi k_B T_c} F(T_c) , \qquad (2)$$

where

$$F(T_c) = \frac{1}{Z} \sum_{i,j}^{i\neq j} \left[M_{ii}^2 + 0.5 M_{ij}^2 y\left(\frac{E_{ij}}{T_c}\right) \right] \\ \times \exp\left(-\frac{E_i}{T_c}\right) ;$$

and where

2

$$Z = \sum_{i} \exp\left(-\frac{E_{i}}{T_{c}}\right) \text{ and } E_{ij} = \left|E_{i} - E_{j}\right|.$$

In the absence of a crystal field,

$$F(T_c) = \frac{1}{2J+1} \sum_{i,j}^{i \neq j} (M_{ii}^2 + M_{ij}^2) = J(J+1)$$

and Eqs. (1) and (2) give the result of Abrikosov and Gor'kov.⁵ With crystal-field-split levels and for small concentrations, we get the formula

$$\frac{dT_c}{dn}\Big|_{T_{c0}} = -\frac{\pi^2}{8k_B} N(E_F) \Gamma^2(g-1)^2 F(T_{c0})$$
(3)

instead of the classical formula

$$\frac{dT_c}{dn}\Big|_{T_{c0}} = -\frac{\pi^2}{8k_B} N(E_F) \Gamma^2(g-1)^2 J(J+1) .$$

FIG. 1. $y(E_{ij}/T_c)$ vs E_{ij}/T_c for inelastic exchange scattering calculated by Fulde and Peschel (Ref. 4).

4836

12

TABLE I. Superconducting transition temperature (T_c) of La_{1.n}Pr_nSn₃ compounds.

T _c
6.45
5.5
4.73
4.46

We have used the fact that $\Psi'(\frac{1}{2}) = \frac{1}{2}\pi^2$.

EVALUATION OF EXCHANGE INTEGRALS IN (La, Pr) X_3 COMPOUNDS

The compounds LaSn₃, LaPb₃, LaTl₃ are superconductors^{6,7} with critical temperatures of 6.45 K, 4.05 K, and 1.5 K respectively. Lethuillier and Chaussy⁸ have determined the crystal-field parameters of the three compounds PrSn₃, PrPb₃, and PrTl₃. For PrSn₃, the total splitting is most probably smaller than 20 K and $F(T_{c0}) \approx 20$. For PrPb₃, in the notation of Lea *et al.*,⁹ W = -0.65 K, x = 0.6, and $F(T_{c0}) = 15$. For PrTl₃, W = 1.6 K, x = -0.9, and $F(T_{c0}) = 5.6$. Bucher *et al.*⁷ have studied the superconducting transition temperature of the compounds La_{1-n} Pr_n Pb₃ and La_{1-n} Pr_n Tl₃; they find, respectively,

$$\frac{dT_c}{dn}\Big|_{T_{c0}} = -17 \text{ K} \text{ and } \frac{dT_c}{dn}\Big|_{T_{c0}} = -10 \text{ K}.$$

We have studied the critical temperature of three alloys $\text{La}_{1-n} \Pr_n \text{Sn}_3$ (Table I) by the appearance of diamagnetism at the transition, and for these alloys we have found a much more rapid decrease of T_c :

$$\left. \frac{dT_c}{dn} \right|_{T_{c0}} = -190 \text{ K}.$$

The values of the densities of states are available from specific-heat measurements.⁷ We have used for their evaluation (Table II) the strong-coupling model of McMillan.¹⁰ Using the Eq. (3), we have determined the exchange integrals in these (La,

TABLE II. Evaluation of exchange integrals in the (La, $Pr)X_3$ solutions.

	(La, Pr)Sn ₃	(La, Pr)Pb ₃	(La, Pr)Tl ₃
$F(T_{c0})$	20	1.5	5.6
$\frac{dT_c}{dn} \mid T_{c0}$	- 190	- 17	-10
$n(E_F)$ (states/eV/at. for one spin direction)	0.33	0.40	0.47
Γ (eV)	0.22	0.07	0.08

FIG. 2. Superconducting transition temperature vs praseodymium concentration in $La_{1-n}Pr_nPb_3$ compounds.

Pr) X_3 solutions (Table II).

Thus the very striking difference between the decrease of the critical temperatures of the systems (La, Pr)Pb₃ and (La, Pr)Sn₃ (Ref. 7) is not ascribed to crystal-field effects but to a very important conduction band—4f electrons interaction in (La, Pr)Sn₃. The value of $|\Gamma|$ so determined is in good agreement with that ($\Gamma = -0.2$ eV) determined by NMR measurements.¹¹ This large negative value of Γ is confirmed by the observation of a resistivity minimum in the La_{1-n} Pr_nSn₃ compounds due to a Kondo effect.¹² In the solutions La_{1-n} Pr_n Ru₂, an important decrease of T_c with *n* has been observed¹³:

$$\left. \frac{dT_c}{dn} \right|_{T_{c0}} = -110 \text{ K}$$

as in $La_{1-n} Pr_n Sn_3$, and, very curiously, $CeRu_2$ is nonmagnetic at low temperature¹⁴ as in $CeSn_3$.¹⁵

In these praseodymium compounds, the 4f levels are probably close to the conduction band: this gives rise to a large negative exchange integral due to interband mixing.¹⁶

We have reported (Fig. 2) the variation of the critical temperatures of the $La_{1-n} Pr_n Pb_3$ compounds, experimentally determined by Bucher *et al.*⁷ and by the calculated curve using Eqs. (1) and (2). The agreement is not very good. Perhaps interband mixing¹⁷ could account for the nearly linear experimental curve, but we think that aspherical Coulomb scattering^{2,17} increases the curvature of the calculated curve, reducing the agreement.

ACKNOWLEDGMENTS

We thank Dr. J. Pierre for his help and B. Cornut for a fruitful discussion.

- ¹P. Fulde and H. E. Hoenig, Solid State Commun. <u>8</u>, 341 (1970).
- ²P. Fulde, L. L. Hirst, and A. Luther, Z. Phys. <u>230</u>, 155 (1970).
- ³J. Keller and P. Fulde, J. Low Temp. Phys. <u>4</u>, 289 (1971).
- ⁴P. Fulde and I. Peschel, Adv. Phys. <u>21</u>, 1 (1972).
- ⁵A. A. Abrikosov and L. P. Gor'kov, Zh. Eksp. Teor.
- Fiz. 39, 1781(1960)[Sov. Phys. -JETP 12, 1243 (1961)].
- ⁶A. M. Toxen, R. J. Gambino, and N. R. Stemple, Bull. Am. Phys. Soc. <u>12</u>, 57 (1967).
- ⁷E. Bucher, K. Andres, J. P. Maita, and G. W. Hull, Helv. Phys. Acta 41, 723 (1968).
- ⁸P. Lethuillier and \overline{J} . Chaussy (unpublished).
- ⁹K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys.

- Chem. Solids <u>23</u>, 1381 (1962). ¹⁰W. L. McMillan, Phys. Rev. <u>167</u>, 331 (1968).
- ¹¹F. Borsa, R. G. Barnes, and R. A. Reese, Phys.
- Status Solidi 19, 359 (1967). ¹²P. Lethuillier and P. Haen (unpublished).
- ¹³B. Hillenbrand and M. Wilhelm, Phys. Lett. A <u>40</u>, 387 (1972).
- ¹⁴B. Hillenbrand, K. Schuster, and M. Wilhelm, Z. Naturforsch. 26a, 1684 (1971).
- ¹⁵R. Tournier, J. Chaussy, and P. Lethuillier (unpublished).
- ¹⁶R. E. Watson, S. Koide, M. Peter, and A. J. Freeman, Phys. Rev. <u>139</u>, A167 (1965).
- ¹⁷H. Capellmann, J. Phys. Chem. Solids <u>32</u>, 2439 (1971).