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Flux distribution calculations in planar channeling
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A technique has been developed to calculate the spatial and velocity distributions of channeled ions in planar
channeling as a function of the depth in a crystal. The continuum plane approximation is assumed but no
assumptions about statistical equilibrium are made. At fixed depths, the distributions are found to exhibit both
jump discontinuities and infinities, so an integral of the distributions over small intervals around various
positions across the channel is calculated. Also, the distributions are found to change considerably with depth
and the integrals as a function of depth give a clear picture of the flux-peaking phenomenon. The key idea in
this technique is an examination of the motion of the ions in the phase plane; this turns out to be a very
systematic way of erdering the particles and thereby gaining insight into the structure of the distributions. The
technique is illustrated by examining the evolution of the spatial distribution with depth for channehng of 1-
MeV helium ions along the (110)planes of silicon.

I. INTRODUCTION

Ion channeling has been an active area of both
theoretical and experimental research over the
past 10-15 years. Much of the basic theory of the
channeling process can be found in a classic paper
published by Lindhard in 1965. The channel. ing
effect has recently been comprehensively reviewed
by Gemmell. a In addition, a recent book edited by
Morgan3 on channeling gives a detailed treatment
both of the theory and application of ion channeling.

A problem of considerable current interest in
planar (and axial) channeling is the calculation of
the spatial and velocity distributions of channeled
particles as they move through a crystal. The
solution of this problem would give a better under- .

standing of the channeling phenomenon. Recent
experimental work4 shows that in planar channeling
there are significant osciQations in the minimum
yield as a f'unction of depth. Experiments in axial
channeling~ show that the particle density at the
center of a channel oscillates with depth into the
crystal. Also experiments with very thin crystals2
show that patterns of transmitted particles are
quite complex. These experiments illustrate that
the spatial distribution is changing rapidly with
depth. In addition, channeling techniques are widely
used in locating impurity atoms in metals and semi-
conductors~ 8; an understanding of the spatial dis-
stribution and its variation with depth is of central
importance in these applications.

In this study we present a technique for calculat-
ing the spatial and velocity distributions of chan-
neled particles at various depths into the crystal
within the framework of the planar continuum mod-
el. No assumption of statistical equilibrium is
made in this model. However, effects of thermal
vibration of the lattice atoms and electron multiple
scattering are not incorporated in the present mod-
el. The motion of the particles in the phase plane

is introduced as a systematic way of ordering the
particles and thereby gaining insight into the struc-
ture of the distributions. The motion of these par-
ticles is determined by numerically solving the dif-
ferential equations of the continuum model.

Much of the previous work done in calculating
spatial distributions has assumed statistical equi-
librium. However there are exceptions. The
Monte Carlo work of Barrette' has contributed
significantly to the understanding of various depth
effects in channeling such as the oscillations in
minimum yield; these depth effects are closely re-
lated to the evolution of the spatial and velocity dis-
tributions. Van Vliet and Morgan and Van Vliet+
have used computer simulation'3 to study the spatial
distributions in axial channeling; they discuss the
depth dependence of the particle density at various
positions in the transverse plane both with and
without multiple scattering effects. This differs
from the present approach in that they used com-
puter simulation and we use an analytical approach
that does not assume statistical equilibrium. In
addition very little computer simulation work has
been done in planar channeling. An abstract of
recent work by Abel et al. indicates they have
done some spatial-distribution calculations in
planar channeling in which they also begin with the
differential equations of motion in the continuum
model.

We begin by discussing the equations of motion
for an ion channeled between two crystal planes;
these are well-known equations for a nonlinear
oscillator. Then we illustrate how the phase plane
can be used to develop an algorithm for computing
the spatial and velocity distributions at various
crystal depths. These distributions are found to
exhibit both jump discontinuities and infinities, so
an integral of the distributions over small intervals
around various positions across the channel is in-
troduced. Finally, the technique is applied to a
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typical case of channeling of 1-MeV helium ions
along the l110) planes of silicon.

V(x) = V~(b + x) + V((b —x),

)', (y) = (Nd, ) f mr~ U(B) &',

(2)

E=mv0/2, m is the mass, 2b =d~ is the distance
between planes, V&(y) is the continuum potential
for a plane at a distance y from the plane, R = (r
+y')'~z, r is the polar coordinate in the plane, Nd~

is the number of atoms per unit area in the plane,
and U is the interaction potential between an ion
and a lattice atom. The derivation of the continuum
approximation requires that E = 2mvao be very close
to the total energy; in our numerical calculations
we take E to be the total energy. In Eq. (2) it is
assumed that the continuum potential between major
crystal planes is well approximated by including
only the contributions from the two adjacent planes.
The derivation of Eq. (3) can be found in Datz
et al. ~4 and Ellison. " If we write (1) as a system
and make the change of variables

8= s/so, X=x/b,

(4)

V(x) =KW(X),

where so is a characteristic distance parameter
and K is a measure of the size of the potential,
then the governing equations of motion in nondi-
mensional form are

dX
dS
—= zF X(0)=X0

II. GOVERNING EQUATIONS OF MOTION

Consider the motion of an ion channeled between
two crystal planes as shown in Fig. l. If the con-
tinuum approximation is assumed to be valid, then
the s component of velocity vo is constant and the
motion of the ion is governed by the differential
equation

d2x 1 dV(x)
ds2 2E dx

due to Lindhard. ~ Then Eqs. (2)-(4) yield

V,(y) = K,[(y'+ c'~')"' —y]

e = (so/ab)»~ y„, (12)

~ p 18 p1cked of the order ab, then & is the order
of magnitude of y„. If y(s) is the angle a trajec-
tory makes with the planes then

dx—= tang(s) .
ds

For channeling y is small and tang is approximately
y, therefore,

F=(&/b)"'(V/W ) (14)

The perfect plane model for channeling assumes
the applicability of Newtonian mechanics with each
lattice atom characterized by a screened coulomb
potential, and ignores thermal effects (vibration of
the lattice atoms) and electronic effects which are

V(x) = K,([(b+x)'+ c'a']»'

+ [(b —x)'+ c'a']»' —2b], (9)

V(x) =K b{[(1+X)~D] ~ +[(1 X) +D]»~ 2}

where D=c'a'/bz and K, =2wz, z,e'(Nd~). Here z,
and z~ are the atomic number of the projectile and
lattice atoms, respectively, a is the Thomas-
Fermi screening distance, and c is a constant of
the potential (c = &3). The choice of K in Eq. (4)
is somewhat arbitrary, since the only requirement
is that W'(X) be of order one. We choose

K=K,b =2mz, zae (Nd~) b,

therefore,

(X)=[(1+ )'+ ]"' [(1-X)'+ ]"'-2. (11)

A commonly used quantity in discussions of planar
channeling is

q„=[2mz,z,e'(Nd, ) a/Z]'".
For example, it is commonly assumed that the
critical angle is Pp„where P is an order-one quan-
tity. @'6 6 and F can be written in terms of cp„as

dF—= —ac W'(X)
dS F(0) = Fq,

where the prime notation denotes differentiation
with respect to X and

e = (s /b) (K/E) ~ ~ z .

Consider the atom1c potential

V(f~) =(z,z,e'/f~) [1-f~/PP, &'a') '],

— PLANE OF ATOMS

—PLANE OF ATOMS

FIG. l. Schematic of a channeled trajectory between
a pair of crystal planes.
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not included in a screened coulomb potential. The
continuum plane model [Eqs. (1)-(6)] is an approxi-
mation to this model which smooths out the effect
of the individual atoms and thereby considerably
simplifies the equations. The method of averaging
of Krylov and Bogoliubov' has been used to obtain
error bounds relating these two models", the er-
rors go to zero as e- p„-0. So, a necessary con-
dition for the validity of the continuum model is
that E be a small parameter.

Notice that (5) are the equations of motion for a
nonlinear oscillator and have an associated con-
servation law,

Ei(X, Y) = Y + W(X) = E~, (15)

For each energy E~ & W(0), Eq. (15) defines a
curve in the X-~ plane. Each of these curves is
called an integral cvrve of Eqs. (5) and the X-Y
plane is referred to as the phase plane. If one of
the planar continuum potentials is used, the integral
curves form a family of concentric ovals about
the origin.

Consider the motion of a channeled ion as defined

by (5). The initial conditions given in (5) determine
the ion's energy E~, which in turn defines an in-
tegral curve in the phase plane according to (15).
Because of conservation of energy, the X, E' posi-
tion of the ion in the phase plane moves in a clock-
wise direction around the integral curve as the ion
physically moves through the crystal. The ion's
motion is periodic and it returns to its initial posi-
tion (Xs, Yo) in phase plane after a period which
depends on E~.

If we consider Lindhard's planar continuum po-
tential and channeling with 1-MeV helium ions along
the (110)plane of silicon at room temperature,
then W(X) is given in Eq. (11),

where the initial conditions in (5) infer that E~
= Yso+ W(Xo). This is simply a normalized form of
the transverse energy which is frequency used in
continuum model estimates.

There are a variety of planar continuum poten-
tials that have been used in channeling calculations,
based, for example, on atomic potential forms of
Lindhard [see Eq. (7)], Bohr, and Moliere. s For
each of these, the solutions of (5) are periodic
with period I' depending on E~. In fact for these
potentials the oscillator (5) behaves like a hard
spring (as opposed to the pendulum equation which
behaves like a soft spring), that is,

dP
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tude of the oscillation, then the period, in angstroms,
as a function of amplitude is shown in Fig. 2

[notice that E~= W(A)]. It is a simple calculation
to find P(A) at A=0 by linearizing W'(X) about the

only equilibrium point X = 0; the other values of I'
were found by integrating Eqs. (5) numerically
with Xp=A. and ~p=0.

III. CALCULATION OF DISTRIBUTIONS

Consider an ion beam entering a perfect crystal
in such a way that the beam is aligned with a low

index crystal plane. Physically we know the ion
beam is much less dense than the crystal; also
we are only interested in the relative position of
the ions in the various channels, and we assume
all the channels in a given crystal direction are
the same. Therefore, for mathematical purposes,
we can take the view that all ions enter between
two adjacent atomic planes with a uniform spatial
distribution, with no ion-ion interaction. The prob-
lem is to find the, spatial and velocity distribution
of the channeled particles as they move through
the crystal given their initial distribution. Because
of the large number of particles involved and be-
cause their trajectories do not have simple analytic
representations, most researchers have assumed
statistical equilibrium in their calculations. ' '

However, an examination of the motion in the phase
plane @hase flow) leads to a, convenient way to
order the ions and further study leads to two very
simple quantities, described by a system of dif-
ferential equations, from which the distributions can
be computed. The continuum approximation is
used but no assumption of statistical equilibrium
is required in this approach.

We shall describe a method for calculating the
evolution of the spatial distribution and various in-
tegrals of it for a perfectly aligned beam with uni-
form distribution initially. It is easy to modify
this method for nonuniform initial distributions
and nonzero incident angles. It will also be clear

& =0.015272,

D = 0.0965,

(16)

(17)

where we have taken sp=1 A. Let A be the ampli-

FIG. 2. Period in angstroms vs nondimensional ampli-
tude for the solutions of Eqs. (5) with Lindhard's stand-
ard potential for 1-MeV helium ions channeled along the
(110}planes of silicon. Amplitude in angstroms is bA

where b =0.96 A.
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p{X,O) = 1/2 S

PLANE OF ATOMS

X S, XO LlXO)

/'X, X ~ dX
FIG. 3. Schematic of the calculational goal to find the

spatial distribution p at a depth S into the crystal given a
uniform initial distribution.

how to calculate the velocity distribution and re-
lated integrals.

Let p(X, S) denote the spatial distribution of the
ions at a distance S into the crystal. As indicated
in Fig. 3, the problem is to find p(X, S) given

p(X, 0). For convenience we take p{X, 0)=--, ; then
the total "mass" between X=+1 is 1, and p gives
the spatial probability density. The first step in
finding the spatial distribution is to find a conve:—
nient way to order the ions. The differential equa-
tions governing the motion of the ions are given by
(5) with F0=0:

dX
Kjs

d7
67S
—= ——,e W'(X)

X(0, Xo) =Xo,

Y(0, X,) =0,
(18)

ATOMIC PLANE AT X = -l ATOMIC PLANE AT X = l
I

where X=X(S,Xo) and Y = Y'(S, Xo).
In the phase plane, the initial positions of the

particles are uniformly distributed along the line
Y'=0, X&[-l, 1]; see curve a in Fig. 4. For this
case we need only consider those particles starting
with Xc [0, 1] because of the symmetry. However,
in the treatment of the nonaligned case where Y0& 0
this symmetry is lost, and so here we describe
a method for finding the distribution that is easily
adaptable to the uniform nonaligned case. If we
integrate the differential equations (18) for various
Xoc I-1, 1] from S=0 to some S we obtain the
functions X(S, Xo) and Y(S, Xo). These functions

AT S

FIG. 5. Geometrical interpretation of the use of a
phase flow curve to calculate the contribution to the spa-
tial distribution near X(S,Xp) due to those particles which
started near Xo.

can be interpreted in two ways: (i) they give the
parametric representation of an integral curve in
the phase plane if S is allowed to vary and X, is
held fixed (see the oval curves in Fig. 4), and (ii)
they give the parametric representation of the b

and c type curves in Fig. 4 if X0 is allowed to vary
and S is held fixed. The b- and c-type curves give
the position and velocity of each ion in the channel
for various depths into the crystal; these are
called the phase flow for curve a. Notice that the
hard-spring effect shows up in the phase flow in that
those ions on the outer integral curves have a larger
rate of angular movement around the phase plane
than those starting on the inner ones. As S in-
creases these curves wrap themselves around the
origin.

The next step is to determine how to obtain the
spatial and velocity distributions from the phase
flow. Observe that as a consequence of conserva-
tion of transverse energy [Eq. (15)] the ions which
start between two integral curves remain between
them. Let us take a closer look at a typical curve
like b or c and consider two integral curves de-
fined by X0 and X0+&X0 as shown in Fig 5 The
key idea here is that those ions which start in [Xo,
Xo + 6 Xo] are located in the X interval [X(S,Xo),
X(S, Xo ~EXO)] at a distance S into the crystal.
Given S and X„ let p(S, X,) denote the spatial dis-
tribution at X(S, Xo) due to those ions starting
"near" X0. Thus we have the approximate relation

p(S, X ) (~ X(S, Xo+b.X ) —X(S, X )i )= —EXO. (19)

In the limit as &Xo- 0 Eq. (19) leads to

FIG. 4. Phase flow in the phase plane for Eqs. (18).
Curve g represents the initial positions and velocities of
the ions; curves g and c represent the positions and veloc-
ities of the ions at two different depths into the crystal.
Ovals are integral curves.

To find p(X, S) for fixed S, we must find all the
Xo s corresponding to a given position X (notice
that in the example shown in Fig. 5 there are two).
This requires solution of the nonlinear equation



12 FLUX DISTRIBUTION CALCULATIOFS IN P LANAR CHANNELING

X(S, Xp) -X=0.
The spatial distribution at X is then given by

(21)

p(X, S) = Q p, (S, Xp), (22)

where the sum is taken over all X0 such that X
—X(S, Xp) = 0.

One could calculate p, (S, Xp) approximately from
Eq. (19), however, there is a more convenient way
since &X/&Xp satisfies the variational equations for
(IS). I,et

BX(S Xp)
0

0

( )
BF(S, Xp)

ex0

(23)

then P(S, Xp) can be determined from the following
equations:

dX
= qY', X(0, Xp) =Xp

—= —2 eW (X)
dY
dS

dp
dS

F(0, Xp) = 0

P(o, Xp) =1
(24)

1/2a for I XI —a,
p(X, S) =

0 for a' IXI =1,
(2S)

where a = I cos&PS ~. For more realistic potentials
the problem has to be tackled numerically.

An algorithm has been constructed for computing
the distribution on an IBM 360 using a double preci-
sion version of a differential equation solver called
RKF which was developed by Allen and Shampine

—= —r~&W "(X)P, q(0, Xp) = 0,dS

where W "(X) is the second derivative of W(X) with
respect to X.

Notice that the spatial distribution becomes un-
bounded at points X=X(S, Xp) where p(S, Xp) = 0
(see points of vertical slope on curves b and c of
Fig. 4); that the number of these infinities becomes
countably infinite as S- ; and that the distribution
has jump discontinuities at X=X(S, + I). The ve-
locity distribution can be discussed in a similar
manner by considering q(S, Xp). If the initial dis-
tribution is nonuniform, this distribution in X0 will
replace the p in Eq. (19).

If the oscillator in Eq. (18) is linear, that is,

W'(X) = 2pPX, (25)

where P is some constant, then the distribution
can be computed analytically. Solving Eqs. (24)
and noticing that curves b and c in Fig. 4 become
straight lines we find

and is discussed in their book. ~9 This code inte-
grates a system of first-order ordinary differential
equations by a fourth-order Runge-Kutta method
and uses fifth-order Runge-Kutta formulas to auto-
matically estimate the local error and adjust the
step size. We present the algorithm here not only
so that those interested can duplicate the results
but also because an understanding of the algorithm
yields a more complete understanding of the struc-
ture of the distribution. The algorithm performs
as follows: (a) It numerically integrates the dif-
ferential equations (24) with Xp = +0.005n, n
= 0, 1, 2, . . . , 200 from S= 0 to S; this is done all at
once, using R&F, by writing Eqs. (24) as a system
of 1604 equations. (For. the examples discussed
in Sec. IV we found dividing the X0 interval into
400 subintervals to be satisfactory. ) (b) It prints
out X(S, 1) and X(S, —1) (n = 200 and n = —200) for
the location of the jump discontinuities in p(X, S).
(c) It uses linear interpolation on the data computed
in (a) to find the Xp's where P(S, Xp) is zero; these
give the points X=X(S, Xp) (use linear interpola-
tion again) where p(X, S) becomes unbounded. (d)
It calculates the maxX(S, Xp) and the minX(S, Xp)
over Xp c [- 1, 1] from the data in (a), thus giving
the points X where p(X, S) drops to zero. (e) It
finds p(X, S) by picking a value of Xc[X,„, X ]
and then using linear interpolation to find all the
Xp' s such that X —X(S, Xp) = 0, and to find p(S, Xp)
for each of these Xp's. The sum in Eq. (22) is
then computed to obtain p(X, S).

A simple modification of this algorithm allows
calculations for nonuniform initial distributions
and ion beams at nonzero angles with respect to
the planes.

Since the distribution function p(X, S) exhibits
both jump discontinuities and infinities, we felt it
would be interesting to examine integrals M(I, S)
of p(X, S) over various intervals I= @~a~X~ bj,
that is,

M(I, S)= p(g, S) d$.
a

The quantity 100M(I, S) has the obvious physical in-
terpretation of being the percentage of particles in

the interval I at a distance S into the crystal and is
perhaps a more interesting quantity than p for ap-
plications of channeling such as lattice-site loca-
tion studies. At first glance one might consider
computing the integral of p directly, however, there
is a much simpler approach, an approach which is
simpler than finding p(X, S). A study of Fig. 5

and Eqs. (19)-(22) shows that the contribution to

M(I, S), where I= [X(S,Xp), X(S, Xp+ b,Xp)], due to

the particles starting in [Xp Xp+EXp], is zkXp.
To find M(I, S) we must find all the Xp intervals
which contribute particles to I, add up to the length
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& = Q. Q152'7,

D= 0.0965.
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&- 0.0—

0.2—

Actually the curves presented here are valid for
arbitrary E &0 as can be seen by considering the
initial value problem

5
0.4— df =&f(~), ~(0) =2'2,

dZ
(28)

s ~ 200 s= 100
I i I l I l I ~ I i I ( I i I i I l I l I

-1.0 —08 -06 —0.4 —02 00 02 04 06 08 LO

X

FIG. 6. Phase Gow at various crystal depths (in ang-
stroms) for a perfectly aligned 1-MeV beam of helium
iona channeled along the (110)planes of silicon. Integral
curves (ovals) correspond to Ezp = W(0. 25), W(0. 5),
W(0. 75), and W(1).

of these intervals, and multiply by &. In the case
shown in Fig. 5 there are two Xp intervals which
contribute particles to I.

More formally then, to calculate M(I, S), I=[a, b],
we must find all the Xp's corresponding to a and b

at a depth 8 into the crystal. That is, solve the
equations

X(S, X ) —a=0

X(S, X,) —t =0.

This gives all the Xp intervals which contribute par-
ticles to I at a distance S into the crystal. Summing
the lengths of these intervals and multiplying by 2

gives M(I, S). An algorithm has been written to do
this and the results in a specific case will be il-
lustrated in the next section. In developing this
algorithm it was found helpful to study both the
phase flow and the graph of X(S,Xs) vs Xn for S
fixed.

IV. APPLICATION

In this section we consider the channeling of 1-
MeV helium ions along the (110}planes of silicon
not only for its intrinsic interest but also because
it gives more insight into the ideas of Sec. IG. %e
present (i) the spatial distribution at various depths
into the crystal for a perfectly aligned ion beam
which is uniformly distributed initially, (ii) various
integrals of this distribution, and (iii) the spatial
distribution for a uniformly distributed ion beam
entering the crystal at a nonzero angle with respect
to the j110]plane. The calculations are done with
Lindhard's standard potential with sp=1 A, so that
S represents the distance into crystal in angstroms.
The potential and the two parameters in this case
are

I l

$P(X. D) [(1+X)2+D]1/2+[(1 X)2+Ii]1/2 2

which defines a vector function Z(f; c), and has the
form of both Etls. (5) and (24). It is easy to verify
that &(S; as) =Z((z,/e) S; s) for every S~ 0; there-
fore if a certain phenomenon occurs at a distance
Sp into the crystal for c = 6p then it occurs at a dis-
tance (en/e) Ss into the crystal for arbitrary &. For
example, p(X, Sn; es) = p(X, (es/e) Sn; e) and M(I, Ss;
22) = M(I, (es/a) Ss; 2). It should be noted that the
value of D, which depends on the ratio of a to b,
must remain fixed. So, for example, the curves
we present are valid for a large range of ion beam
energies, E, but are not valid for other planar
spacings unless there is a corresponding change in
the screening distance, a.

Consider the evolution of a perfectly aligned 1-
Me7 beam of helium ions uniformly distributed as
it enters the 1110)planes of a silicon crystal. The
phase flow is shown in Fig. 6 for various distances
into the crystal for those particles entering the
channel in the interval X& [0, 1]. The phase flow
for those particles starting in [-1,0] is obtained
by rotating the curves by 180' (see Fig. 4).

This figure not only gives an over-all picture of
what is happening but it gives considerable informa-
tion about the structure of p, such as, the X re-
gion where it is zero, the position of the jump dis-
continuities, the positions where it becomes un-
bounded, and the initial positions of the particles
which contribute to the distribution at some given
position X. As an example consider the phase flow
curve for S= 200, including the portion due to those
particles starting in [-1,0]. It has vertical slopes
at IXI =y, where y, =0.25 and no portion of the
curve lies in the region of the phase plane defined
by lXl &y, . Therefore the spatial distribution be-
comes unbounded as )Xi y, from below and is
zero for y, & IXI —1. The integraj. curve which
goes through X=0.5, ~=0 comes close to crossing
the phase flow curve near its vertical slopes; in-
terpolation indicates that the initial positions of
those particles contributing to the infinities at X
=+y~ are near Xp=+ 0. 55, respectively. The jump
discontinuities occur at the X position where the
phase flow curve meets the outer integral curve
(i.e. , the integral curve which goes through the
point X=1, Y=O); this happens at lXI =0. 18. As
a final observation notice that the particles con-
tributing to the particle density at X= 0 come from
&p = 0 and I Xp t 0 87. If one is interested only in
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ions, uniformly distributed initially, channeled along the
{110jplanes of silicon. Positions of the jump discontinu-
ities and infinities are marked ' p is given only for the
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nel.
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F'iG. 8. As in Fig. 7 for depths of 400, 500, and 800 ~.

the spatial distribution another interesting set of
curves is X(S, Xc) vs Xs for various S.

The spatial distribution curves corresponding to
Fig. 6 are presented in Figs. 7 and 8 for X—0
since p(X, S) = p(- X, S); compare the distribution
for S = 200 in Fig. 7 with the comments in the pre-
vious paragraph. A study of the distributions in-
dicates a predominant flux peak at the center of
the channel (X= 0) at a depth of about S= 300. This
is also indicated by the phase flow curves, as flux
pe aking is to be expected near X= 0 when the verti-
cal slopes on the phase flow curves are near X= 0.
However, the cle ares t picture of the flux peaking
is found by a study of M([- 0.05, 0. 05], S).

In Fig. 9 we present plots of M, (S)™(I„S)vs S
.for I, = [-0.05, 0.05], I, = [0.15, 0. 25], I, = [0.45,
0. 55], and I4 = [0.75, 0.85]. Notice the flux peaking
phenomenon and the "damping" of the os cil1ations
as S increases . The phase Qow curves are again
useful for interpreting Fig. 9, for example: (a)

I I I I I I I I I I I I I I I I I I I I I I I

1 2000 2200200 400 600 800 1000 1200 1400 1600 800

FIG. 9. Variation of M(I, S) with depth (arigstroms) for
the cas e treated in Figs. 7 and 8. (a) I= [-0.05, 0.05 ];
(b) I= t0- 15, 0.25]; (c) I= |0.45, 0.55]; (d) I= [0.75, 0.85].

The first flux peak for ~~, M~, and M3 occurs when

the vertical slope on the phase flow curve first
enters the intervals I„ I„and I„respectively.
The initial position of the particles contributing to
the rapid rise in Inear the flux peaks can be found

approximately. We diseuse this for Mt(S). (b)
The phase flow curve for S = 300 shows that the

first flux pe ak in I, is made up of those particle s
which started with I &0 I —yz, where y2 = 0. 58, since
the portion of the curve which corresponds to
those particles is contained in I~. The rapid in-
crease in M, (S) near the flux peak occurs when the

vertical slope on the phase flow curve enters I, ~

By interpolation we estimate that the integral- curve
through X= 0. 3, ~ = 0 goes through the vertical
slope on the S = 30Q phase flow curve. We conclude
that the par ticles contributing to the, rapid rise in

M, (S) near S = 300 started near I X, I
= 0. 3 ~ (c) The

sharp increase in Mt(S) near S= 175 is due to the

particles which started near the planes entering
the interval I~ for the first time, and the small in-
crease near S = 550 is due to the same particles
entering I, for the second time .

There seems to be considerable speculation in
the. literature concerning the location of the first
flux peak near the center of the channel . An argu-
ment by Gemmel' (p. 156) based on the oscillation
in minimum yield cal cul ations by Barrett indicates
that the first flux peak in planar channeling should

occur near S= ~ ~,h, where &,„is the period of
oscillation for those particles starting near the
planes . It can be seen from Fig . 2 that this gives
an estimate which is low compared to the S = 300
found for M&(S). One reason for the difference is
that the particles whic h cause the rapid rise in
M&(S) near the first flux peak started near Xs

Q.3, whereas those partiej es which most strongly
affect minimum-yield os cillations start near the
planes . Another possible source of difference is
that the Monte Carlo calculations of Barrett include
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Y 00—

-0.2—

thermal vibration of the lattice atoms whereas our
results do not.

We are currently studying M(I, S) for large S to
gain a better understanding of questions concerning
the approach of the particle spatial distribution to
statistical equilibrium. Because of the jump dis-
continuities and infinities in p it seems that some
smoothing has to be done in order to consider such
questions and a study of M(I, S) seems like one rea-
sonable approach. M(I, S) has been computed for
relatively large S and it appears to approach a
limits; however, it is not clear how accurate the
calculations are for this range of S, and, of course,
the existence of a limit can only be hinted at with
the aid of a computer. We plan to compare the be-
havior of M(I, S) for large S with the corresponding
integrals of the statistical equilibrium distribution.

As a final example we consider the evolution of
the spatial distribution for a uniform ion beam
entering the crystal at a nonzero angle. This has
the consequence that particles starting near the
planes will eventually penetrate the planes; these
particles need special consideration. For numeri-
cal purposes we choose

Y(O, X,) =[W(1)—W(O. 975)]"'=O.1539-=Y, . (29)

Thus those particles which start with o. = 0. 975
—Ixo I

~ 1 eventually penetrate the plane. The val-
ue of Yp in Eq. (29) corresponds to an angle of ap-
proximately 0. 128'. The measured half-angle for
1-MeV helium ions along the (110]planes of silicon
is 0.22'~0. 03 ."

To maintain the spirit of the ca1.culation we as-
sume that when a particle trajectory reaches X= 1
it is instantaneously transported across the channel
to X= —1 with its energy E, conserved (since X
= 1+ ~ is energetically equivalent to X= —1+&).
Physica11y, this assumes that the particle moves
through the plane with no change in angle. This is

-0.4—
S -100

S= 250 S =175
I I I I I I I I I I I I I I I I I I I t

-1.0 -0.8 -06 -0.4 -0.2 00 00 0.4 06 0.8 1.0
X

FIG. 10. Phase Qow at various crystal depths for a
nonaligned 1-MeV beam of helium ions channeled along
the [110}pianes of silicon. Initial phase flow curve
(S=0) is the straight line given by F=0.1539, -1~X~i.
Integral curves are as in Fig. 6.
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FIG. 11. Spatial distribution at depths of 0, 100, 175,
and 250 A for a nonaligned beam of 1-MeV helium ions,
uniformly distributed initially, channeled along the {110}
planes of silicon. Curves with p less than 0.1 give the
distribution of those particles which have penetrated the
planes; Other curves give the distribution of the rest of
the particles. Total distribution is just the sum of the
two contributions. Positions of the jump discontinuities
and infinities are marked.

0.5

a realistic assumption since computer simulation
calculations by Barret (in particular Fig. 5 of Ref.
9 and damage rate versus depth calculations for
various incident angles ') and experimental results
by van der Weg, Roosendaal and Kool' indicate that
a significant number of particles do penetrate the
planes and continue a governed rather than random
motion.

Figure 10 is the phase flow plot of the particles
caIculated for S=100, 175, and 250; the initial
particle positions lie on the line Y = Yp, Xc [-1, 1],
Notice that the particles starting in [-0.25, 0. 25]
have nearly the same energy, that is, they all lie
nearly on the same integral curve. Also notice
that the particles which start in [-1, —n]U[o. , 1]
lie outside the integral curve which goes through
X=1, I =0, and will therefore remain outside as
a consequence of conservation of energy. At the
particular depths considered in the figure the par-
ticles which started in [-1, —o. ] have not penetrated
the planes whereas those which started in [o., 1]
have penetrated just once. If X(S, Xp), Y(S, Xp),
p(S, X,) and q(S, X,) denote the functions defined
by Eq. (24), with the modification, Y(0 Xp) = Yp,
then the phase flow curves for the particles which
start in [-1, c.] are given by X(S Xp) Y(S Xp),
with S fixed.

The phase flow curves for the particles which
start in [a, 1] must be calculated separately.
Let X, = $ be the initial position of one of these
particles and let d($) be the distance S traveled by
this particle as it moves from X= $ to X =1. The
phase plane position of this particle for the range
of S considered is given by
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X=X(S', —$),

Y'= Y(S', —$),
(30)

BX(S', —$) = —2~d'($) Y(S', —$) -P(S', —$}.
(31)

where S' = S —2d($), as can be checked by noting
that these functions satisfy the differential equa-
tions in Eq. (24) with initial conditions X=X(-d($),
—$) = —1 and Y = Y(—d(g), —$) = Y(d(f), O at S = d($).
Equations (30), considered as functions of $ E

I o.,
1] with S fixed, give the phase flow of the particles
which have penetrated the plane. The long tail at
the upper end of each phase Qow curve is the phase
flow for these particles. It is interesting to note
that the length of these tails does not vary m«h
for 100~X~250; the length is determined pri-
marily by the variation of d($), $ & [o., 1].

The contribution to the spatial distribution. from
the particles starting in I -1,n] is computed just
as in the perfectly aligned case with the exception
that Y(0, Xo) = Yo in Eqs. (24). The contribution
from the other particles can be computed as sug-
gested in Eqs. (20)-(24) using Eqs. (30) and noting
that

However, for the range of 8 considered the dis-.
tribution can be computed just as accurately as sug-
gested by Eq. (19), and we used this latter meth-
od in our numerical calculations.

The calculated spatial distributions due to those
particles with —l~Xo~ n and arith e —Xo~ 1 are
presented separately in Fig. 11 since the contribu-
tion from the particles which have penetrated the
plane is so small (for the particular case considered
this contribution, for each S, is less than 0. 1}.
The total spatial distribution is just the sum of the
two contributions.
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