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Temperature-dependent aspects of the Suhl-Nakamura process, contributing to the measured quadrupole
interaction in ordered systems, are described. The mechanism involves a pseudoquadrupolar coupling of
magnons with nuclei via the magnetic hyperfine or transfered hyperfine I,S, interaction, Within the framework
of the long-wave magnon approximation, the process is linear in the magnetization and explains recent
experimental results for "Al in GdA1, . A simple method of utilizing the new mechanism for the sign
determination of the electric field gradient q is described, and the method is applied to determine q& 0 at the
Al sites in GdA1, . Various. implications of the new process are briefly discussed.

I. INTRODUCTION II. THEORETICAL-MODEL CALCULATION

Among various studies, ' 4 the one case for which
the magnetization dependence of the nuclear quad-
rupole interaction was measured with sufficient
accuracy to enable critical analysis is that of
"Al in ferromagnetic GdAl, 4 Unexpected at the
time, the induced quadrupole interaction in GdAl,
was found to depend linearly on the magnetization
M(T) (Fig. 1), in contrast to theories" which
predicted quadratic M dependence for a magnet-
ically induced electric field gradient. We suggest
presently a temperature-dependent mechanism
of the Suhl-Nakamura-type which contributes
significantly to measured quadrupol. e interactions
in ordered systems and can account for the ap-
parent discrepancy mentioned above. Considering
the indirect spin-spin interaction in ordered sys-
tems, Suhl' and Nakamura' have omitted contri-
butions of I,S, terms in the hyperfine interaction
to both the indirect interaction between spins and
to the self-energy of individual nuclear spins. As
will be shown presently, the I,S, contribution
to the self-energy is important because it is tem-
perature dependent and may lead to a measurable
influence on the quadrupole splitting, unlike the
quadrupolelike splitting caused by the transverse
components S,I, which is constant and therefore
cannot be separated experimentally from the in-
trinsic quadrupol. e splittings. ' The present mech-
anism is essentially a pseudoquadrupolar process,
proportional in magnitude to (A'/e )I 1 M(T)/Moj, —
where A is the magnetic hyperfine constant,
is the energy of a zone-boundary magnon, and
M, = M(T =0). Evaluated num—erically, the new
mechanism appears to be of significance for many
actual magnetic systems. As will be shown, the
suggested mechanism provides a straightforward
method to establish the sign of the electric field
gradients q, and, in principle, can also reflect
various properties of spin-wave systems.

Consider the simple model of an axially sym-
metric hyperfine coupling between a nucleus I
and a surrounding of neighboring electronic spin
S within a magnetically ordered solid. The Ham-
iltonian of the system, including the magnon
energy, has the form

K=A((SgI, +2A~(I, S +I S,)+P;(I', ——,'I')+R„,
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FIG. 1. Measured quadrupole splitting &g =2P, of ~Al

in ferromagnetic GdAl2 as function of the magnetization
M(T) (from Ref. 4).

where the first two terms describe the magnetic
hyperfine interaction, the third is the intrinsic
quadrupole interaction and R„=pzeknk, where
&q is the energy of a magnon with a wave vector
k and n k is the number of magnons in the kth
state. The first step in the model calculation is
to reexpress the electronic spin operators (S, , S,)
in terms of magnon operators. Choosing the ori-
gin at the site of the electronic spin and neglecting
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third- and higher-order terms in the expansion
for S„ the Holstein-Primakof transformation
yields

1 g, 2S
S =S —— 6- b- . S = — ~6-.

N " " ' ' Nkk'

R=R +A()SI, +P; (I', —3I~)

1

kk'

+ A~ I, bk+I bk (2)

Replacing in Eq. (1), one obtains

Considering now the magnon terms as a perturba-
tion V, one obtains an effective nuclear spin Ham-
iltonian X,«valid up to second-order perturbation
theory, "of the form

g I ~ ~ e n» ~ ~ ~ Ig ( o ~ ~ n» ~ ~ ~ )
n- Ivl n-. ~f. n- Ivl n-

k k k k
eff X k ~ hf ~ k

ng ~ ~ ~ f1» ~ ~ ~ E ~ ~ ~ ff» ~ ~ ~

k k
(3)

where JC„, is the hyperfine part of Eq. (2}, I n-„) is a wave function with a magnon state n-„, and the
primed summation means exclusion of n k states for which 8. . .„f . . . =E. . .„.. . . A straightforward

kcalculation results in

3C,ff =X7„,„+Xg+ v~+ v2+ vs~A( (S)I, +P, (I2 —~12)+ A~~ Z
S ~ 2nk+1

2N

k ~k'

where (S) =S —(I/N)pk n
&

=—S(1 —bM/Mo). The
last three terms (referred to as v„v„v„re-
spectively), resulting from the perturbation part
of Eq. (3), will now be examined in detail. The
term v„which is linear in I„contributes a smal. l
second-order temperature-dependent correction
to Xz„,„. Formally, such a correction may even
be included in Xz„by replacing A,

~

with A~~ (T).
The second-order term v, is temperature inde-
pendent, and being quadratic in 1, may be formally
included in X~ by replacing P; with a corrected
constant P. Such a procedure is possible since
one can always pick out the traceless operator
I', ——,'I' from an operator ', + +I', and neglect
the rest which depends only on I'. The term v,
was first derived by Suhl' and Nakamura' and was
discussed for MnF, by Yasuoka, Ngwe, and Jac-
carino. ' In the framework of the approximation
empl. oyed in the present paper, one can show that
v. = 2 n(A~l&~~)'(I', -I'), where the constant a is
defined in Eq. (8).' Finally, we examine v, which
results from the I,S, operator in Eq. (1}. Al-
though again quadratic in 1„ the coefficient of
v, is temperature dependent. Therefore, using
the same procedure as above and noting that

z«e o =Pp«e '(I' —f I )3 g 3

n
PP do g2 Z k

from which an effective quadrupole Hamiltonian
of the form

3I eff (p+pp«udo )(I s & I R) (6)

1V
~ " 2I'NDk'

""max
dP'

where the principal. value of the integral. is to be
considered. In this approximation, one obtains

is obtained. This Hamiltonian, together with

Xz„,„, determines the NMR frequencey of nuclei
in magnetic systems.

In order to calculate/~"""', we shall first cal-
culate the sum over k' in Eq. (5). Taking into
account only the "acoustic" mode in the isotropic
long-wave approximation, with & =DR' as the dis-
persion low, the summation over k' is transformed
to an integral by

k k' ' nk==2
k&4' k k' k&k' k k'

max+
(7)

one may write
While Eq. (7} has a logarithmic divergence at
k = k,„, it is easily seen that the sum which enters



4606 V. Z E VIN AND N. KAP LAN

ppseudo 4 g$ II
y

x r

Mo

=- —a 1—;a&0 (8)

after using &-,„.=Dk'-,„and ' = (2w)'(N/V). It is
worthwhil. e to note at this point that the linearity
of P'""d' with M, which is evident from Eq. (8),
does not depend strongly on the particular dis-
persion law used in the derivation of Eq. (8).
Thus, while more real. istic dispersion laws may
affect the slope a appreciably, one may still ex-
pect a linear M dependence to be dominant in the
spin-wave region.

III. EXPERIMENTAL IMPLICATIONS AND APPLICATIONS

Some implications of Eq. (8) will now be dis-
cussed. Substituting in Eq. (6), it is seen that
PP"" ' vanishes at T =0 when the spins are fully
aligned. At this limit a measurement of P yields,
apart from the correction mentioned earlier due
to v, [Eq. (4)J, the real quadrupole interaction

in the definition of P'""" [Eq. (5)] does not con-
tain any divergence. Indeed, at thermal. equi-
librium we find for k= k' that

(n&-n&. )(fp fp) '= —Pe '«(e '& —1)

where P = 1/@AT. In fact, the divergence in Eq.
(7) is the consequence of introducing the principal-
value integration which is not valid for k' = k,„.
The divergence can be avoided formally by the cut-
off procedure which excludes the point k= k,„,
yielding for that point the size-dependent term
ln(L/a, ), where I, is the sample size and a, is
the lattice constant. Turning to the second sum-
mati. on in Eq. (5), we note that for the low-tem-
perature range, say for T ~ 0.3T, , the contribution
from the summation is negligible for k & k be-
cause in this region n, «1 and therefore
n~ ln(L/ao)«1 ~ For the rest of the range, i.e.,
for k«k, „, the logarithmic term in Eq. (7) is
small compared with the first one. As a result,
the sum over k' becomes independent of k for
low temperatures and the second summation, over
k, yields simply (I/N)Q&n& ——S[Mo-M(T)]/Mo.
From Eqs. (5) and (7) one obtains, finally,

P, =(.Se'Qq)/[4I (2I —1)]. As the temperature is
raised, the onset of magnetic excitations results
in negative contribution added on to P. From Eq.
(8) it is evident that in the spin-wave region P'""'
changes linearly with the magnetization, with a
positive slope, a, which becomes more significant
the stronger is the hyperfine coupling and the
lower is T, for the system in question. For A.S
values in actual. magnetic systems with T, &300 K,
Eq. (8) predicts typical slope values in the range
5 kHz & a & 5 MHz. It is therefore feasible to test
Eq. (8) experimentally. As pointed out already
earlier, in the only documented study available
at present a linear M dependence was indeed ob-
served for 3C)"' of "Al in GdA1, (Fig. 1), with a
slope (M (BP"/BM)~ =40 kHz. " On the other hand,
using the parameters appropriate for GdAl,
[S=2~, A~~=20 MHz, T, =174'K, e-,„=ksT, /(8+I)]
the prediction of Eq. (8) is a =22 kHz. In view of
the approximation in deriving Eq. (8), the agree-
ment between the two results is quite reasonable.
Lacking any other explanation for the experimental
results of Ref. 4, we therefore propose these
results as the first experimental verification of
the temperature-dependent &p"" " mechanis m.

The PP"""'process can be used to determine
directly the sign of the product Qq. To see this,
note that when (A~~ j»)P(, the quadrupole splitting
will have the form [see Eqs. (6) and (8)] ~E~
=

~
P —a[1-M(T)/M, ] ~. Since a is always positive,

d(bEo)/dM& 0 means P& 0 and therefore positive
Qq product, whereas d(AE~)/dM& 0 implies Qq& 0.
Applying the criterion to "Al in GdAl~, the ob-
served negative slope implies a negative intrinsic
electric field gradient, q& 0, at the Al. sites of
GdA1, .

For another implication of Eqs. (6) and (8), note
that even in systems with an essentially vanishing
Qq product, it is quite feasible to observe a quad-
rupolarlike splitting of an NMH l.ine upon the in-
troduction of magnetic excitations into the system.
Several such systems are presently being investi-
gated in our laboratory. Finally, we note that at
least, in principle, an experimental study of
P'""'" [Eq. (5)J may reflect both the dispersion
relations and the thermodynamic properties of
actual magnon systems.
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term I. Eq; (8)] we note that the
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may be of importance to NMR linewidths at finite tem-
peratures.

~~The vertical. axis of Fig. 3 in Ref. 4 represents values
of Be Qq/[2I(2I-0] and not Be Qq/[4I(2I-1)] as
printed in the caption.


