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NMR line-shape calculation for a linear dipolar chain*&
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Numex ical calculations have been performed to obtain exact results for the high-temper-
ature space- and time-dependent transverse spin pair correlation functions G"„(t), where ~
is the spatial separation of the spins, and the free-induction-decay function I" (t), for a
linear chain of N dipolar coupled spins (S= 2) for N = 7, 9, and 11with periodic boundary
conditions. The range 4 of the dipolar interaction was allowed to take separately the values
1, 2, and 3. The moments of the NMR line shape (M2 through &&20) were obtained for the
infinite chain with 4=1 and 6=2 and were found to be in excellent agreement with previous
reliable moment calculations ( j/12 through Ms). By an evaluation of the contribution of the
four-particle terms to Me, it is shown that the Bersohn-Das theorem fails in one dimension.
We find that t"„"P) for even (odd) values of r are predominantly positive (negative). This
gives rise to a damped beat structure for &(t). A study of E(t) for N =7, 9, and 11 shows
that our 11-spin solution reproduces that of the infinite chain at least up through the fifth
node, and is also in good agreement with recent ~SF free-induction-decay measurement in
Quoroapatite. The nodes of E(t) were found to shift towards shorter values of time as 4
was allowed to increase. Further, for N =11, a comparison of our exact results for &(t)
for b =3, with a Gaussian broadening of P(t) for 6=2, shows that the effect of the weak
interactions is not well approximated by a simple Gaussian broadening for this case.

I. INTRODUCTION

The nuclear-magnetic-resonance (NMR) line-
shape calculation for a rigid lattice of dipolar
coupled spins remains a formidable problem. '
Various proposed expansion schemes" fail at
long times because of a lack of a proper perturba-
tion parameter. A number of microscopic theo-;

ries ' have been advanced, but to get specific re-
sults, one is forced to make phenomenological
approximations. Recently, various empirical fit-
ting schemes, based on the known moments of the .'

line shape, have been proposed. ' Although they
yield reasonable agreement with experiments,
they fail to give any physical insight into the prob-
lem. Almost all the theories have been tested
against experimental measurements" in CaF,
where the "F nuclei form a simple cubic lattice.

Recently, the spin dynamics in one-dimensional
systems has received a great deal of attention. '
The simpler nature of the problem allows one to
obtain exact results for the various physical pro-
perties of interest. These are very useful in
bringing forth the nature of approximations of more
general theories. Moreover, a large class of
linear-chain materials have been found' where the
magnetic part of the interaction is dominated by
intrachain interactions. For nuclear spins, an
example of such a system is the mineral fluoro-
apatite [Ca,F(PO4), ]. Recently, it has been shown'0"
that if the external magnetic field is applied along
the hexagonal c axis, the "F resonance can be well
explained in terms of the truncated dipolar inter-

action of the F nuclei situated along this axis.
In this paper we shall examine the behavior of a

linear chain of N dipolar coupled spins in an ap-
plied magnetic field 5,. The z axis of our coor-
dinate system will be chosen to lie along Bp and
the chain axis will be at an angle 8 to Bp. For B,
much larger than the local fields arising from the
dipolar interaction, the NMR line shape is govern-
ed by the usual truncated dipolar Hamiltonian"
given by

",,~+ S",.S~„.—2S'S'„.
d js

where 6 is the range of the dipolar interaction and
the interaction parameter A is given by

A = y'I'(3 cos'8 —1)/2cF, (2)

where we have imposed the periodic boundary con-
ditions for the spins. The free-induction-decay
(FID) function F(t), which is the Fourier transform
of the NMR absorption line shape G(&u), is related
to G"„(t) by

where a is the distance between neighboring spins.
To facilitate comparison with the Heisenberg
model, we will often denote —,

'
A. by J. The normal-

ized infinite temperature transverse- spin- correl-
ation functions for spins z units apart are given
by13

G„"(t)= 4 Tr(exp[i(K„/h)t] So

&& exp[ —t.(X,/h)t] S„"j/Tr(1),
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i'.x „.x i
= Tr exp~ i~t S"exp -i~ t

~

S" r(S"S"),

(5)

We compare our results with the recent experi-
mental measurements of Engelsberg, Lowe, and
Carolan" (ELC). We also study the validity of the
Gaussian-broadening approximation for weak inter-
actions.

Our method of calculation is outlined in Sec. II,
the results are presented in Sec. III, and a sum-
mary of our work is given in Sec. IV.

II. CALCULATION

The method of calculating F(t) by solving the
Hamiltonian for a small number of spins is well
known in NMR. ' ' In one-dimensional systems,
the problem is further simplified if one imposes
the periodic boundary condition on the spins. If
T is the translation operator, then it is easy to
show that T,S' (the z component of the total spin),
and 3C~ form a set of commuting operators. It is
therefore possible to obtain numerically all the
eigenvectors and the corresponding eigenvalues of
X„ in a representation in which T and S' are diag-
onal. "'" One can also obtain the matrix elements
of S" and S„" in this representation, and evaluate
the traces in Eqs. (3) and (4), and the moments, in
a straightforward manner. "

The computer20 was programmed to evaluate all
the relevant matrix elements before and after the
diagonalization. The only input were N, Lh, , and the
states of the Ising basis which are not connected by
the translation operator T. Whereas F(f) could be
easily calculated once the eigenvalues and eigen-
vectors are properly stored, because of lack of
translation invariance of S"„, evaluation of G„"(f) was
more difficult. As a check on our computations
we used the fact that F(t) is independent of time for
the isotropic Heisenberg model. But perhaps the
best checks are the second and fourth moments
which can be calculated by using Van Vleck's re-
sults.

(4)
2

where S" is the x component of the total spin. We
present here ab initio calculations for G„"(f) and

F(t) for different values of iV' and b, , by a method"
used in our recent studies of the spin dynamics in
Heisenberg" and" XP chains. We also obtain the
first 20 frequency moments of G(~) which are
given by the Taylor series expansion of F(t) around
t=0, namely,

There are 2k commutators in the above expression.
Analytical expressions for M», in terms of the
interaction parameters of K„, are normally ob-
tained by evaluating the commutations in Eq. (6)
and then calculating the trace of the resulting ex-
pression in a representation in which S'. is diagonal
for each ~. The labor of calculating M» increases
very rapidly with 0, and analytical expressions
for only M„M4, M„and M, have been pub-
lished ~ ~ to date.

For the one-dimensional problem, an alternative
method" of calculating M» for different values of
Er is to evaluate the traces in a representation in
which $C„ is diagonal. To examine how. the moments
obtained from finite chains approach their asymp-:
totic values as N-~, we have evaluated the first
20 moments for N = 9 and N = 11, while 6 is allowed
to take separately the values 1 and 2. Our results
for 6=1 and 6=2 are shown in Tables I and II. By

TABLE I. Moments of the NMB line shape for a linear
dipolar chain containing N spins. The range of the inter-
action is denoted by 4. The interaction constant A is
equal to y /I (3 cos 8-1)/2p with standard notation.
This table corresponds to ~ =1. The theoretical values for
M2 and M4 are calculated from Van Vleck, while those
for M& and i&8 are calculated from Jensen and Hansen.
These results are shown in last column of the table.

2n (M2 )u'2n/

Other
theoretical

values

2

6
8
10
12
14
16
18
20

2.12132
2.410 28
2.573 13
2.685 90
2.774 87
2.852 87
2.g28 28
3.008 01
3.098 00
3.201 72

2.12132
2.410 28
2.573 13
2.685 90
2.774 87
2.852 87
2.928 28
3.008 00
3.097 91
3.201 31

2.12132
2.410 28
2.573 13
2.685 90
2.774 87
2.852 87
2.928 28
3.008 00
3.0979
3.201

2.12132
2.410 28
2.573 13
2.685 90

' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).
S. J. K. Jensen and E. K. Hansen, Phys. Bev. B 7,

2910 (1973).

III. RESULTS

A. Moments of F(g)

The "moment method" of Van Vleck" is one of the
important theoretical methods of studying NMR line
shapes in solids. The conventional starting expres-
sion for M» in Eq. (5) can be obtained from Eq. (4)
by expanding the exponential operators, namely,

M» = Tr([X„[R„,. . .[K„S"]].. . ]S~)/Tr(S"S") .
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TABLE II. Moments of the NMR line shape for a
linear dipolar chain containing N spins. The range of
the interaction is denoted by A The interaction con-
stant A is equal to y @ (3cos8-1)/2a~ with standard
notation. This table corresponds to 6=2. The theoreti-
cal values for M2 and 1Vl4 are calculated from Van Vleck,
while those for M6 and M8 are calculated from Jensen
and Hansen. These results are shown in the last col-
umn of the table.

2n

N=9

)i/20/A

N =11

Other
theoretical

values

2
4
6
8
10
12
14
16
18
20

2.13783
2.466 79
2.655 17
2.786 48
2.892 38
2.990 55
3.094 39
3.214 07
3.353 18
3.507 51

2.13783
2.466 79
2.655 17
2.786 48
2.892 38
2.990 55
3.094 31
3.213 39
3.350 40
3.500 10

2.137 83
2.466 79
2.655 17
2.786 48
2.892 38
2.990 55
3.094 31
3.2134
3.350
3.50

2.13783
2.466 79
2.655 17
2.786 48

See Ref. a of Table I.
bSee Ref. b of Table I.

a diagrammatic analysis, it can be shown" that
for 6=1, the moments M, through M~, must be
equal to those of the infinite chain if N is odd. We
note from Table I, however, that for this case the
first 14 moments for N = 9 are the same as those for
N =11, within the accuracy of our calculations. "
The rather close agreement of a few of the mom-
ents for these two values of N enables us to obtain
exact results for the moments M, -Myo and estimate
the moments M»-M» for the infinite chain. As
the range of the interaction increases, we expect
our moments for a given value of N to converge
less rapidly towards those of the infinite chain.
This is verified by a comparison of the moments
for N = 9 and N = 11 when Lh, = 2 as shown in Table II.
We note that only the first 12 moments are ident-.

ical for these two cases. Some of the higher terms
for N = ~ are estimated in a manner similar to that
for 6=1.

For the linear chain, we have also evaluated
M, -M, from the various published analytical ex-
pressions for these moments"'" "for each given
value of N and A. In each of the cases investigated,
our results for M, and M4 are found to be in excel-
lent agreement with those obtained from Van Vleck."
Similiarly, our results for M, and M, agree very
well with those obtained from Jensen and Hansen. "-
This comparison is shown in the last columns in
Tables I and II. However, our result for M, is not
in agreement with that obtained either from Cheng
and Memory ' or from Wurzbach et a$. ' This

suggests that the expressions for M, as given in
these two papers are not correct.

It is well known that clusters containing only
2, 3, .. . , (0+1) particles contribute to M». By
analyzing the many-body diagrams that enter in
the calculation of M», Bersohn and Das" concluded
that the dominant contribution comes from the
k+1 particle clusters. This is generally found to
be true in three- dimensional lattices. '4 Recently,
the sum of all the four-particle terms in M„
denoted by M„was determined by Wurzbach
et al."'" A comparison of their results for 'M,
with our result for M, for the infinite chain, shows
that 'M, constitutes only 29.36'%%uo, 33.02'%%uo, and
33.45% of M, as b, is allowedtotake the values 1, 2,
and 3, respectively. This clearly indicates that
the Bersohn-Das theorem breaks down in one di-
mension even when the long-range nature of the
dipolar interaction is taken into account. This is
the reason why our finite chain results converge
to the N = ~ limit so rapidly (see Tables I and II).

Based upon the listed comparisons of our results
for M, -M, with the now accepted reliable calcula-
tions by previous authors, it seems reasonable
that the higher moments listed in Tables I and II
can provide a good check as to the accuracy of
future moment calculations.

B. Transverse-spin-correlation functions

To gain some insight as to how the beat structure
appears in the FID, we studied the time dependence
of the transverse-spin-correlation functions G„"(f)
for different values of r Adeta. iled study of G„"(f)
for N=9 is shown in Fig. 1, where we allow the
range 6, to take up the values 1,2, and 3, separ-
ately. For Go(t) our result is essentially identical
to that of the infinite chain up through Jt-3, and
is non-negative in this time domain. " The pro-
nounced secondary maxima in Go(t) [see Fig. 1(a)]
is similar to those observed in G;(f) for the Hei-
senberg model, "and is typical of one-dimensional
spin dynamics. As shown in Fig. 1(b), Gf(t) shows
a pronounced negative peak around Jt-0.5, and
other negative minima for larger values of time.
Similarly, G,"(f) shows a maxima at Jt 1[see Fig.'-
1(c)]. Considerable structure is also seen in G,"(f)
and G4(t) as shown in Figs. 1(d) and 1(e), respec-
tively. A striking pattern that emerges from a
study of these figures is that G„"(f) at even (odd)
sites are predominantly positive (negative). We
also note that increasing the range of dipolar in-
teraction does not change the basic structure ap-
preciably but shifts the general pattern towards
shorter values of time, and also increases the
damping somewhat.

The FID function E(t) for this case is shown in
Fig. 2. We note that at very short times, the main
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FIG. 1. Effect of increasing the range of interaction 4 on the normalized infinite temperature spin-pair-correlation
functions G„(t), where r is the spatial separation of the spins, for a linear dipolar chain containing nine spins. We
have used periodic boundary conditions on the spins. For details, see text.

contribution to E(f) comes from G~(t) and Gf(t).
Around the first minimum of E(f), the contribution
from G,"(t) is most important. As G,"(f) shows a
positive peak, the combined effect of G,"(f), Gf(t),
and G,"(f) results in a positive peak in E(t). For
larger values of time the far away cross-correla-
tion functions become more and more important
and we obtain a damped beat structure for E(t). We
however, would like to point out that our present
result for E(t) for N= 9 (see Fig. 2) reproduces that
of the. infinite chain in the short time region only
(Jt-2). The absence of alternate positive maxima

and negative minima in the long time tail of E(t) is
believed to be a manifestation of the small size of
our system. The behavior of the infinite chain is
further discussed in Sec. III C.

C. Comparison with experiments

The interaction of the fluorine nuclei in fluoro-
apatite can be well described by the Hamiltonian
given in Eq. (l), as indicated by earlier experi-
ments by Van der Lugt ef al."and recent FID
measurements by Engelsberg et al." The latter
authors calculated E(t) for N = 5, and 6= 2 and
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I.O

—- —6 =2

0.0

FIG. 2. Effect of increasing the range of interaction 6
on the FID function E(t) for a linear dipolar chain con-
taining nine spins.

approximated the effect of off chain spins by a
simple Gaussian broadening. They found good
agreement with experiment. Here we evaluate F(t)
for larger number of spins and longer range of in-
teraction.

To obtain the behavior of the infinite chain, we
study the effect of increasing the length of the
chain on E(t). Our results for E(t) for N = f, 9, ll
and 6=2, is shown in Fig. 3. If 7„ is the time
domain up to which E(t) for a given value of N is
expected to reproduce that for the infinite chain,
a study of Fig. 3 shows that v, -120 p, sec, and
7'g 200 /sec We theref ore expect that v, y

300
psec, which includes the first five nodes of F(f).
We note that the beat structure is less damped

compared to that of CaF, . This arises because of
the smaller number of neighbors interacting with

a given spin in one dimension.
A comparison of our numerical result for E(t),

with N =11 and 6=3, with experimental measure-
ments of Engelsberg et a/. " is shown in Fig. 4.
We note that within the time domain of interest
(&300 p, sec} our result is a very good approxima-
tion to that of the infinite chain. As we see from
Fig. 4, the nodes and the positions of the peaks of

our theoretical result for F(t) are in very good
agreement with the experimental result P(t}, but

Q(t) damps faster than E(t). An examination of the
peak amplitudes of Q(t) and E(t) shows that one
needs a rather slowly decaying damping factor h(t)
so that h(t)F(t) will agree fairly well with Q(t). As
shown by previous authors, "'"about 3% of the
total M, comes from the small F- F interchain in-
teraction and the small fluorine-phosphorus inter-
action. For t &120 p.sec, 0.03M2t'&&, and
these off chain interactions cannot explain the ob-
served damping completely. The crystals on which
measurements were made had T, -0.1 sec at 32
MHz, indicating the presence of a large amount of
paramagnetic impurities. This was further evi-
denced by later FID measurements on the same
crystals. It was found that the FID at 4.2 K was
much more highly damped than at room tempera-
tures, probably due to increase in correlation time
of the paramagnetic centers. Futher study of the
damping function should be carried out by FID mea-
surements on purer crystals.

D. Gaussian approximation

Let us write the Hamiltonian describing the spin-
spin interaction in the form

1.0 N=7, h =2

N 9, b, =2
N"-Il, b =2

I.O F (t) (N= II, h =3)

Experimental
Results of ELC

0.0

0.0

I

200
I

400

t (p.sec)

I

600 800
I

40
I

80 I20
I

I 60
I

200

FIG. 3. Theoretical FID function 5'(t) for ~SF resonance
which arises from the F-F intrachain interaction in
fluoroapatite for different values of N, the number of
spins on the chain, where the dipolar interaction is al-

I

lowed to extend up through second-nearest neighbors
(&=2)

t (p.sec)
FIG. 4. Comparison of the present calculation of F(t)

for N =11 and 4=3 for the F resonance in fluoroapatite
which arises from the F-F intrachain interaction with
experimental measurements of Engelsberg, Lowe, and
Carolan (Ref. 11).
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X=X +'0, (7}

X=X,(11,3), X,=X,(11,2), (10)

where X~(N, 6) is the dipolar Hamiltonian as given
in Eg. (1}for given values of N and h. The corre-
sponding FID functions are denoted by E(t;N, 6),
for N=ll and 6=3, and 6=2. If we now assume
that the third-nearest-neighbor interaction pro-
duces identical Gaussian broadening for each of the
multiplets arising from X„(11,2), then E,(t) is
given by

E,(t) =e ' ' ~' E(t;11,2), (11)

where o is chosen so that E,(t) and F(t; 11,3) have
the same second moment. A comparison of F,(t)
with the exact E(t;11,3) is shown in Fig. 5. We
find that except for a very small improvement at
short times, E,(t) is not a good approximation for
E(t;11,3). We, therefore, conclude that, at least
in one dimension, the effect of weak interactions is

where X, is the Hamiltonian for the unperturbed
system, and '0 is a small perturbation. Let E,(t)
be the FID corresponding to X . In this case the
customary procedure in NMR""'" is to assume
that E(t), which corresponds to X, can be well ap-
proximated by F,(t) given by

F,(t) = I (t)E,(t),
where h(t) is a smooth decaying function of time.
Very often h(t) is chosen to be a Gaussian, namely,

Z(t) =e (9)

where o is chosen so as to preserve the second
moment of E(t). Although there is little physical
justification for this procedure, it is convenient,
and in some cases, it does explain observed line
shapes fairly well. ""Since we do not make any
ad Roc approximation in the evaluation of the FID
function, we are able to test the validity of this
procedure.

We first note, from Fig. 2, that increasing 6
from 1 to 2, causes a pronounced phase shift of
F(t) towards smaller values of time, rather than
increase the damping, except when Jt &1. This
clearly indicates that no smooth decaying functional
form for h(t), when multiplied to Eo(t) correspond-
ing to n, =1, will be able to reproduce F(t) corre-
sponding to 6, =2. To investigate this point further,
we consider the 11 spin chain, and 6 is allowed to
take the values 2 and 3, separately. For this case
we have

N=ll, 6=3
N=ll, 6~2
N = II, 6 = 2 (Broadened by a Gaussian )

0.0

200
I

400
I

600 800

t (psec)
FIG, 5. Test of Gaussian broadening approximation ln

NMH. See text for details.

more complicated than a simple Gaussian broaden-
ing of the unperturbed spectrum.
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IV. SUMMARY

We have calculated that first 20 moments of the
NMR line shape for the one-dimensional problem,
and found good agreement with previous reliable
calculations for the first eight moments. The
higher moments are expected to provide useful
test on the accuracy of future moment calculations.
For the first time, the transverse two-time spin-
correlation functions have been studied in detail for
the truncated dipolar interaction. We find, for ex-
ample, that the first minima in the FID is domin-
ated by the nearest-neighbor cross- correlation
functions. By considering chains of increasing
length, we show that the FID function F(t}for N= 11
is identical to that for the infinite chain up through
at least the fifth node. Our result for E(t) is found
to be in good agreement with recent "F FID mea-
surement in fluoroapatite. As we allow the range
of the dipolar interaction to increase, the general
features of E(t) do not alter appreciably, but the
nodes are found to shift towards shorter values of
time. Consequently, the standard Gaussian broad-
ening approximation for the weak interactions in
one- dimensional systems is inadequate.
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