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The analysis of selected nonlinear problems in the renormalization group is found to show striking

contrasts between the usual local linearized fixed-point analysis and the properties of global solutions of
nonlinear equations derived from an approximation of the Vfegner-Houghton differential formulation.

competition between various fixed points that is incorporated in general global solutions can upset the

asymptotically valid critical behavior deduced from the local analysis. In general, the critical-point

exponents of such a solution will not satisfy equalities, but rather the corresponding inequalities.

However, these nonscaling solutions have extraneous singularities that are not related to the

thermodynamic singularities of the system. If singularities of this type are excluded, then the global

solution has the same critical-point exponents as the local solution derived by linearizing around the

stablest fixed point. It is shown that in this case the critical surface in the Hamiltonian space is closely

related to the surface of order-2 critical points in a thermodynamic field space. The boundaries of this

surface are correspondingly related to the critical points of higher order in this thermodynamic space,

The nonlinear global solution predicts multiple power scaling behavior from a single scaling equation

deduced from the renormalization group. Previously such behavIor was obtained by postulating the

simultaneous validity of two of more "linear" scaling hypotheses.

INTRODUCTION

The renormalization-group approach to the study
of critical phenomena is a mathematical expressio'r
of certain heuristic ideas of Kadanoff. ' Kadanoff
argued that sufficiently near the critical point, the
correlation length was so large that even crude
averages over small groups of spins would not alter
the physics in an unmanageable way, but would only

change the parameters slightly. If the transforma-
tion of the parameters is assumed to be of a partic-
ula, r form (the "scaling hypothesis'), then many
valid and useful predictions of critical behavior
follow. ' In the renormalization-group approach, ' '
a particular form of Kadanoff averaging is carried
out explicitly. If the system Hamiltonian is charac-
terized by some set of parameters fP~)t, the renor-
malization-group equations provide a definite trans-
formation on the parameter space.

The fixed points of the renormalization group are
just the fixed points of this transformation in the
parameter space. As is well known from the study
of nonlinear finite-difference and differential equa, —

tions, the qualitative and much of the quantitative
properties of a set of transformations are deter-
mined by the location and study of the fixed points
of those transformations. This is the rationale of
the renormalization-group approach: to study the
transformation properties (via the fixed points) in

order to deduce the properties of the partition func-
tion and other thermodynamic quantities.

A formulation of a renormalization group may be
of a recursive character with a. "finite-difference"
generator, or it may have a differential generator.
For example, if we consider a system with discrete

spins localized on lattice sites, we could construct
a renormalization group which replaced each spin
by an average of that spin and the spins of its
neighbors. ' After averaging, the parameters of
the Hamiltonian would, in general, change. The
new parameters would be given by relations of the
form p', =P, ((p,f) for some functions P&. Thus the
renormalization-group equations in the parameter
space would take the form of finite-difference equa-
tions coupling all the parameters together. A sec-
ond case of finite-difference formulation is the
well-known renormalization group of Wilson. It
treats a system of continuum spins; the renormal-
ization average is performed by averaging over a
finite fraction of the momenta in the space of the
Fourier transform of the spin density.

Finite-difference equations, however, are clumsy
to manipulate in the large, i.e. , over large do-
mains of the variables. A differential generator,
which performs an average over an infinitesimal
number of degrees of freedom, is far more con-
venient. A differential generator gives a smooth
transformation of the p;, of the form dp~/dl
=P, ((p,f), where l is a, parameter describing the
progress of the renormalization averaging. Vari-
ous differential generators have been proposed;
e. g. , Wilson' has proposed a "partial-integration"
generator, while Wegner and Houghton' have pro-
posed a differential generator which averages over
an infinitesimal shell of momentum.

In applications of the renormalization group to
critical phenomena, it is customary to perform an
average which corresponds to a simple scale change
of the correlation length as in Kadanoff scaling.
For a finite difference generator -we expect that the
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renormalization equation is of the form $,
= const $, . For a differential generator, the param-
eter / is usually normalized so that the renormali-
zation equation for $ is $ = —$, where the dot de-
notes differentiation with respect to l.

With a few exceptions, ' '" the work devoted to
the application of the renormalization group to crit-
ical phenomena has been confined to the location
and linearized analysis of fixed points. For exam-
ple, we could consider a set of two parameters p
and q with renormalization group equations

p =2p[1- p —~(z&)q],

q = el.~(1 —e) —4p].

(1.la)

(1.1b)

These equations have several fixed points. One
fixed point is at p=q=0. If we lineavize around

. p=q=0 we obtain the elementary solutions p=poe '

and q=qoe".
In terms of p and q, the equation for the correla-

tion length $ = —$ becomes

which is just (1.4) with X= e', a~=2, a, =&, and

a, = —l. Equation (1.5) is equivalent to

~(p, ~)=IpI'"~(g p, q/IpI"').
The quantity q/1 pl" is a renormalized invariant
of the linearized equations, as is easily checked
from (l. 1).

The correspondence between the form for the
correlation length and the usual scaling hypothesis
leads to the definition of p and q as (linear) scaling
fields. If we make the identification p- T- T„we
derive the value of the critical-point exponent p = ~.
However, we linearized (1.1) to obtain this solution.
In principle this analysis might only be valid local/y,
infinitesimally close to the fixed point p =0, q=0
(cf. Fig. 1).

We can examine other fixed points. A second
fixed point is located at p = 0, q = 1. At this fixed
point, we have a different pair of linem scaling
fields, p'=-p and q'=- (q —1)+ [4/(2 —e&)]p, with the
new /inca~ized renormalization equations:

9(
p+

BP Bq
(l.2)

p' = (2 —~~)p',
'I I= —Eq

(1.7a)

(1.Vb)

If we make the linearized approximation for p and

q, (l. 2) is of the form

~

~

aE
a p; =a+.

i t
(1 3)

The solutions of an equation such as (1.3) are gen-
eralized homogeneous functions (GHF's). ' That
is, they satisfy the functional relationship

(1.4)

The constants a; and a~ are termed the scaling
powers of the variables p; and the function I', re-
spectively.

To see that (1.3) implies (1.4) it is sufficient to
examine the case at hand. We write

$(po e", Vo c")= $( po, eo) e ',

We again obtain a GHF but with variables p' and q'

and scaling powers g~. =2 —&~ and g, . = —g. Thus,

t(x' "p', x 'q') = x 't(p', q'), (1.8a)

or equivalently

((p' ~') =
I
p'I """'((sgnp' ~'I p'I"" "'). (1 8b)

Again, since the fundamental equations (1.1) were
linearized, the solution given in (1.8) is, in prin-
ciple, valid only infinitesimally near the fixed point
p=o, q

Thus, by locating tuo fixed points and analyzing
the behavior of the linearized equations in a neigh-
borhood of each fixed point we have produced two

competing forms for the correlation length with
different critical exponents, v= 2 and v' = 1/(2 —e4).
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FIG. 1. Q, q) plane of
Eq. (1.1). Only two fixed
points are shown. Local
integral curves for the fixed
points (0, 0) a.nd (0, 1) are
sketched as shown. The
local regions of validity of
the linearized approxima-
tions to the correlation

q length [cf. Eq. (1.6) and
(1.8)] are indicated, as
well as the nonlinear global
region considered in Sec.
II.



460 J. F. NICOLL, T. S. CHANG, AND H. E. STANLEY

If we are not to be confined to infinitesimal regions
about one of the fixed points, the effects of both
fixed points must be incorporated. This obviously
requires a solution of the nonlinear equations to
give a solution valid at each fixed point 2nd at every
point between the two fixed points. To include
more than a single fixed point, the local linem
analysis must be replaced by a global nonlinear
analysis (cf. Fig. I).

From the example treated above it is easy to see
that any set of /inewized renormalization-group
equations confirm the scaling ideas of Kadanoff:
Thermodynamic functions are GHF's of suitable
Linear combinations of the parameters (p,$. Since
many fixed points may be included in a global anal-
ysis, three questions must be answered:

(i) Which fixed point should be chosen to repre-
sent the true scaling behavior of the system?

(ii) Can solutions derived from linearizing the
renormalization- group equations around various
fixed points be matched together in such a way as
to form a globally valid solution?

(iii) Does the class of global solutions include
behavior that is drastically different than the be-
havior deduced from the linearized solutions?

Question (i) has been traditionally answered by
the criterion of relative stability. If two fixed
points can be considered as important for a particu-
lar system, we examine them to determine whether
a trajectory in the parameter space connects them.
If such a path exists, and under the action of the
renor mal ization equations it pas se s from fixed
point A to fixed point B, we say that A is unstable
with respect to B. It is assumed that the fixed
point which is least unstable (of those fixed points
which lie on the "critical surface, " cf. Sec. III) is
the dominant or controlling fixed point. The asyrnp-
totically valid scaling behavior is assumed to be
that given by the linearization about that point. For
example, the isotropic Heisenberg fixed point is
unstable with respect to an anisotropy along one
spin axis. In the renormalization-group parameter
space, two paths lead out of the Heisenberg point,
connecting it to a point of XF character and a point
of Ising character. We see that the idea that the
slightest bit of anisotropy turns the system into
either an XF-like or Ising-like system is supported
by this notion of relative stability (and seems to be
confirmed by high-temperature series analysis).
The procedure of checking relative stability re-
quires first finding the fixed points of the renormal-
ization-group transformations and this is an exceed-
ingly nontrivial task. Numerous perturbation ex-
pansions have been developed to discover those
fixed points that are "close" to some fixed point
located by inspection (the & expansions of Hefs. 4

and 5 and the &~ expansions of critical points of
higher "order" of Befs. 15 and l6 are examples).

Question (ii) must be answered individually for
each renormalization group and probably for each
problem within any one renormalization group. At
least for groups with differential generators, one
supposes that the solutions for the thermodynamic
functions are again GHF's with revised arguments.
That is, instead of linem. combinations of the
parameters (p;), certain nonlinear functions of the
parameters (called nonlinear scaling fields) will
be the arguments of the GHF. The equations for
the nonlinear scaling fields will be first-order p3r-
tial-differential equations with coefficients that are
nonlinear in the p, For any particular case, the
general theory of such equations can be invoked to
determine whether solutions to these equations
exist in the large. A further question is whether
every global solution for the thermodynamic func-
tion matches onto the local solutions at all the fixed
points (or at least at all the fixed points we have
found); that is, are all the global solutions suffi-
ciently regular (in a sense particular to each prob-
lem) near each fixed point'? (Of course, the non-
linear solution for the fp, J themselves always
match. ) In general, the answer is no; not every
global solution matches onto the lineaxized solzdion
at each fixed point. 1VIany global solutions exist
that have singularities that are unrelated to the
physical thermodynamic singularities. If we re-
quire that a global solution match smoothly Bt each
fixed point, then the set of global solutions will be
restricted, but the global solution is still not in
general uniquely determined.

Question (iii) can only be answered by explicit
construction of the nonlinear scaling fields and
some class of global solutions. In this work we
will consider two cases which illustrate that the
answer is yes: Global solutions can be radically
different than what might be presumed from the
local analysis. However, we will also show that
the global solutions that violate the local analysis
have extra singularities on the boundary or some
portion of the boundary of the solution region.
These singularities are apparently unrelated to
usual thermodynamic singularities. If we sequin e
that the solzftion be ~ell behaved every~here on the
boundary of the solution region, then the only global
solutions that are acceptable support the local lin-
earized analysis.

In Sec. II we review the nonlinear solution given
in Ref. &1 for the crossover or competition between
the Gaussian fixed point Cwhich has Gaussian ex-
ponents) and the Wilson-Fisher fixed point (which
has non-Gaussian exponents). We show that a, gen-
eral global solution is not dominated by the stabler
fixed point. Such solutions, however, have singu-
larities on the separatrix which emerges from the
stabler fixed point. This separatrix also forms
part of the boundary of the solution region. The



GLOBAL F EAT UB E S OF NONL INEAB BENORMAL I BAT ION. . .

exclusion of those solutions with singularities on

the separatrix leaves only solutions which are
dominated by the local linearized behavior of the
stabler fixed point.

In Sec. III we discuss a three-parameter cross-
over problem. The system considered consists of
two internally isotropic n-spin subsystems which
are coupled together through a biquadratic term.
The competition is among a fixed point of dubious

spin and the usual Gaussian, n-spin, and 2n-spin
fixed points. In this case it is again true that a
global solution which is not dominated by the linear
behavior of the stablest fixed point has singulari-
ties on the boundary of the solution region. How-

ever, the singularities do not cover the entire
bounding surface (which is two dimensional) but are
confined to the line emerging from the stablest
fixed point. The removal of the singularity along
this separatrix again restricts the class of global
sojutions to those dominated by the behavior of the
stablest fixed point. The properties of these re-
stricted global solutions strongly resemble the
crossover behavior of systems which contain sever-
al different types of critical points, including
critical points of higher order. In particular, the
"double-power-law" scaling behavior characteris-
tic of critical to tricritical crossover ' is an auto-
matic consequence of the nonlinear renormalization-
group solutions.

In Sec. IV we discuss the general properties of
global renormalization-group solutions as illus-
trated in Secs. II and III. We discuss the possibil-
ity of accepting the global solutions which are sin-
gular on some separatrix. The critical-point ex-
ponents of such systems are more complicated than
the more regular global solutions, but are still
characterized by double-power-law expressions.
These systems, which are a generalization of scal-
ing systems, share many properties with the sim-
pler systems; elsewhere, we have given a partial
classification and discussion of such systems and
termed them "critically ordered" systems.

II. TWO-PARAMETER CROSSOVER

In this section we review the crossover solution
given in Ref. 11 for a set of nonlinear renormaliza-
tion-group equations involving two parameters.
This solution describes the crossover between
Gaussian and Wilson- Fisher (WF) critical behav-
ior, and is obtained within an e-expansion approxi-
mation. The techniques used in the solution of this
problem parallel those that are used in Sec. III for
a three-parameter crossover problem and, in fact,
the three-parameter problem reduces to the two-
parameter problem on special surfaces in the Ham-
iltonian parameter space.

The properties of the global solutions given in
Ref. 11 are more fully developed in this section.

3C= ~Vs
i

+rs i 2u(s ) ~h ~ s, (2 1)

for a continuous spin vector s with v components.
The variables ~ and u are constant interaction
parameters and h is the magnetic field. As dis-
cussed in Ref. 5, the Hamiltonian (2. 1) models a
short-range interaction between spins on a lattice.
The approximation of such a system by a continu-
um spin allows the renormalization average to be
performed more easily. The WHARQ equations
for the isotropically interacting n-spin system of
(2. 1) in a lattice of dimension d are

~= 2r+ [u/(1+~)] [-,'d(n+ 2)]

u = (4 —d) u —[u'/(1+ ~)'] [-,'d(n+ 8)] .
(2. 2a)

(2. 2b)

A natural change of variable maps all the fixed
points of interest into a finite region of parameter
space. We write

7 =x/(1+x),

ey„-=[u/(1+ &)'][-,'d (n+ 8)] .
(2. 2c)

The WHARQ equations in terms of these variables
are

~ = 2(1 —~) [7+ ey„(n+ 2)/2(n+ 8)],
y„=y„(e[1—3y„(n+ 4)/(n+ 8)J —4i) .

(2. 3a)

(2. 3b)

The three fixed points of. interest are the "finite
Gaussian" point (i=y„= 0), the "infinite Gaussian"
point (7=1, y„= 0), and t'he Wilson-Fisher point

In particular, we show that not every global solu-
tion can match the local, linearized solutions at
both of the fixed points. More precisely, a general
global solution may be singular on particular tra-
jectories leading from the Gaussian or WF fixed
points. If the global solution is to avoid such sin-
gularities, then the class of admissible solutions
is reduced. In fact, it can be shown that the local,
linearized analysis is now justified; the global so-
lution matches the local solutions formed at both
the WF and Gaussian points and the asymptotically
valid critical behavior is determined by the stabler
fixed point.

In this section and in Sec. III we use an approxi-
mate renormalization group'6 based on the momen-
tum-independent limit of the differential generator
derived by Wegner and Houghton. The use of a
differential formulation is far more convenient for
the global study of nonlinear equations than an itera-
tion equation such as the wilson-approximate-re-
cursion formula, ' since it allows the use of many
techniques familiar from the general theory of dif-
ferential equations. ' A discussion of the Weg-
ner- Houghton- approximate- renormalization group
(WHARG) is given in Appendix A.

We consider a Wilson-reduced Hamiltonian den-
sity of the form
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[7'= —e(n+ 2)/2(n+ 8), y„= 1]. The term "Gaussian"
is applied to the first two points since the nonqua-
dratic terms in the effective Hamiltonian are zero.
We distinguish between the two Gaussian points by
the value of r, which is zero at the finite Gaussian
point and infinite at the infinite Gaussian point.

The equations given in (2.3) are already diagonal-
ized about the infinite Gaussian point. If we diago-
nalize them around the finite Gaussian point, we
have the complementary set of equations:

x= 2x[l-x-.(-,'g)y„]

~~Infinite Gaussian

y. = y.[&(1-y. ) —4x], (2. 4b) isher

In= —~ynrn ~

(2. 5b)

(2. 5c)

Employing (2. 5a) and (2. 5c) in Eq. (2. 3) we have

«(f )
~p y 3(n+4)/(n+8) —const e

n

1-r
— =const e 3' . (2. 6b)

Using (2. 5b) and (2. 5c) in the complementary equa-
tions (2. 4) we also have

= const e 6l

X ) (2. 6c)

(2. 6d)

where

x = ~+y -„eng(2 —e), n„=- (n+ 2)/(n+ 8) . (2. 4c)

In passing from (2. 3) to (2. 4) we have discarded
terms proportional to e y„and e y„. Thus, (2. 3)
and (2. 4) are formally equivalent to O(e) (see, how-

ever, Appendix B). The advantage of this approxi-
mation is that the surface of critical Hamiltonians
is now the straight line x= 0. We are justified in
neglecting the e' terms if y„ is always of O(1).
Since the original WHABG equations (2. 2) are only
good to O(e) '8 this approximation is self-consistent.
The restriction on the size of y„ limits us to global
solutions for which the renormalization trajectories
are bounded ln y n

With these approximations, (2.3) and (2. 4) are
of the same form. The three fixed points have been
placed at the canonical locations x=y„=- 0 (the finite
Gaussian point), x= 0, yq= 1 (the Wilson-Fisher
point) and x=1, y„=0 (the infinite Gaussian point)
(see Fig. 2).

The solution of (2. 3) and (2.4) for x and y„can
be conveniently expressed in terms of three func-
tions R, X, and p„which are defined through the
equations:

8= 2(1-~)ll, (2. 5a)

Finite Gaussian

FIG. 2. Solution region for the two-parameter prob-
lem of Sec. II is shown. The region includes three fixed
points, denoted as the finite Gaussian, infinite Gaussian,
and Wilson-Fisher fixed points. The separatrix connect-
ing the Wilson-Fisher and infinite Gaussian fixed points
is labeled y„=p„(x). The line x= 0 corresponds to the
surface of critical Hamiltonians.

The four expressions on the left-hand sides of
(2. 6a)-(2. 6d) are termed nonlinear sealing fields'~
since they have a purely exponential dependence on
the renormalization para, meter /. Equations
(2. 6a)-(2. 6d) cannot all be independent since there
can only be two independent scaling fields. It is
easy to see that

X=1—r
B=xF"

n

(2. Va)

(2. 7b)

By (2. 8) we mean that the value of I'„(x,y„) is to be
determined by performing the indicated integral
along the unique renormalization trajectory that
passes through the point (x, y„), Thus, F„(0,y„)
= 1 —y„by direct integration of (2. 5). The separa-
trix connecting the WF point x = O, y„= 1 and the in-
finite Gaussian point x=- 1, y„= 0 is denoted by
y = &P„(x) in Fig. 2. Since the renormalization solu-
tion along this trajectory reaches the WF fixed
point only inthe limit l- —~, at each point y =yo(lo)
on the separatrix, y &yo for all /&Eo. The inte-
gral in the exponent of (2. 8) diverges and, there-
fore I"„has a zero on the separatrix y = p„(x).

Since we have the exact solution for x 0, F„=&

—y, , it is easy to show that F„can be written as
(to first order in e, cf. Appendix B),

All that remains is finding the solution of (2. 5c)
for T„. We are interested in the solution that can
be written a,s

l

P'„= exp —& y„ t' dl'
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Y„=ol (x, y„, ~„) arbitrary functions of the renormalization invariant

= (1 —y /A) exp(exAy /0 )

where the separatrix function y„(x) shown in Fig.
2 is given by

y„= C(x, S„)

-=(1 —x)""exp[a x(l —2n„)/2] . (2. 9b)

(The derivation of the functions'JJ and C is given in

Appendix B; they are used with different arguments
in Sec. III. ) We can now write down the globally
valid nonlinear scaling fields appropriate to the
Gaussian and WF fixed points. That is, the non-
linear fields that embody the behavior characteris-
tic of the renormalization equations when linearized
around the two fixed points. The simplest forms
of these fields are given by

Sa=x Y„"/X,
S„=xy-„"/X' " .

(2. 10a)

(2. 10b)

For example the correlation length satisfies (2. 11)
with a&= —1; the Gibbs potential satisfies (2. 11)
with a&= d [see, however, discussion following Eq.
(2. 15)].

The renormalization-group equations do not de-
termine the form at the GHF (2. 11)""'"3' and they
also do not determine the scaling fields uniquely.
Since any GHF remains a GHF under any transforma-
tion of variables which is itself a GHF we may choose
new scaling fields which are arbitrary GHF's of
S~ and S.

Thus, we can choose scaling fields with any
scaling powers. This freedom is reduced by con-
sidering the fact that the separatrix connecting the
finite Gaussian point and the WF point (x = 0, 0~y
~ 1) corresponds exactly to the surface of critical
Hamiltonians. That is, x= 0 if and only if T = 7,,
Making the usual Taylor-series expansion we as-
sume that x = T —7, for sufficiently small T —7.', .
If we require that the scaling fields themselves be
proportional to x for T near T, and thai they reduce
to the natural linearized scaling fields at the Gaus-
sian and WF fixed points, then the most general
fields are given by those of (2. 12) multiplied by

With these scaling fields, we may describe the
global behavior of any function whose renormaliza-
tion transformation behavior is known. If f is a
function that satisfies the renormalization equation

f=a&f, then f is a GHF of the magnetic field h, and

the two scaling fields Sz and S„,

f(X &h, X ~So, X'"S„)=X~f(h, Se, S„), (2. 11)

Here the scaling powers a„,34 a~, and a„are given
by

(2. 13)

which do not vanish at x= 0. Note that I= 0 on the
separatrix y„= p„(x) as well as when x= 0; I=~
along the pure Gaussian trajectory y„= 0.

This freedom in the choice of nonlinear scaling
fields is illusory since we have not specified the
GHF's for which the scaling fields are arguments.
Any change in the scaling fields induces a corre-
sponding change in the form of the GHF's. We may,
therefore, choose the nonlinear scaling fields at
our convenience.

%'ithout loss of generality, we will use the scal-
ing fields defined in (2. 10), With these nonlinear
scaling fields a particularly simple example for
the h = 0 correlation length is

] =X(I)S "e+a(I)S '" (2. 14)

+— dl' In[1+x(l')] e "' .
2 (2. 15b)

As the renormalization average proceeds (l- ~),
information about the Gibbs potential passes from
the first term on the right-hand side of (2. 15b) to
the second term. In some circumstances (in par-
ticular, zero magnetization) it may be possible to
take the limit l ~ and consider only the second
term. 3 This method has been utilized by some
authors 6'~~ to calculate approximate Gibbs yoten™
tials in zero ordering field (i. e. , h = 0). However,
for fixed l, the second term contains information
that would be unimportant for critical behavior (x - 0).
Accordingly, we will in our discussions drop the
second term of (2. 15b) and deal only with the homo-

where A(l) and B(I) are smoothly varying functions
of the renormalization invariant (finite both at I= 0
and I=~). Since both of the scaling fields appear
in (2. 14) symmetrically, this form has the virtue
of reducing to the appropriate local solution as
either of the limiting trajectories [ y„= 0 or y„
= qr„(x)] is approached. For x fixed and y„- 0,
S„~ and the %F term vanishes. Similarly, as
the y„= y„separatrix is approached, S~-~ and the
Gaussian term 0. For intermediate values of
y„both singularities compete, giving the expected
nonlinear crossover.

A more complicated behavior is exhibited by the
Gibbs potential, In addition to the spin dependent
terms, an additive constant in the Hamiltonian den-
sity contributes to G. Therefore, we can write

G(0~&]')+ "o=e "'&((P~(1)/)+8 "'~o(l) . (2 15a)

The WHARG equation for vo can be easily integrated
to give

G((P ])= "G((P (I)])



464 J. F. NICOLI. , T. S. CHANG, AND H. E. gTANI, E~

geneous term. Thus, when discussing the Gibbs
potential and its temperaturelike derivatives, we
will confine our attention to x- 0, even though the
solutions for the nonlinear scaling fields are valid
for all x &1. The difficulty does not arise when

studying the derivatives of the Gibbs potential with
respect to the ordering field h (such as the magne-
tization and susceptibility) since the second term
in (2. 15b) is independent of h and does not contrib-
ute. We could therefore phrase our discussion
of crossover in terms of these functions; we dis-
cuss the Gibbs potential to allow the closest con-
nection between this work and phenomenological
discussions of crossover. ' A brief discussion
of the limit l ~ in the second term is given in
Appendix 13.

Within this approximation, therefore, the Gibbs
potential is a GHF of the ordering field h and the
two nonlinear scaling fields S„and S~. In general,
G(h, So, S„)will generate critical-point exponents
that do ~ot satisfy exponent inequalities as equali-
ties. This is to be expected on general grounds
simply because G(h, S~, S„) depends on three scaling
fields with three distinct sealing powers. The
usual scaling equalities which relate three expo-
nents are satisfied because there are only two in-
dependent scaling powers. An example of a Gibbs
potential which is a global solution of the renormal-
ization equations which does not give exponent
equalities is

G (h, So, S„)= Go (h, So)+ Gh(h, S„),
where G~ and G„are both GHF's. Each piece of
the Gibbs potential generates its own singularities
with exponents that satisfy exponent equalities.
However, since y„&y~, it is immediate that Q.~

The measured exponents would be y„and
&G, and therefore Q.'+2P+y&2!

However, a solution of the form given in (2. 16)
cannot be matched to the expected local solutions
near the two limiting trajectories. As y„- 0, S„
-~ and therefore G„-~. Similarly, as the sep-
aratrix is approached, S~-~ and G~ ~. If we
replace G„by G J(1+1 ), the divergence at y„== 0
is removed. However, to remove the divergence
on the separatrix we would have to multiply G„by
a power of the invariant. Since the invariant is
proportional to a power of x [cf. Eq. (2. 13)], this
weakens the singularities generated by G„. In fact,
it is easy to see that it weakens G~ just enough to
ensure that the measured n will be n„. Thus, if
we require that the global solution match the ex-
pected local solution on both boundaries a splitting
of the Gibbs potential as in (2. 16) does not lead to
the violation of exponent equalities since the G~
term must be discarded. The critical behavior is
determined entirely by the WF point.

To show this in another way, consider the h. = 0

Gibbs potential. We can write it in two ways,

G=(Sg)' ~fo(I), (2. 17a)

(2. 18)

The form given in (2. 18) has the virtue of reducing
to the expected local solutions on both bounding
trajectories. A form valid for nonzero h which
corresponds to (2. 18) is

G„(I,S„)G, (I, S,)

G„(I,S„)+G,(I, S,)
' (2. 19)

If e &0, the argument given above is precisely re-
versed so that the Gaussian fixed point (which in
this case is the stabler fixed point) does dominate
the global solution. Thus, in this two-parameter
example, the stabler fixed point is always dominant
globally.

III, THREE-PARAMETER CROSSOVER; COUPLED
ORDER PARAMETERS

In this section we describe the solution to non-
linear renormalization-group equations which in-
volve three parameters. These equations model a
system involving two interacting order parameters.
There a,re several realistic systems whose phase
diagram may be understood in terms of a model
Hamiltonian encompassing the interaction between
two (or more) coupled order parameters.

One simple example is provided by the phase dia-
gram of the mixed crystals Fe„Mn, „WQ4 near the
quadruple point. " In these crystals (which pos-
sess a monoclinic wolframite structure), the oxy-
gen ions form a distorted hexagonal-close-packed
pattern; half the octahedra spaces are filled with
Fe or Mn ions and the other half are filled with W
ions. The magnetic structure of FeWO, (ferberite)
is antiparallel in alternate planes (0k). The mag-
netic cells for MnWO4 (huebnerite) on the other
hand, is quadrupled in the a direction and doubled
in the b and c directions (44kb). Wegner~9 has
shown that near the quadruple point of such sub-

(2. 17b)

If the asymptotically valid value of a is a~ then
fo(0) is a finite constant. However, I= 0 on the
y„= y„(x) separatrix as well as at x = 0; therefore,
as the separatrix is approached, f~ is well behaved
and, since S~ is singular at g„= 0, G has a singu-
larity on the separatrix. On the other hand, if the
asymptotically valid value of o,'is n„. , then f„(0) is
finite. It is also finite, therefore, on the separa-
trix. However, as y„-0, the invariant I
Therefore, the divergence in S„asy„0 may be
cancelled by an appropriate behavior of f„(f) as

An example is given by
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stances (defined to be the point at which the para, -
magnetic phase, Fe-ordered phase, Mn-ordered
phase, and a mixed phase are simultaneously in
coexistence) the free energy may be represented by
a model involving two order parameters with re-
flection symmetry and a biquadratic coupling term.
Depending on the various interaction strengths,
the two ordered phases are either separated by a
first-order transition or by an additional phase.
Other examples of magnetic materials exhibiting
similar quadruple point include Fe(Pd„Pt, „),. '

The order-disorder transitions in the ammonium
halides provide further examples of systems with
coupled order parameters. At sufficiently low tem-
peratures, the NH4 tetrahedra can have two differ-
ent types of ordering, parallel and antiparallel, in
the cubic structure of the halide ions. The cou-
pling between the two types of ordering is, how-
ever, not direct; it is probably mediated by non-
ordering effects (e. g. , magnetoelastic interactions).
Model Hamiltonians involving the interaction of the
paynllel ordering and magnetoelastic effects" have
been used to simulate the order-disorder phenom-
ena of NH4C1, leading to a renormalization-group
prediction of classical tricritical behavior. A mod-

1 Hamiltonian which treats magnetoelastic effects
and both the parallel and antipaxallel ordering is
more complicated and will be treated in a separate
paper. " Because the elastic distortion breaks the
reflection symmetry, the model Hamiltonians for
NH, Cl are generally assumed to contain coupling
terms different from the simple biquadratic term
employed in the mixed-crystal examples discussed
above.

There exist a number of systems that can be de-
scribed by model Hamiltonians with biquadratic
coupling terms. " These include the metamagnets
such as FeC1~, ' systems involving spin-flop tran-
sitions, "and certain structural phase transitions. '6

It has been shown that such a model provides de-
scriptions not only of classical tricritical points
but also "bicritical" and "tetracritical" points'
in the "physical plane. " We will demonstrate in
the latter part of this section that this model also
contains the type of "higher-order critical points"
exemplified by the intersection of critical sub-
spaces (as first proposed by Ref. 20) when the
phase diagrams are viewed in the multiparameter
Ham iltonian space.

A general model Hamiltonian with a biquadratic
coupling term has five interaction parameters"
(as discussed in Appendix A). In this section, we
consider the special case of a system in which the
two order parameters play precisely equivalent
roles. The system considered is a generalization
to n-component spins of the anisotropic Hamiltonian
discussed in Ref. 4 for n =1. The close relation-
ship of this three-parameter system to the two-

n+4
=y q 1 —3 y —2y —4Tn n +8 0 2'

ypn =ypn ~ 1 —3 yan 4 yn

(3.2)

I l Q Q
FIG. 3. Diagramatic representation of the Hamiltonian

density (3.1). The squares and circles represent the n-
component subsystems s& and s2, respectively. This sys-
tem can be regarded as either (a) possessing a biqua-
dratic interactionbetweenthetwosubsystems, or (b) pos-
sessing an anisotropic self-interaction of a single 2n
component spin s =—(s&, s&). In case (a), the intrasystem
interaction strength is zo while the intersystem interac-
tion is 2u. In case (b), the super-spin interaction is 2u
while the anisotropic interaction is zv —u.

parameter system solved in Sec. II allows many of
the solution methods of the simpler problem to be
applied to its generalization in this section.

We consider two internally isotropic n-compo-
nent spin subsystems, s, and s2 which interact
through a quartic term,

X =-
i
V s,

i

'+
i
V s,

i

'+ ~(s', + s', )

+ —,'u[(s', )'+ (s',)'j
~P ~2

+SU sj s2+h ' sy+h ~ sp .
This Hamiltonian can be viewed as the sum of two
n-spin Wilson Hamiltonians of the form given in
Eq. (2. 1), with a biquadratic interaction term
sos&s', . On the other hand, it can also be con-
sidered. as the Wilson Hamiltonian for a single
2n-component spin system s =(s„s2) with an
"anisotropy-like" interaction (w —u) s', sz (cf. Fig.
3). These two descriptions of the single Hamil-
tonian (3.1) are reflected in the discussion of the
global renormalization properties of (3.1) as will
be shown below.

The WHARG equations are given by (see Appendix
A for details);

n+2 n+17=2(1 —7) i
~ 8 3', 4V,)2 n+8 " n+4' '"
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where the variables 7, y„, and y, n are defined by
the relations

a2„=2- ~~,„,
g =2 —&6z Z P

(s. 6)

7-=r/(1+~),

qy„-=—,'d(n + 8) (u —w)/(1+ ~)',

ey,„-=d(n+4) w/(1+~. )'.
(3.3)

x =2x[1-x- -,'e(~„y„+~,„y,„)],
6

y =y ~ 1-y — y2 -4x
n n n+4

».=»»[~(1»» 2+» y») 4x] ~

where

x= y+z(ap„+a, „y,„)/2,

s„=-(n+2)/(n+8),

a,„-=(n+1)/(n+4).

(S.4a)

(s.4b)

(3.4c)

ynt ~ yn~ y2n~ and E & pn haVe
been neglected. The considerations of Sec. II ap-
ply here as well; only global solutions bounded in
y„and y,„are acceptable (see again Appendix B).

The surface of critical Hamiltonians is the
plane x =0. There are five fixed points at which

x, y„, and y,„are O(1) [there are other fixed points
at which x, y„, and y2„are O(1/z); these cannot be
subsumed in this perturbation analysis]. Four are
located on the plane x =0, and one at x =1: (i) the
finite Gaussian point, y„=yz„=x=0; (ii) the usual
n-spin WF point, y„=. l, y2„=x =0; (iii) the usual
2n-spin WF point, y,„=l, y„=x=0; (iv) a point of
no particular spin (unless n =1) which we will call
the z point, x =0, y„=y„o = (n —2) (n+8)/(n'+8),
yz„=y2„, = (16 —n )/(n + 8); (v) the infinite Gaussian
point, x=1, yn=y2n=0. These fixed points and the
integral curves and surfaces connecting them form
a finite region of the parameter space which is in-
variant under the action of the renormalization

The two descriptions mentioned above of the Hamil-
tonian (3.1) have been incorporated in the choice of
the variables yn and y2„employed here. When
yn=0 the system is equivalent to an isotropic 2n-
component spin system; on the other ha, nd, when

y2n = 0 the system breaks into two noninteracting
n-component spin systems.

Equations (3, 2) are already diagonalized around
the infinite Gaussian fixed point, 7 = 1, yn = y, n

= 0.
If, as in Sec. II, we diagonalize around the finite
Gaussian point 7=y„=y2„=0, we obtain the equa-
tions

z = z[E(l —y„—yp„) —4x], (s.6)

where z—:yny2no y2ny o Note that the z point is
p x 8 0. Equation (3.6) is not independent

of Eqs. (3.4), but the redundant information ex-
pressed in (3.6) will be very helpful in the solution
of the original equations (3.4).

Proceeding a,s in Sec. II, we define functions
Y„, Y2n, X, R, by the equations

a=2(1-~)~, (3.Va)

X= —2xX,

Yn= Eyn Yn s

Y2n=- &y2n Y2n .

(s. vb)

(s. 7c)

(3.Vd)

By inspection of Eqs. (3.2), (3.4), and (3.6), we
write down nonlinear scaling fields:

x P. l= const e
XY nYXYn Y 2n

1 —y -2l= const e
n 2n

(S.8a)

(s. sb)

yn dl
R2 Y 2 Y 3(n+4) / (n+8)

= const e
2n n

(3.8c)

where 6,—= sn/(n'+8). Since we identify x with
T —T, for sufficiently small x, the critical-point
exponent v is given by the inverse of the eigen-
values of (3.5); for example, v„- =--,'-.

The existence of the z point shows that the Hamil-
tonian (3.1) contains a third symmetry relation
similar to the two discussed above which are repre-
sented by the n-spin and 2n-spin fixed points. The
relative stability of the n-spin, 2n-spin, and z
points depends on the spin dimension n as deter-
mined by (3.4). For n & 2, the 2n-spin point is
stablest [cf. Fig. 4(a)]. For 2~n~4, the z point is
stablest [Fig. 4(b)]. Finally, for n &4, the n-spin
point is stablest [Fig. 4(c)]. The finite Gaussian
point is always unstable with respect to all the
other x = 0 fixed points; all the x = 0 fixed points
are unstable with respect to the infinite Gaussian
fixed point.

From (3.4) we note that the trajectory which
joins the finite Gaussian point (y„=y2„-—0) to the
8 point (y y p y2 —y2 0) is a straight line. Hence,
we may supplement (3.4) by

group.
The most relevant eigenvalue [the eigenvalue of

the x equation (3.4a)] for the four fixed points in
the z = 0 plane is given by

y2n -dl
n+2) &«&) =COnSte

n 2n

y el
X2Y6/'( 4) Y

= const e
2n

(s. 8d)

(3.8e)

ac =2

gn = 2 —Ekn
y2n

X2Y2&n Yn 2n

= const e", (s. 8f)
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Thus, for ~ w 2, 4 the complete solution of the three-
parameter crossover problem depends only on the
solution of (3.7) for either I'„or F3„.Unfortunate-
ly (except for n = 0 and n = ~, see Appendix C), we
have not been able to derive the form of F„or 73„
even in an & expansion. The essential difficulty is
in the x = 0 plane, where there is no small param-
eter and the nonlinear equations must be solved
exa.ctly. However, a great deal ca.n be learned
about the solutions by comparison with the two-
parameter solutions of Sec. II on appropriate two-
dimensional surfaces. Whenever y~, y~„, or z
vanishes, the problem reduces to a two-parameter
problem. We have, therefore, the following partial
results;

I'„(x,y„, y,„=0)='JJ(x, y„, b.„), (3.10a)

I IG. 4. Solution region for the three-paranleter prob-
lem of Sec. III is shown for various values of the spin-
dixnension n. There are five fixed points: the finite
Gaussian point, the infinite Gaussian point, the n-spin
point at x = 0, y2n

= 0, yn = 1, the 2n-spin point at x = 0,
yn=0, y2n=1, and the "z point" whose location depends
on n as indicated in the text. Boundary conditions on the
functions Fn and Fpn are indicated for the separ-surfaces,
In (a), the solution region is depicted for n 2; in (b),
for 2 «n «4; in (c), n~4.

Matching scaling fields gives X = (1 —i) and
R =xl' '~~, I',2~2~ in analogy with (2.7a) and (2.7b).
Equations (3.Bc)-(3.Bg) cannot be independent since
z is a, linear combination of y~„and y„. Comparing
the solutions for I- —~, where F„and F~„=1 gives
the following relationship between F„and 7,„:

I's.(~, y. =o, ya. ) =&(x, ya. , &3.),

I'„(x,y„,y,„)i,=, = ['JJ(x, y„/y„o, &,)]"o, (3.10c)

I;„(~,y„,y.„)~, , = [W(x, y„/y„„~.)]'~ o. (3.10d)

(3.10b)

~ (n 8) / (n+4)
Xn& 2n

3I y2 y (4-n) /(n+8)n2n
{3.11a)

To discuss the boundary conditions that apply to
F„and Pz„we must generalize the notion of separa-
trix. A fixed point at which not all the eigenvalues
of the linearized equations are of the same sign is
a saddle point in the appropriate spa, ce. The fam-
ily of trajectories leaving a saddle point in a two-
dimensional space is a one-dimensional line (a
separatrix). In higher-dimensional spaces, this
family of trajectories may be of higher dimension,
and we will call the corresponding surface a "separ-
surface". On the separ-surface leaving the n-spin
point, there is a boundary condition on 7„; on the
separ-surface leaving the 2n-spin point, there is
a boundary condition on Y;,„; on the separ-surface
leaving the z point, boundary conditions on both
F„and Y~„apply. As in the discussion following
(2. B), each F on which a condition ls Imposed must
be identically zero or infinite on the appropriate
surface. These boundary values are shown in
Pig. 4 for the three ranges of n., n~2, 2~@.~4,
and n —4. The general character of P„and F~„ is
established, even though the solutions cannot be
given explicitly. We will proceed as if F„and F3„
were known (for n=0 and n=~, I'„and 7',„are
known, see Appendix C).

Since there are three parameters (x, y„, y2„)
there are togo independent renormalization invari-
ants. Ii, will be convenient to write down several
nonindependent invariants for compactness in later
discussion. There are three ways of combining
(3.Be)-(3.Bg):

m(n 3) /(n+4) ~ (4-n) / (n+8)
XnSanO

—~an ~nO =~n X~nO ~ an $3nPnO ~ n 4

(3.&)

8
y (n-~)/ (n+4)

&n~ 3n
(3.11b)



Zp

Igs)2„~(4-n) / (n+8)
X2n' n

X L
~r (n2-4) / (n+4) (n+8)

82n
=-

X1-2~2n»~2n"SZnn
(3.14d)

which are connected through (3.9). Combining
(3.8a) with (3.8e)-(3. Bg) we have three invariants
involving x explicitly

& ~ & ~ra2n ~an-2(4-n) /(n+8)
IxP 2n y22n

~copy an y a2n 2(n-2) /(n+4)

y2

(3.12a)

(S.12b)

(3.12c)

Finally we combine {3.11) and (3. 12) to give an

invariant which does not contain either F2n or ~„,

x 6xd ga~(n +8) / (0-n) (n-8)

fo a„(n+8) / (4-n) a2„(n+4) / (n-2)
3'n" 3'2n"

(3. 13a)

The inva. riant Io of (3. 13) is useful because it dis-
tinguishes between different trajectories on the
curved separ-surfaces where either Pn or P» is
identically zero or infinite. The invariants (3. 11)
and (3. 12), which involve Y„and Y,„explicitly, are
constant on these separ-surfaces, while (3. 13)
varies. For v = 2 and e =4 it is impossible to form
an invariant that contains neither Y'„nor F2„. How-

ever, in these cases it is not necessary to elimi-
nate both of the y's since only one of them has
singular behavior on the separ-surface. For n =2,
V„=O on the separ-surface and we can choose the
invariant

The choice of the scaling fields is (as in Sec. II)
not unique, but it is a convenient choice for the
case 2 ~n & 4 which is discussed in detail below
as a concrete example. In this case, both y„and
y2„are both positive throughout the solution re-
gion.

The invariant I, also contains information re-
garding relative stability. It is zero in the x =0
plane and also in that plane which contains the
stablest fixed point. For example, in the case
2 &n &4, the z point is stablest and Io =0 whenever
z =0. The invariant Io is infinite in those planes
which contain the relatively unstable points. For
2 &sz ==. 4, Io=~ when y =0 or y2 =0

As in Sec. II we can show that global solutions
which do not generate the exponents of the stablest
fixed point have extraneous singularities. For con-
creteness, we will consider 2 &~ &4; a similar
analysis can be made for any value of ~. If we

were to suppose that the asymptotically valid value
of n were that given by the n-spin fixed point,
rather than that of the z point, it would be appro-
priate to write the Gibbs free energy as

G = S"„/'» E (invariants),

since d//a„=2 —o.'„. It is presumed in writing the
free energy in the form (3. 15) that E(invariants)
is well behaved at x =0 plane (where we definitely
expect n-spin point behavior). The amplitude of
the free- energy singularity is given by

X'X" &2a2n
I = a„(n+8) / (4-n) &2-an (n+8) TB-n)

J2n
(3. Isb) I+ x~d/a ni -And/an ~r-(&/a„)(n-1)/ (n+9)

x 0

in this case. For v = 4, Y2„=0 on the separ-sur-
face, a.nd the invariant

g g" ~n
I4 a2 (n+4~)(n-2) 2-a2 (n+4) / (n-2}

y 2n 8 n
(3.13c)

x
~y~n y~»

n 2n

{3.14a)

S ==

(n2-4) / (n2+8)
Xn

~z'X2 $2

2~ 2

distinguishes trajectories. For the remainder of

this work it is simplest to assume that nc2, 4, al-
though the analysis carries over to those cases,
via slightly modified a,rguments.

We may choose the nonlinear scaling fields to
be given by

x F(invariants) ~„0 . (3.16)

S,(1+S 'S "/'~")
(3. 17)

If we consider a path in the x=0 plane that is a re-
normalization trajectory (cf. Fig. 5) (3. 11) is
again constant. The function E is therefore con-
stant and we see that the am pbtude of the free-
energy singularity diverges as the stablest fixed
point is approached along any renormalization tra-
jectory (Y2„-0). The singularity can be removed
along any particular trajectory or finite number of
trajectories but it cannot be removed everywhere
in the x=0 plane. Similar difficulties are en-
countered if we assume that the 2n-spin poi.nt dom-

inates the critical behavior of G.
If, however, we assume that the z point domi-

nates the exponents everywhere (except in the

y„=0 and y2„= 0 planes), then we can avoid singu-

larities. We may define a scaling field

S:—--
n 1-2h /-")n y (n-1) / (n+8)"Sn" 2n

(S. i4c)
8,' reduces to 8, as x- 0, for y„4 0, y2„4 0; as
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Yn

FIG. 5. Solution trajectories in the x=o plane are
shown. The renormalization trajectories sweep toward
the separatrices joining the relatively unstable fixed
points to the stablest fixed points before moving to the
stablest fixed point. This behavior, although illustrated
for n = 1 holds for all n.

Ga(I), Sa)G (I), S,')
Ga(h, Sa)+G,(k, S,')

' (3. 18)

The linear local analysis is again supported.
We may describe the crossover involved in the

scaling field (3. 17) and the Gibbs potential (3. 18)
by noting that if x- 0 and y„and ys„ fixed and non-
zero, then only the magnetic field h and 8, "sca,le. "
Near the special planes y„=0 or y „=0, an addi-
tional field is important (S,„or S„, respectively)
Rnd se Rle s.

It would be more customary to describe this in
an alternate manner. Away from the special sym-
metry planes, S, sca~es, and y„a.nd y,„are truly
irrelevant variables. Thus, at each point of the
critical surface, x=0, we may consider +to be a
scaling variable with y„and y2„being irrelevant
variables which have only an ins1gif leant effect on
the thermodyna, mic functions. Near t;he junction of
the plane x=0 and one of the symmetry planes (for
example, yz„=O), y2„ is clearly important. Phe-
nomenologically, we might expect x and yz„ to
seR16, while y„x'enlR1DS lrrelevRDt. To 866 thRt
this is the case, note that 8, can be written as

J ++(n -4)/ {rP+8) 3 y9
n" ~g

n y ~2 y2dw &n&3n ~ ~

Thus, the scaling invariant combination S,S„'8/'~
in (3.17) can be written (apart from the irrelevant

y,„-0, xxO, S,'-S'„~ ";as y„-0, xeO, S,'-S2'„'/"".

Thus a global solution for the Gibbs potential which
has z-point-like exponents (except in the special
symmetry planes y„=0 and y2„=0) could be given

by

q uantities y„, I'„, F,„, and X) as

&6 &4-n) / (n+8) E(n+4 }(n-1)/(n3+8) 3/a„
(3.20)8 tf

y Cfl

This is exactly the expected scaling invariant (which
determines the "crossover cones" ') involving x
and y2„providing that we identify the scaling power
of y~„as a„=-e(4 —n)/(n+ 8) and the scaling power
of x as a„=a„.—An examination of (3.4) shows
that these are the scaling powers that are ob-
tained by linearizing around the n-spin fixed
point. The nonlinear scaling field 8, embodies the
behavior of both fixed points in such a way as to
generate the "double-power" scaling laws used to
describe crossover in anisotropic systemss' and
in higher-order systems. ' ' For example, the
zero-field Gibbs potential is given. by

x 8~0(g

(n+4)(n ) )/ (n +8) (xa&/az)(n+4)(n ) )/ (n2+8)

(3.21)
We note that a,/a„ is a "crossover exponent*' and

(2 —a, )(n+ 4)(n- I)/(n3+ 8) is an "amplitude expo-
nent. *" In Eq. (3.21) the dependence on the un-
important quantities y„, X, F„, and F,„has been
ignored. Precisely analogous behavior is found
neRx' tile junction of the &=0 Rlld y~ =0 pla, nesp
where the variables y„and x appear in a scaling
combination with scaling powers dexived by linear-
1za,tlon Rround the 2Ã-spin fixed point.

The analogy between the nonlinear effect incor-
porated in the nonlinear scaling fieMs and the
crossover effects in systems with critical points
of higher order canbe extended. Figure 6(a) shows
a three-dimensional section of the four-dimensional
phase diagram of the "Ising metamagnet"39 with
interactions J in the plane and St8 between planes
((R (0); the staggered field H/ is zero in Fig. 6(a).
By varying the strength of the interaction parameter
g~, the line of ordinary critical points of a simple
metamagnet sweeps out a surface of critical points.
The tricritical points which marked the transition
between the second-order critical behavior and the
first-order transition become lines of tricritical
points. At +=0, the system reduces to a set of two-
dlmen81onRl fex'x'omRgnetlc systems, RDd the tr1-
critical lines meet on the T axis at the d =2 critical
temperature. As(R-~, the system becomes a,

one-dimensional antiferromagnet; the"e is no Tg 0
phase transition. The surface of ordinary criti-
cal points shrinks and the tricritical lines meet at
T=O. The classification system of Hef. 20 terms
the surface of ordinary critical points a, surface
of cxitical points of order three. The special
point at (R =0 is a critical point of order four.
This notion of order corresponds both to the num-
ber of phases which are simultaneously critical
at the critical point and to the number of variables
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FIG. 6. Comparison of the phase diagram of an Ising
metamagnet and the three-parameter crossover problem
of Sec. III. (a) The phase diagram of the metamagnet is
shown in zero staggered field. A coexistence volume is
capped by a surface of ordinary critical points (~ —-2).
This surface is bounded by two lines of tricriti. cal points
(=-3). The tricritical lines intersect at the e =4 point
H = 0, & = 0, T = T&, the two-dimensional, Ising critical
temperature. (b) The solution region for the three-pa-
rameter problem for 2 ~m ~4 is shown. The finite Gaus-
sian point corresponds to the point of order-4; the lines
y„= 0 and y&„= 0 correspond to the 0 = 3 lines; the portion
of the x=0 plane bounded by the "tricriticaV' lines and

the separatrices joining the 2n-spin point and the n-spin
point, to the z point correspond to the surface of ordinary
critical points (6=2).

which "scale" at that point. Thus, Ref. 20 pro-
poses that on the surface of order-two points,
two variables scale; that is, thesingular part of
the C ibbs potential is a GHF of two of the variables
(while the dependence on the remaining variables
is smooth and non singular). At a point on one of
the lines of order-three points, three variables
scale. Finally, at the fourth-order point, all
four variables scale.

To compare this to the coupled-order param-
eter system described in this section, we note that
near the plane x=O (but not near the lines y,„=O
or yp„=O) only the variable x and the magnetic
field h. scale," that is, the leading singular behavior
of any function derived from the Gibbs potential
(3.18) depends only slightly on the variables y„
and y2„(and the nonlinear functions X, 1'„, and

Fs„). However, nea, r the junction ot the x=O and

y&„=Q planes, yz„does not appear merely as a,

smoothly varying pa.rameter in the a.mplitudes of
the thermodynamic function, but rather in an im-
portant, characteristically "double-power" scal-
ing manner. Similarly, near the Gaussian fixed
point, a,ll the va, riables x, y„, and yz„appear in a
"triple-power" scaling formula. We may tenta-
tively relabel the Hamiltonian parameter space as
in Fig. 6(b). The x=0 plane is a, surface of order-
2 critical points; the lines y„=0 and y~„=0 are
"tricritical" lines or lines of order 3; finally, the
Gaussian fixed point is a point of order 4.

The order-3 lines of the nonlinear crossover
problem IFig. 6(b)] do not merge smoothly at the
order-4 point while those of the meta, magnet do
[Fig. 6(a)]. This is to be expected since the scal-
ing powers ot y„and y, „are equal (to e) at the
order-4 point. A similar situation occurs in the
metamagnet. In this case, it is the scaling powers
of the direct and staggered fields which are equal;
the coexistence volumes do not merge smoothly at
the order-4 point.

We also remark that the attainment of a point of
order 4 in a space of four dimensions is achiev-
able in both the metamagnet and the renormaliza-
tion-group examples only due to their highly sym-
metric nature. In general, a space of dimension
6 is required to observe a point, at which four
pha, ses are simultaneously critical. 4O Indeed, a
less symmetric version of (3.1) discussed in Ap-
pendix A is expressed in a six-parameter space.

1V. DlSCUSSION

In Secs. II and III we were able to explicitly ca.rry
out the solution of the nonlinear WHABG eqUations.
Summarizing the features of these solutions which
we believe are of a general nature, we have shown
tha, t:

(i) Global solutions eau be found in a limited but
finite region of the Hamiltonian parameter space.
This region includes the competing fixed points and
is bounded by separ-surfaces emanating from the
fixed points.

(ii) Global solutions which do not yield the criti-
cal-point exponents derived from the local, linear-
ized analysis of the stablest of the fixed points (on
the critical surface) are singular on the separatrix
leaving that fixed point.

The properties of the "regular" global solutions
are closely analogous to those properties proposed
in a phenomenological manner for crossover behav-
ior between vari, ous critical points of higher order. ~

For the former, it is the nonlinear character of the
scaling equation and scaling fieJ.ds that embodies
several types of ordering and critical behavior.
For the latter, the simultaneous validity to lowest



GLOBAL FEATURE S OF NONLINEAR 8 ENOBMALIZAT ION. . .

order of several linear scaling equations with lin-
ear scaling fields is presumed. ' In both cases,
the borders of a region where m variables scale is
a region where (m+ 1) variables scale.

As shown in Sec. III for a three-parameter exam-
ple, there is some surface (of dimension greater
than 2, in general) of order-2 critical points. The
exponents everywhere on this surface are deter-
mined by linearization about the stablest fixed point,
which is located somewhere on that surface. This
surface will be partially bordered by special sym-
metry "planes" on which the renormalization-group
equations involve fewer parameters. In these spe-
cial surfaces, another fixed point determines the
critical behavior. Near the junction of the symme-
try plane and the critical surface the two fixed
points are in sharp competition. On the border of
the order-two critical points, three variables mill
scale in a characteristically "double-power" law
scaling form [cf. Eq. (3.21)j. If the special sym-
metry planes associated with each such "tricritical"
line intersect (as in Sec. III), more parameters
are removed from the renormalization-group equa-
tions, a new fixed point controls the exponents,
and characteristic "triple-power" scaling behavior
results. As in the phenomenological studies, this
process can be continued indefinitely. As more
and more symmetry restrictions are placed on the
Hamiltonian, fixed points of weaker and weaker
stability determine the critical-point exponents.
Since in the immediate neighborhood of a truly un-
stable fixed point there must be regions controlled
by more stable fixed points, the crossover effects
get more and more complicated as the order of the
critical point increases. A/l of these crossover
effects are automatically incoxPoxated into the non-
linear scaling fields.

The above discussion gives reassuring support
both to the usual local linearized fixed point analy-
sis and also to the phenomenological descriptions
of crossover. However, there are further ques-
tions about the behavior of real systems modeled
by renormalization- group equations.

The solutions developed in Secs. II and III are
only valid in a specified region of the parameter
space. For the two-parameter problem (at the
critical temperature), 0 &y„& 1. For the three-
parameter problem, y„and yz„are confined to the
region enclosed by the lines y,„=0, y„=0 and the
two separatrices joining the ~-spin and 2g-spin
points to the stabler e point (for 2 &n & 4). Por-
tions of these boundaries can be understood on a
physically intuitive level. In the two-parameter
case the restriction y„~ 0 is necessary for thermo-
dynamic stability. The parameter y„ is proportion-
al to the coefficient fo the quadratric term in the
Hamiltonian density; since the quadratic term is the
term of highest degree in the Hamiltonian its coef-

ficient must be positive. In the three-para, meter
problem the stability requirements are n & 0 and
ze & —n. These are not necessarily the "tricritical"
lines (for 2 & n &4, y„=0 and yz„---0 are the order-
three lines; these restrictions are the lines gal =0:

and @~=u). However, if these lines do mark the
boundary of a region of first order -transition, as
in the metamagnetic analog, they do form natural
borders for the scaling behavior. However, the
portion of the boundary formed by the restriction
y„&1 in the two-parameter case and by the sepa-
ratrices in the three-parameter case have no such
intuitive explanation.

Within the confines of the region of scaling behav-
ior, the renormalization trajectories are bounded.
We may imagine changing the values of the param-
eters y„and y2, until the system Hamiltonian lies
outside the solution region. In this case, the pa-
rameters y„and y2„, which (except near the "tricrit-
ical" lines) did not significantly affect the critical
behavior, have unbounded renormalization trajec-
tories. The approximations employed when &y„«1
and gyes„«1 are no longer valid. The problem im-
mediately becomes far more complicated and it is
no longer possible to discuss the renormalization-
group solutions within a simple perturbative scheme,
Therefore, we can only speculate that the nonlinear
solutions will involve many new fixed points and
qualitatively different behavior.

Thus, although we have seen that thermodynamic
stability requirements and possible first-order
transitions may account for some portion of the
bounding surface of the solution region, the bound-
ary formed by the separ-surfaces is more complex
and possibly marks a transition to vastly altered
behavior. However, it is precisely on this smface
that xegwlmity conditions svelte imPosed ov tAe

global so2ntions. This is not an obvious step.
The requirement of regularity everywhere on the

bounding surface corresponds to the notion that we
can smoothly move the Hamiltonian (in pa, rticular,
the critical Hamiltonian) to the "singular separa-
trix"' (in particular, the stablest fixed point). It
might seem reasonable to require that such a pro-
cedure have a finite limit (as in Sec. III).
This resolution has several difficulties, among
which are the following:

(i) The bounding separ-surfaces divide the re-
gion where even a general global solution is well
behaved from a region in which (as argued above)
the global behavior may be radically different. It
is perhaps over optimistic to ascribe to the bound-
ary between two such regions all the properties of
one or the other of the regions.

(ii) It may not be possible by any application of
an external field to move the parameters arbitrari-
ly close to the boundary and the singular separatrix.
This difficulty is unlikely in the particular cases
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treated in Secs„ II and III since the fixed-point val-
ues of the parameters are small, but it is not an
impossible occurence. For example, we showed
in Ref. 11 that ten~perature trajectories for the
two-parameter problem usually terminate at a
finite value of x (with x& 1) instead of reaching the
infinite Gaussia, n fixed point x = 1.

A more cogent example is provided by the five-
parameter crossover model described in Appendix
A. We consider a system with n+ ~z spin compo-
nents which decomposes into an n-spin system and
an m-spin system. For n, = 1 and m = 2, this is a,

description of a Heisenberg ferromagnet with a
single axis of anisotropy. The stablest fixed point
is either Ising-like (one "easy axis") or XI"-like
(one "hard axis"). However, these fixed points
consist of the XY-subsystem parameters taking on
their usual WF fixed-point values, while the Ising
subsystem is at its infinite Gaussian fixed point.
Loosely, one subsystem is at its critical tempera-
ture while the second subsystem i.s at "infinite"
temperature. No physical system with finite Ham-
iltonian parameters can be at such a fixed point;
at best, it represents a limit of realizable systems.
Therefore, we might expect that any singularity in

a thermodynamic function would not manifest itself
in the physical space.

Thus, in some cases (not necessarily those
treated in Secs. II and III), the requirement of reg-
ularity everywhere on the bounding surface may be
too stringent. If this requirement is relaxed, non-

scaling behavior results. For example, in the
three-parameter problem discussed in Sec. III, we
might allow free competition among the n-spin
fixed point, the 2n-spin fixed point, and the z point,
regardless of stability. These solutions, as shown
in Sec. III, evil/ be singular" on the separatrix leav-
ing the stablest of the x=0 fixed points. If this
singularity is tolerated, the asymptotically valid
critical-point exponents will be determined by the
fixed point which contributes the largest singularity
to the thermodynamic quantity considered. There-
fore, p and y will be determined by the fixed point
which gives the smallest eigenvalue in the renor-
malization equation for x (3.4a); on the other hand

o. and 9 will be determined by the fixed point which

yields the largest such eigenvalue. Since the com-
petition is among three nontrivial fixed points, we

need only consider the relative sizes of a„, az„
a,nd a, .

If, for concreteness, we confine our attention to
n &0, we have 6 - A„and A~„~ 6,. For 1-n «4,
we also have &, &„. Thus for n &0 the correla, -
tion length exponent v and y (=2v) will be that of the
2n-spin point. while n and P are given by their n-
spin point values for 1 - n «4, and the z point other-
wise. Instead of equality in the relationship n+2P
+ y = 2, we have that

63n
Q. + 2 p+ y' = 2 + --— 1 «n«4

2 (n+ 4) (n+ 8) ' (4. 1a)

o+ 29+y= 2+ 2, n&l, n&4. (4. lb)
e(n —2)'(n+ 2)
2n+4 n+8 '

If the finite Gaussian fixed point is allowed to
compete as well, v and y are as above; however
n = —,'t. and P= —,'- —,q,- independent of n. The B.ush-
brooke inequality is

a+ 28+ y= 2+ e(n+ I)/2(n+ 4) . (4. 1c)

The crossover effects embodied in a general
global solution are similarly more complicated than
those of the regular solutions exemplified in (3.18).
It is reasonable to impose the condition that, in
the symmetry planes y„=0, y2„-—0, and z =0 (where
the renormalization equations involve only two

parameters) any global solution should reduce
smoothly to a, two-parameter solution (except at
the intersection of the separ-surfaces and the sym-
metry planes). This can always be done by using
the inva. riants (3.11)-(3.13). The crossover near
such a sym metry plane is between one set of exponents
determined by the free competition of the fixed
points in the tIzxee-pm ametey' space and another
set of exponents derived from a similar competi-
tion in a two-parameter space. Neither set of ex-
ponents need satisfy scaling equalities. This is in
contrast to the situation described in Sec. III; in
that case, both sets of exponents separately satisfy
scaling equalities.

Even though they do not satisfy exponent equali-
ties, general global solutions share other proper-
ties with the regular solutions (3.18). The eigen-
value of the magnetic field g„ is la, rger tha, n g„, g2„,
or a, . Differentiation with respect to h increases
the singularity of the Gibbs potential more rapidly
than differentiation with respect to the temperature
T. Therefore, we may still describe tz as a "strong"
direction and T as a "weak" direction in the sense
of Griffiths and Wheeler. ' Elsewhere, we have
considered systems which have this property that
derivatives taken in different directions have dif-
ferent well-defined relative strengths. We term
such systems "critically ordered" and have shown
that under certain conditions, the geometric postu-
lates of Griffiths and Wheeler are satisfied for
these nonscaling systems. Using this terminology,
we can restate the distinction between the general
and regular solutions for the thermodynamic func-
tions. The former represents a system that is
only critically ordered, while the latter has a true
asymptotic scaling form.

We wish to thank A, Aha, rony, B. B. Hassard,
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and d is the lattice dimension. Expanding the func-
tion lndet, (A4) can also be written as

H = dH+ ~ (2 —d)s ~ V,H

+ —,
' d (,'- TrH ——,

' TrH'+2—'4 TrH —~ ~ ~ ) . (A6)
This however, may not be the best form of the ex-
pansion (see below).

The solutions of the linearized form of (A6), in
which the traces of H, II and so on are discarded,
are the Gaussian fixed-point eigenfunctions. They
are given by products of generalized Laguerre
polynomials and harmonic polynomials just as in
the Wilson approximate recursion formulas'

Q, =L " s P„s, A7

where P, (s) is a ha. rmonic polynomial of degree k,
and ~ the spin dimension. For a system in dimen-
sion n, there are (2k+n —2) (k+n —3)!/k! (n —2)!
harmonic polynomials of degree k. " All of these
polynomials, moreover, are degenerate with re-
spect to the renormalization group since the eigen-
value of the linearized renormalization-group equa-
tion depends only on m and k:

Q~, ~ =dg~, ~+ ~(2 —d)s V~Q~, q+ ~ dV Q~, ~

Y. Imry, L. L, Liu, D. B. Nelson, P. Reynolds,
and G. F. Tuthill for helpful suggestions.

APPENDIX A: THE WEGNER-HOUGHTON-
APPROXIMATE-RENORMALIZATION GROUP

Wegner and Houghton have introduced an exact
differential generator for the renormalization
group as applied to continuum spin Hamiltonian
densities. It takes the form of a highly nonlinear
functional integrodifferential equation. The Ham-
iltonian density K (s) must be written as a function-
al of the Fourier transform of the spin density
s(x). Thus it is conventional to write an expansion
for the Hamiltonian density K as

X= g g Q v,. (k„.. . , k, )

xs, (k, ) ~ ~ s„,(k,), (Al)

where s(k) is the Fourier transform of s(x) and o
is a j-component index, o. = (o „.. . , o J). The co-
efficient functions v& (k) are also to be considered
as functions of the renormalization parameter, /.
The renormalization-group equations become non-
linear integrodifferential equations coupling the
v& (k). Equations of this form are nearly intra, c-
table. Following the lead of Wilson' s approximate
recursion formula, we hope that a certain "mo-
mentum-independent" or "zero-momentum" limit
of the full renormalization-group structure will
preserve the basic content of the renormalization-
group approach. We force the momentum-depen-
dent coupling constants to be of the form

(A2)

= Id+ (2 —d) (m+ k/2)] q (As)

Elsewhere, we have given a study of the fixed
points determined by perturbation from the Gaus-
sian fixed points for the isotropic ca.ses (m arbi-
trary, k=0) and for the special case n= 1. These
problems were considered only from the viewpoint
of location of, and linearization about, particular
fixed points.

It is easy to check that the solutions of the lin-
earized WHABG equations are solutions of the full
Wegner -Houghton-momentum-dependent equations
when similarly linearized ffor g = 0; if we wish to
insert an a priori determined q the (d —2) in the argu-
ment of the Laguerre polynomial changes to d —2
+ g)'Sbl. Thus if the Ha, miltonian is "small, "the error
in using the WHABG equations is of second order of
smallness. As a parenthetical remark we note that
the class of solutions to the linearized momentum-
dependent equations is very large. Each eigenfunc-
tion that is at most a polynomial of degree ~ in the
spins has as the coefficient of the highest power of
the spins an arbitrary homogeneous function of the
momentum vectors. If this coefficient function sat-
isfies A.'f (k„k2, . . . , k„)= f (Xk~, Xka, . . . , Xk„) then
the eigenvalue of such an eigenfunction is d+(2 —d)
x (r/2 —q).

Fully nonlinear problems must be considered
individually. For use in Secs. II and III we con-
sider a system of spin dimension ~+ nz, which
breaks into two internally isotropic blocks; that is,
the Hamiltonian is a function of x—= g,",s; and
y ==/," „,& s, alone. The WHARG equations are

This is equivalent to choosing a Wilson-reduced
Hamiltonian density of the form

R(s) =
~

Vs(x) '+ H(s(x)),
where

(A3)

H(s)=gg. ;s.," s. .
0.

&H
eS 8Si

(A6)

Hamiltonian densities such as (A3) are, of course,
not renormalization-group invariant. Thus, terms
which arise from the exact group equations must be
discarded if they do not retain the form (A3). This
requires, for example, that the critical-point ex-
ponent g be set equal to zero since it cannot be de-
termined from the resulting equations.

For the momentum-independent part of the Ham-
iltonian density (A3), H(s) we find that the WHARG
equation is given by

H = dH+ ,'(2 —d) s ~ V,H+ ,"d ln—det(1+,'H), (A—4)—
where H is the matrix of second partial derivatives,
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~ BH BII d BII BH I 2x9 H/Bx 2y B H/ByH=dH+(2 —d) x—+ y —+ —nln 1+ +min 1+ +ln] 1+ '
+

Bx By 2 Bx By ) 1+ BH/Bx 1+ BH/By

4xy[(B'H/Bx') (B'H/By') —(B'H/Bxsy)']
~

(1+BH/Bx) (1+BH/By)
(A9)

It is more compact to leave the nonlinear structure
inside the logarithm in this case. Now we write
Has

x„= 2x„[1—x„—(n+ 2)u„j —2mx u),

x =2x [1-x —(m+2)u ] —2nx„u),

H= f'~x+ Jyy+ugg 2x +u~ R y +uxyxy )
1 2 1 2

and make the change of variables:

(A10) u„= eu„—
2

[(n+ 8)u'„+ mu)'] -4u„x„, (A13)

r„=r„j(1+r„),
r=:r,/(1-+ r,),
u„=- u„„/(1+r„)',
u~=-

ugly j(1+ ry)

u) -=u„,/(1+ r„) (1+r, ) .
Then, the WHARG equations are

(.= (1 —r )(?r+ 2 [( + 2)r„r r ]),

( =(1-r ) 2r„.„r—((m+2)r rrr]),

(Al la.)

u„= &u„——[(n+ 8)u'„+ mu)']

d-4u„z„+— n. + 2 u„+msv
)

u = &u —2[(m+8)u'+nu)']
(Allb)

d-4u x + — m+2 u +vtv

d
u) = eu) ——u)[4u) + (n+ 2)u „+(n+ 2)u ]2

d
&n+ &m+ ~+ m + &+ 2 un+ m+ 2 um

d
x„=r„+

( )
[(n+2)u„+mu)],

dx = r„+
2(2 )

[(m + 2)u + nu)],

(A12)

and write the WHARG equations as (neglecting
terms like e u„and e~u )

It is easy to check that coefficients of higher powers
of the spin are O(a ). These equations are already
diagonalized around the infinite Gaussian point, x„
=x =1, u„=u =xv=0. Diagonalizing around the fi-
nite Gaussian point x„=x =u„=u„=xv=0, we make
the further change of variables:

u =eu ——[(m+8)u'+nu)']-4u x

d
u)=au) —

2
u [4u+(n+2)u„+(m+2)u ] —2u(x„+x ) .

The equations given in (A18) do not lend them-
selves easily to global analysis. There are 32
fixed points of (A13), many of which are not par-
ticularly interesting. Points of particular interest
in the three-dimensional subspace x„=x =0 are the
Gaussian point at u„= u = so = 0; the z-spin point at
u = u)=0, u„= e/2(n+8); the m-spin point at u„=0

u = e/2(m+8); the coexisting but uncoupled
(n, m) spin point at u)= 0, u„=e/2(n+8), u = e/
2(m+8); and the n+m spin point at u)=u„=u = e/
2(n+ m+8). The usual n and m spin points are un-
stable with respect to the uncoupled (n, m) point
which is unstable with respect to the n+ m spin
point. Thus, if these fixed points were sufficient
to describe the system, the ~+m spin point would
be the most stable.

However, there are also fixed points for nonzero
x„and x . The most important are the "isolated"
n-spin point at x„=0, x = 1(!), u = u = 0, u„= e/
2(m + 8) and the "isolated" m-spin point at x = 0,
x„=l(!), u„=u)=0, u =e/2(m+8). Recalling that
x„(respectively, x ) = 1 implies that r„= ~ (respec-
tively, r =~), we see that these isolated points
correspond to systems for which one subsystem is
at its critical temperature while the other subsys-
tem is effectively at "infinite" temperature. It is
clear that no real Hamiltonian can be said to be
"at" these fixed points. However, the ~+m iso-
tropic-spin fixed point, which is the stablest of the
g„=x = 0 fixed points is unstable with respect to
these isolated ~-spin and m-spin points. These
isolated points are unstable only with respect to the
infinite Gaussian fixed point x„=x = 1, u„= u = u
= 0. The full five-dimensional space is thus parti-
tioned in such a way that one four-dimensional man-
ifold is generated by the isolated m-spin fixed
point; a second four-dimensional manifold is gen-
erated by the isolated g-spin point; these manifolds
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intersect in the three-dimensional manifold x„=x
= 0, which is generated by the n+ m spin point (by
generated we mean that the fixed point in question
is a stable node with respect to all trajectories ly-
ing entirely within the manifold, that is, the fixed
point is the stablest fixed point contained within the
manifold. ). The fieldlike variable carrying the sys-
tem from one of the four-dimensional manifolds
through the three-dimensional boundary to the other
four-dimensional manifold is essentially the anisot-
ropy field. Linearizing about the n+ rn spin fixed
point gives the usual determination of the cross-
over exponent, '

y = 1+ e(n+ m)/2(n+ m+ 8).
The complicated geometry of the four-dimension-

al manifolds precludes any direct attack on the full
five-dimensional problem. For this reason, Sec.
III of the text considers the special case of n= rn

and x„=x, u„=u . Specializing equations (A11)-
(A13) to this case, one obtains (3.2).

APPENDIX B: CALCULATION OF fI AND 'g

In this appendix we will discuss the calculation
of the two-parameter separatrix .and crossover
functions 4 and'g which are used in both Secs. II
and IG. Consider the coupled first-order differ-
ential equations,

x = 2x(1 —x ——,'sly),

y =y[e(1 —y) —4x] .

(8 1 )

(82)

24'(1 —x) = —d4, , (84)

which has solutions proportional to (I -x)~+. If
we set C = (1-x)'~~ e' we obtain an equation for g.
This equation is rather messy and it is better with-
in the context of the WHARG equations to perform
an g expansion. A form for g which contains all
O(e) corrections exactly is

4 = (1 —x) exp[ —,'ex(l —2h)] . (85)

However, since this is arrived at in terms of an
expansion in &, it is not immediately clear that
(85) is the best or most suitable way of writing the
solution of (83) to O(e). We have checked the suit-
ability of such an expansion to show that no ex-
traneous singularities would be introduced at that
order.

We now turn our attention to 'g =—exp( - jy dl). On
the line x=0, =1-y by explicit integration. We
also recall that vanishes on the separatrix y

We are interested i.n the form of the separatrix y
= 4 (x), joining the point x = 0, y = 1 to the point x
= 1, y = 0 (cf. Fig. 1). We may form an equation
for C (x) by noting that 4'(x) x(x, C ) =y (x, 4) or

4'(x) 2x(1 —x —eh@/2) = @[e(1—@)—4x]. (M )

Near x = 1 we expect @ «1 —x. Examining (83) in
that limit, it reduces to the linear equation

=4(x). We therefore try a solution of the form 'g

= (I -y/@) e". To first order in e, we find

'9= (1 —y/~) exp(«xy/4) . (85)

We have also checked that this form is suitable.
Thus we have shown that the forms given in (85)

and (86) are suitable O(e) approximate solutions.
Since they are used in a variety of contexts in Secs.
II and III we repeat their expressions here and dis-
play their dependence on b, as an additional argu-
ment.

4 (x, b, ) = (1 —x)~" exp[ —,'ex(1 —2b)],

g(x, y, b, ) = [1-y/4 (x, 6)]exp(epoxy/C') .
(87)

(88)

It is important to stress that (87) and (88) give
the solutions to (81) and (82) to O(e). Thus, in
Sec. II, the solution given in (2. 9) is the proper
O(e) solution of (2. 5). However, it is not a proper
solution to (2. 3), except formally. If the solution
given in (2. 9) is tested with the transformations
given in (2. 3) one of the O(e ) terms which is for-
mally dropped is proportional to &'y'„/x. This is
to be expected since (2.3) and (2. 4) have different
locations for their singularities. In passing to
(2. 4), the separatrix connecting the finite Gaussian
and WF points was approximated by a straight line.
It is easy to see that if terms up to y„are kept in
the definition of x (x =0 defines the critical sepa-
ratrix) the terms to be formally discarded include
one proportional to &"'y„'/x. Thus to avoid this
inconvenient singularity in the solution of (2. 3) we
would have to go to arbitrary order in g. Although
we will argue below that such an effort is bootless,
we will sketch briefly the results of such a solu-
tion.

We make the exact change of variable x = y+ p(ey„)
in (2.3) and demand that x = 0 represent the
T= T, separatrix. The resulting equations are

1 dp
X = 2X 1 =X —2&gfIAff + 2 p —off

I

(89)

y„=y „(e[I -y „(I+ 2b,„)]—4x+ 4p},
where p satisfies

(810)

0=2(1+0)(aey„b,„—p)+y„d (e[l-y, (1+26,)1+4p} ~

(811)

Matching the solution to (2. 3), (89) and (810) will
involve 8, X, Y„, and two new functions Y„' and
Y'„' defined by Y„' = 4p Y„' and Y„"=4y„(dp/dy„) I'„",
respectively. Y„' and Y„" are simple powers of
Y„ if the linear approximation for p is made as in
(2. 4). An immediate consequence of (89)-(811) is
that the singularity of Y„at x =0 is changed from
(1-y„) to (1-y„)', where a =26„—4(dp/dy„)

The effect of keeping the curvature of the sepa-
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ratrix is to introduce at least a cubic term into the
y„equation (811). However we have already dis-
carded from the y„equation any six-spin interac-
tion term which "feeds back" from the higher-order
equations. By examining the WHARG equations one
finds that the six-spin coupling constant is O(y'„).
Thus, we cannot keep any curvature in the sepa-
ratrix without including the six-spin terms. If we
were to use the exact separatrix we would have to
solve the infinite set of WHARG equations. Further
more, the use of the WHARG equations could not
be justified since the momentum dependence has
been neglected.

We also note that logrithmic corrections of the
sort described by Wegner" do not appear in an &-

expansion. Reference 17 gives a general proce-
dure to extract nonlinear scaling fields and shows
that the method may fail if the eigenvalues satisfy
certain integral relations. In the examples in Secs.
II or III, Wegner would predict logrithmic correc-
tions if 2/e ==X, an integer. These corrections will
never appear in any g expansion. The source of
these terms is the vanishing of the denominator
of some coefficient in a tentative power-series ex-
pansion for the scaling fields of the form 1/(IV'e
—2). In a consistent e expansion this denominator
must be expanded at ——,

' —4N&. . . . Thus, to any
fixed order in g no difficulty is encountered.

This rather unhappy resolution is closely related
to a similar situation in the field-theoretic approach
to the & expansion. The Feyman diagram illus-
trated in Fig. 7(a) diverges as P ' for small P (T = T,).
This divergence is not troublesome in a few simple
diagrams, but by concatenating N such simple loops
the divergence is increased to P "' [Fig. 7(b)].
The multiple loop diagram can replace the single
loop diagram in any Feyman diagram, and no

further "renormalization" removes this divergence.
To handle this, a consistent g expansion is per-

formed so that I' "' =1 —N& lnI'+. ~ ~ . The diver-
gence of each log term is sufficiently weak to be
incorporated into the remaining diagramatic cal-
culations and renormalization procedure. Thus,
in both cases a real singularity is removed by the
use of a self-consistent g expansion.

We also note that the expansion of the nonlinear
scaling fields in power series" is limited in useful-
ness by the fact that the fields contain singularities.
The zero of the function 'Q, for example, is hard
to locate in a power-series expansion. The de-
lineation of the basic singularities of the nonlinear
scaling fields enables the series expansions of
Ref. 17 to be partially summed to give faithful rep-
resentations of the scaling fields.

APPENDIX C: SPECIAL CASES n =0, ~, 2, 4

for n =0, and

x = 2x(1 —x ——,'ez/2),

for n = ~; while in both cases the z equation is

~ =~ f ~(1 —~) —4x] . {C3)

Combining the solution of the two-dimensional prob-
lem with the information given in (3. 9) we have

immediately for n =0,

In a few special cases, the solution of the equa-
tions of Sec. III can be carried further. ' For n=0
and n =~ completely explicit solutions can be ob-
tained within the context of an & expansion. For
n = 2 and n = 4, the renormalization trajectories in
the x =0 plane can be obtained exactly.

For n=0 and n=~, we may take z=y„+y2„. The
x equation and the z equation decouple from the
remaining equation. We have

x=2x(1 —x ——,
'

m/8),

1/PJ~+ Jan ~o
2n

Sn +San
(C4)

Yo (yn+yan)
n

—
& +&

(C8)

(a)
where YO=P(x, y„+y,„, —,'). Similarly for n=~,
we have

p= p+
y Xn~ +Xsn

n Jn+ J2n

(bj

Y (3'n+ya~)
~ 3'n+ J2n

(cs)

FIG, 7, Feynman diagrams for simple loop diver-
gence. (a) A single loop with momenta p& and p& diverges
like P ' where P=p&+p&. (b) N such loops linked together
give a diagram which diverges like P N', which is of ar-
bitrary order for sufficiently large N.

where Y„= 'JJ (x, y„+ya„, 1).
For the case n =2 and n =4 twhere (3. 9) fails to

provide any information], some extra information
is available in the form of the renormalization tra-
jectories in the x =0 plane. In principle, Y'„and
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Y~„can be obtained in the x =0 plane by one integra-
tion. The form of Y„and Y~„at x =0 is probably
sufficient since we are interested in g-0 and we
know how the boundary conditions for Y„and Y,„
depend on x (see Sec. III). For n=2, the trajecto-
ries are given implicitly by

32n 3 Bn + ~32 ~gn

+ y—'" — e"2'"=u, (Cs)
125 y„625

while, for n = 4, the corresponding equation is

3'n Xn Xn 43„/ y~„~r3 ' 3 3 t

„yq„yq„4 y2„8 y2„32
(C9)

APPENDIX D: ZERO-FIELD GIBBS POTENTIAL

As discussed in Sec. II, the zero-field Gibbs po-
tential (for T & T,) can be written as" '

G= — e "ln [I +r(l)]dl
2 0

(DI)

In (Dl) we have set q= 0, Integrating this equation

by parts we have that

G=-,'nlnII+ r(0)]

n " .„, r(l)
2 1+r(l)

(D2)

Examination of Eqs. (2. 2) and (2. 4) for the two-
parameter problem or Eqs. (3. 2) and (3. 3) for the
three-parameter problem shows that to O(e) we
n' y replace r/(I+ r) by 2x and (1+r) by X ~.

Equati. on (D2) now reads

G= ——,
' nln (X0)+n e "' x(I) df . (D3)

The Gibbs potential can now in principle be evalu-
ated by expression x in terms of the nonlinear scal-

ing fields given in (2. 10) and (3. 14) for the two-
parameter and three-parameter problems, respec-
tively, and performing the integration in (D3).

For example, in the two-parameter case we may
write the integral in (D3)

'x(l)df =—'S„' (x, y„)

' S„'"'(x', y„(x'))dx'
1 —x' —(eb, g2)y„(x')

(D4)

In (D4), y„(x') denotes the value of y„at x= x' on
the renormalization trajectory passing through
(x, y„). We may consider two limiting cases of
(D4).

First we restrict (x, y„) to lie on the separatrix
y„=p„(x). In this case, using (2. 9b) we have

2 ~Sf'
e X(l) df =

2 (1 —x)
Pl (I x~)d/2-1

(.')'-"
Qx

1 —~~„(I —x)/2'

(D5)

As a second example we consider (x, y„) such that
y„«(1 —x) all along the renormalization trajec-
tory. In this case we may neglect Y„and write

t x"" ' (I —x')"" '
x(l) df =

g ygy g p F12 dx
0

The condition y„«(1 —x) cannot be satisfied as
x- 0 unless y„ is identically zero; in all other
cases, the trajectories sweep toward the separa-
trix so that the free energy more closely approxi-
mates the solution given in (D5). We note that the
prefactor of the integral in (D6) is simply SG "e
with Y„set =1.

For the general case, the trajectories y„(x ) are
given implicitly in the renormalization invariant
(2. 13). For further discussions and model calcula-
tions, see Refs. 11b, 26, and 27.
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