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The phonon dispersion curves, the temperature dependence of the Debye temperature, and the static elastic,
dielectric, and piezoelectric constants of a-SiO, have been calculated from a modified rigid-ion model with an
effective charge, with short-range central forces for the two Si-0 interactions, for the four nearest-neighbor 0-
0 interactions, for the four second-neigbhor 0-0 interactions, and with three-body type angle-bending forces
between nearest-neighbor 0 ions sharing a common Si-ion, and between Si-ions of adjacent tetrahedra and the
linking 0 ion. The model involves 23 parameters which are reduced to 8 independent parameters by the six

equilibrium conditions and by 15 constraints on the first and second derivatives of the interaction potential

corresponding to the inner and outer 0-0 interactions. Using explicit expressions for the elastic constants and
for the optical modes at zero wave vector, the eight free parameters were determined from a least-squares fit
of the six elastic constants and of the 16 Raman and transverse ir frequencies. The effective charge of the Si
ion is found to be 0.96 electronic charges, indicating a strong degree of covalency and/or screening. The
model gives good over-all agreement for the elastic and optical data, rough agreement for the dielectric
constants, and the correct sign and order of magnitude of the piezoelectric constants. The dispersion curves

along [001] and the temperature dependence of the Debye temperature agree well with available

experimental data, with moderate discrepancies occurring for the two acoustic branches and at low

temperatures, respectively.

I, INTRODUCTION

The objective of this paper is to present the re-
sults of a consistent lattice-dynamical calculation
of the optical frequencies, of the elastic, dielec-
tric, and piezoelectric constants, of the phonon
dispersion relations, and of the temperature de-
pendence of the Debye temperature for o.-quartz
(SiQ, ), which is based on a modified rigid-ion
model and on the harmonic approximation. Al-
though a considerable amount of theoretical work
on the properties of e-quartz is available
in most cases only a few selected properties are
considered and overly simplified models are used.

The majority of theoretical investigations deal
with the explanation of the Raman and ir frequen-
cies. Most of these' ' are force-constant models
which include angle bending and stretching forces,
but ignore long-range Coulomb forces which may
be expected to be important in a partly ionic crys-
tal such as quartz. This expectation is actually
supported by more recent experimental Raman
studies with laser excitation. '" In none of these
investigations' are the elastic or piezoelectric
constants treated.

Force-constant models have also been used for
calculating the elastic"'" and piezoelectric'
constants of n-quartz, but the consistency of these
models with the optical frequencies has not been
investigated. Qne of these models" is a "rigid-
stick-bar model" in which the nearest-neighbor
distances (bond lengths) are assumed to be con-
stant. In addition, the internal strain contribu-

tions to the elastic constants have been neglected
in Ref. 11, although they may be quite large for
other noncentrosymmetric crystal structures. " '

The most elaborate and consistent lattice-dynam-
ical theory of a-quartz has been presented by
Elcombe, ""who also measured the phonon dis-
persion relations for several low-lying branches
along the threefold axis by means of inelastic neu-
tron scattering. Elcombe calculated the optical-
mode frequencies and the phonon dispersion curves
on the basis of two models, a force-constant model
and a rigid-ion model. Five of the six elastic con-
stants were also determined from the long-wave-
length slope of the dispersion curves. In the force-
constant model only central forces between nearest
Si-Q and Q-Q neighbors are included andthe differ-
ence between the various bond lengths of each type
has been neglected. In the rigid-ion model the
Coulomb forces are included and the ionic charge
is scaled by means of an effective charge in order
to account for deviations from complete ionic bind-
ing. The parameters of both models were deter-
mined from a least-squares fit of all 28 transverse
and longitudinal optical-mode frequencies at the
Brillouin-zone center. Both models gave fair to
good fit to the optical frequencies, and fair agree-
ment for the phonon dispersion relations. How-
ever, the calculated elastic constants are up to two
times smaller than the experimental values for the
force-constant model, and up to five times smaller
for the rigid-ion model. " These discrepancies
may be expected to arise from the simplifying as-
sumptions about the interatomic forces, especially
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from the omission of angle-bending forces, and
from the manner in which the parameters of the
model were fitted to the experimental data. In ad-
dition, the equilibrium conditions for the structural
parameters of quartz were not taken into account. "
Since the equilibrium conditions are intimately re-
lated to the rotational-invariance conditions for the
coupling parameters, Elcombe's model refers to
a crystal with nonvanishing internal stresses and
does not satisfy the rotational-invariance condi-
tions. The piezoelectric and dielectric constants
were not calculated by Elcombe. "

In the present paper we report on lattice-dynam-
ical calculations on u-quartz which are based on
an extended and refined version of Elcombe's mod-
ified rigid-ion model. The salient features of the
new model are (i) a more differentiated model for
the short-range forces which consist of central-
force short-range interactions for the two Si-O
distances, for the four second-neighbor O-O dis-
tances, and two kinds of three-body type angle-
bending forces for the tetrahedral 0-Si-0 bond
angle and for the Si-O-Si bond angle which des-
cribes the relative orientation of neighboring Si04
tetrahedra; (ii) including the rotational-invariance
conditions for the coupling parameters and the
equilibrium conditions for the internal strains,
which made inclusion of the four second-neighbor
O-O interactions necessary; (iii) explicit calcula-
tion of the elastic constants from the external and
internal strain contributions; (iv) reduction of the
22 short-range parameters and of the effective
charge to eight independent parameters by using
the six equilibrium conditions (corresponding to
the two lattice parameters and four structural
parameters), and by using nine constraints on the
first and second derivatives of the interaction po-
tential for the first- and second-neighbor O-O
interactions; (v) determination of the eight inde-
pendent parameters from a simultaneous least-
squares fit of the 16 Raman-active and transverse
infrared-active frequencies (four Raman-active
modes, four infrared-active modes and eight modes
which are both Raman and infrared active), and of
the six independent elastic constants to the 22 ex-
perimental data. On the basis of this model all
(transverse and longitudinal) optical frequencies at
zero wave vector, the elastic, dielectric, and
piezoelectric constants, the. phonon dispersion
relations and frequency spectrum, and the temper-
ature dependence of the Debye temperature were
calculated. Other models were also tested, but
models with fewer parameters (especially without
angle-bending forces) did not give as good agree-
ment as the eight-parameter model described, and
models with more parameters did not result in a
statistically significant improvement of the least-

II. CRYSTAL SYMMETRY AND THEORETICAL MODEL

e-quartz occurs in two enantiomorphic crystal
structures corresponding to the trigonal space
groups" D', (P3,21) and D,'(PS,21). There are three
formula units (SiO, ) per unit cell. In Table I the
coordinates of the atomic positions of a levorota-
tory crystal (space group D', ) as referred to a hex-
agonal unit cell with base vectors a„a„a,are
shown, where a, and a, form an angle of 120, and
a, is perpendicular to a, and a, . The numerical
values of the two lattice constants a =) a, ( =( a, ~

and c = [ a, ), and of the four structural parameters
u, x, y, z at 20'C are also included in Table I.
The ions are labeled by the index K = 1, 2, . . . , 9.
The projection of the structure on the (001) plane
in Fig. 1 shows the atomic positions and the ar-
rangement of the SiO, tetrahedra in the unit cell.

In addition to the Coulomb interaction between the
ions in the modified rigid-ion model considered
here, central-force short-range interactions are

TABLE I. Equivalent positions, ion type, ion label
z, position coordinates (referred to the hexagonal axes
of Fig. 1) and structural parameters for n-quartz
(u = 0.4698, x = 0.4145, y = 0.2662, z = 0.1189,
a =4,91304k, c = 5.404 63A ).

Equivalent
position

Ion
type (x(,x), x3)

Si

0

(u, 0, 0)

(0, u, ~)

(u, u, &~)

(x, y, z)

(y, x, &3-z)

(ytx-y, z+ 2)
3

(x,y -x, -'-z)t 3

(y -x,x, z+p~)

(x -y, y, z)

Reference 24.
Reference 23.

squares fit. Inclusion of the angle-bending forces
was found necessary for obtaining good agreement
for the elastic constants and the deviations from
the Cauchy relations. In addition, the fitting pro-
cedure used for determining the parameters of the
model was examined. It was found that it is gen-
erally not difficult to account for one set of prop-
erties, but that it is much more difficult to develop
a model which explains both optical and elastic
properties well.
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short-range contribution to the lattice energy per
unit cell becomes

C'" = 6(y, + y, )+3(y, +2y, +2y, + y, )

+3(y, +2y, + y, +2y„) . (2.2)

From the definition of the labels cg in Table II it is
apparent that the first group of terms in Eq. (2.2)
describes the Si-0 interactions, the second group
the nearest neighbor 0-0 interactions, and the
third group the second-neighbor O-Q interactions.

For the equilibrium conditions, and for the cal-
culation of the dynamical matrix, the first and
second derivatives of the interaction potentials
Q„(R„)are required, which will be taken in the
usual dimensionless form

FIG. 1. Projection of structure of levorotatory u-
quartz (Dg on (001), showing the labeling of tons and the
arrangement of the Si04 tetrahedra [after Landolt-B5rn-
stein, in Zahlenseerte und Funktionen, edited by K. H.
Hellwege (Springer-Verlag, Berlin, 1955), Vol. 4, Part
4, p. 35]. The axes X and Y are part of a right-handed
coordinate system according to the 1949 IRE standards
[Proc. IRE 14, S1, 1378 (1949)].

2V. 0'e. (R.)
CC 0

Bo=, ' " (a=1, 2, . . . , 10). (2.3)
2V spo(R )

n n 0

V, = (2 M3)a'c is the volume of the unit cell, and
the index 0 refers to the equilibrium state.

The angle-bending contribution is represented
by a sum over all angles (KK'K" ) per unit cell,

4 ' = — Q Q(KK K ))A,a. 1

KKIKII
(2.4)

4 = -M(Ze)'/a+@'" +C ~', (2.1)

where M is the Madelung constant, e the electronic
charge, and Z an effective charge indicative of the
degree of ionicity. The charge of a Si ion is taken
to be +4Se, and that of the Q ions —2Ze. Denoting
the various central-force short-range interaction
potentials by Q„=p„(R„) (n =1, 2, . . . , 10) the

taken into account for the first nearest Si-0 neigh-
bors, and for the first- and second-nearest 0-0
neighbors. In addition, angle-bending forces for
the tetrahedral 0-Si-0 angles and for Si-0-Si angle
between neighboring tetrahedras are included.
There are two different Si-0 distances, four dif-
ferent nearest-neighbor 0-0 distances, and four
different second-neighbor O-Q distances. The
nearest-neighbor O-O distances correspond to the
edges of the SiQ, tetrahedra, and the second-neigh-
bor 0-0 distances connect two 0 corners of adja-
cent SiQ, tetrahedra sharing a common corner.
The distances R(KK') =[ R(K„O) —R(K', L) ( are listed
in Table II, where R(K', I ) denotes the position
vector of ion K', and L labels the unit cells. There
are four different 0-Si-0 angles and onlyone Si-Q-
Si angle. The angles formed by the three ions with
labels K, K, K, with the ion of type K at the ver-
tex of the angle are listed in Table III.

The potential energy of the crystal per unit cell
is given by

where p(KK K') denotes the three-body type defor-
mation energy due to the change of angle between
the ions K', K K . Following a suggestion by
Maradudin"" y(KK'K") may be related to the
change of the scalar product R(K'K) ~ R(K"K) as
follows:

Q(KK K ) = sG(KK K ) (8 /c+ )

X [R (K K) ' R (K K) —R(K K) ' R(K K)]

(2.5)

Here the prime denotes the position vectors in a
deformed state, and the factor e'/ca' has been
introduced to render the angle-bending force
constant G(KK K ) dimensionless. Since in (2.5) the
change of the scalar product rather than the change
of the angle 8 or of

cosa =[R(KK ) ' R(KK' ))/R(KK )R(KK )

occurs the deformation energy p(KK K ) does not
represent a pure angle-bending energy, but also
includes a small amount of bond stretching.

The six equilibrium conditions which express
the vanishing of the external and internal stresses
are obtained by minimizing the potential energy
(2.1) with respect to the four structural param-
eters x, y, z, u and with respect to the two lattice
constants a, c. This gives the relations
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TABLE II. Interionic distances for short-range central-force interactions.

Type

Si-0

(0-0)(1)

(0-0)(2)

(KK')

(14), (19), (25), (26), (37), (38)

(16), (17), (28), (29), (34), (35)

(49), (56), (78)

(47), (58), (69)

(46), (48), (57), (59), (68), (79)

(45), (67), (»)
(45), (67), (89)

(49), (56), (78)

(47), (58), (69)

(46), {48),(57), (59), (68), (79)

r =c/a

R(KK') =
~

R(K 0) —R(K'L, ) ~

[u'+x'+y —xy+u(y —2x) +r 'z']' 'a

[g2+x2+y2 xy+ 1 2g + (g 1)(x+ y) +r 2(z 1)2]1/2a

[3y2 ~4r 2z2]1/2a

[3x2+.1 3x+.r 2(2z 1)2]1/2a
3

[ 3x2+ 1 3x + 3y2 3xy + 1r 2]1/2a

[3(x y)2+r 2(2z 2)2]1/2a

[3(x y)2+r 2(2z+ g)2]1/2a

[3y2+ 1 3y + 4r 2z2]1/2a

[3x2+r 2(2z 1)2]1/2a

[ 3(x2+y2 xy) + 1 r 2]1/2a

Label

10

R (A)

1.5977

1.6159

2.6045

2.6135

2.6364

2.6391

3.3348

3.4124

3.5648

3.5817

rM„/M3= (2x —y —2u)B, + (2x —y +u —1)B,+3(2x —l)B4+3(2x —y —l)B5+3(x —y)(B, +Bq +3xB9+3(2x—y)B»,

(2.6a)

y'M~/v 3 = —(x —2y-u)Bi —(x —2y-u+1)B, +3yB3 —3(x —2y)(B5+B,c) —3(x —y)(B sB+, )+3(2y —1)Bs, (2.6b)

M, /243r =s(B, +2B, +4B,)+(s ,')B, +(—2—z ——,')(2B, +B,)+2(s ——,')B, +(2@+,')B, , -
M/43r = —(2x —y —2u )B,+ (x + y + 2 u —2 )B, ,

M „/2v 3 = z'(B, + 2B, +4B,) + (s ——,')'(B, + 2B,) + (2z ——', )'(B~ + —,
'
B9)+ ', (B, +B-„)+ —,

' (2z + —,')'B, ,

r(M +xM, )/—2M3 = [ (x ——,
'

y -u)'+ —,
' y'] B,+[[s(x+y) +u —1]'+~(x —y)'] B, + s y'B, + (3x' —3x+1)B4

(2.6c)

(2.6d)

(2.6e)

+[(s x —1)' +3(& x- y)'] B+ & (x —y)'(B Bs+, ) (3+y' —3y+1)B,+~sx'B, +3(x'+y' —xy)B,c.
(2.6f)

Here the subscripts denote the partial derivatives
of the Madelung number with respect to x, y, z, u
and r = c/a. Their numerical values are listed in
Table IV. The angle-bending contributions do not

TABLE III. Angles for short-range angle-bending
forces (cos(j = [R(KK') R(KK')l/R(KK')R(KK")).

enter the equilibrium conditions because the force
constants G(KK K ') in(2. 5) are essentially harmonic
angle-bending force constants which represent
second derivatives of the potential.

If the contributions from the second-neighbor
O-O interactions are neglected (B,=B,=B,=B»
=0) the equilibrium conditions (2.6) represent six

Type

0-Si-0

Si-0-Si

(I(:K't(:")

(149), (256), (378)
(146), (179), (268), (259),

(348), (357)
(147), (169), (258), (269),

(347), (358)
(167), (289), (345)
{413),(523), (612), (713),

{823),(912)

Label
P 88 (deg)

109.1901
110.2461

108.8301

109.4908
144.0921

TABLE IV. Madelung constant M and its derivatives
with respect to the internal strain parameters u, x, y, z
and with respect to the ratio r =c/a.

162.295 51

-16.004 36
164.160 69
-80.397 30

90.933 80
-48.482 04
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inhomogeneous linear equations for the six un-
known quantities B,-B,. Since, however, the
6x6 determinant of the corresponding homoge-
neous equations vanishes there is no solution of
the inhomogeneous equations. Thus, in order to
satisfy the equilibrium conditions it is essential
to include interactions beyond the nearest-neigh-
bor Si-O and O-O interactions.

The model described contains 26 parameters,
namely the 20 first and second derivatives B~,
A„(n =1, 2, . . . , 10) of the central-force short-
range interactions, the five angle-bending force
constants G a (P = 1, 2, . . . , 5), and the effective
charge Z. In order to reduce the number of pa-
rameters the following simplifying assumptions
were made:

D (q ~~') =(m m )' ' Q P (I. ~~')e '"'
I

(2.8)

m denotes the mass of ion z. P„8(I., em') denotes
the coupling parameters, and R(I., KK ) the differ-
ence of the position vectors between ions K and K''

in the unit cells L and 0, respectively. The wave
vector q ranges over the first Brillouin zone. The
elastic constants were calculated from the expres-
sions for the external strain contributions [nP, yA]
and the internal strain contributions (ny, pA. )
(n, p, y, A. = 1, 2, 3) as given by"

&,6 =[up, y&l+[py, n&1 [p&-, ny]+(ny p&)

(2.9)

A„/R„B„=const., n =3, 4, 5, 6, (2.7a)

with

[nP, yA] =, Q (m„m„,)' 'D~a q(zz')

A„ = const. ; B„= const. , u = 7, 8, 9, 10, (2.7b) (2.10)
G&=const. , P=1, 2, 3, 4. (2.7c)

Assumption (2.7a) implies that the range of the
short-range interactions for the four first nearest-
neighbor O-O interactions is the same. If, for
example, this interaction is of the Born-Mayer
form, Q„=b„e px(-R„ p/„), (2.7a) implies that
p~ = const. for n =3, 4, 5, 6. The assumptions
(2.7b) and (2.7c) were justified by earlier trial
runs, in which the parameters were determined
by means of least-squares fits to experimental
data as described below in Sec. III, and which
showed that these relations were approximately
fulfilled. This is also plausible, since (2.7b) re-
fers to the central-force short-range interactions
between the second O-O neighbors, and since
(2.7c) refers to the tetrahedral bond angles. Ac-
cording to Tables II and III the corresponding
interionic distances and bond angles do not vary
greatly. Also the contributions from the second-
neighbor O-O interactions to the optical frequen-
cies and to the elastic constants are relatively
small, and the least-squares fit obtained without
the simplifying assumptions (2.7b) and (2.7c) is
not significantly improved. Other models with
additional or with fewer constraints on the param-
eters were also investigated and are discussed
below.

Through the conditions (2.7) the number of pa-
rameters of the model is reduced to 14. The
equilibrium conditions (2.6) provide six further
constraints, so that the model considered has

'ghtf e p a et. s.
For this model the 2Vx 2'7 dynamical matrix was

constructed, which is defined as"'

1
(ny, pz) = —

+ gr„, (&~ )
KKt

X DP~ y Kt K mKtt
K''

X D 8 g K P K PlKttt ~

Ktt t

(2.11)

D„a &(zz') and D 8 &
~(aa') are the first and second

derivatives of the dynamical matrix (2.8) with re-
spect to iq& and iq~, respectively, at q = 0. The
bar denotes that the macroscopic electric field
ha.s been removed. r„„(z~') is the inverse of
D„(qa=0, KK ), with the three translational degrees
of freedom removed, and has the rank 24. The
piezoelectric and dielectric constants are given
by"

.By 2gy M ( )/~ v"
0 KKtP K

x Q (m, , )'~'D„a y(g'z" ),
K"

4me'
&„,=6„,+ g, " „„r„,(~~). (2.18)

0 ~ K K

Here Z, e denotes the effective charge of ion K.
The dynamical matrix and its derivatives with

respect to the wave-vector components can be
written as sums of the short-range central-force
and angle-bending contributions and of the Coulomb
contributions. The Coulomb contributions were
calculated by means of Ewald's method, and the
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results for the external strain parts of the elastic
constants and for the quantities

rotational-invariance conditions for the coupling
parameters, which can for a stress-free crystal
be written"

C„B&(s)= —i g (m„m, i)'~'D„& (m') (2.14)
C 8„(~)=C„q,8(z) (n, p, y=1, 2, 3), (2.16)

are listed in Table V. The Coulomb contributions
to the other quantities and the short-range two-
body central-force and three-body angle-bending
contributions are too numerous to be presented
here. The Coulomb contributions to the dynami-
cal matrix have been given before by Elcombe"
along the x, y, and z directions of the cartesian
axes shown in Fig. 1 on the basis of slightly dif-
ferent structural parameters. When calculated
with the input data used by Elcombe the present
results agree with those of Elcombe up to the last
of the five decimals given. "

The external and internal strain contributions to
the elastic constants must satisfy the symmetry
relations [np, yA] = [yX, ap] and (o.y, pA. ) = (yo. , pA. ),
which follow from the symmetry of the elastic
constants for a crystal with vanishing external
stresses, and from the rotational invariance con-
ditions for the coupling parameters, respective-
ly." These relations are not automatically satis-
fied for o.-quartz. If the repulsive contributions
to the square brackets are eliminated by means of
the equilibrium conditions (2.6e) and (2.6f), the
first type of relations leads to the following rela-
tion:

@assai &x&3s = 2(M + (2.15)

The coefficients on the left-hand side are the Cou-
lomb contributions to the external strain parts of
the elastic constants as listed in Table V. The
relation (2.15) also holds for the rutile struc-
ture. ""

The second type of relation follows from the

Q„,(4) —Q„,(4) = (w/2M3)rM, ,

Qgg3(5) Q3gy(5) = (1l/2M3)KMp

@y3y(4) Qyyg(4): (Tf/2W3)Mg

q„,(2) q„—,( 2)
= (~/2) rM„.

(2.18a)

( 2.18b)

(2.18c)

(2.18d)

The coefficients on the left-hand side are the Cou-
lomb contributions to the quantities (2.17) and are
also listed in Table V. All other rotational invar-
iance conditions are either automatically satisfied
or are equivalent to the equilibrium conditions and
to (2.18a)-(2.18d).

Approximate derivatives of the Madelung number
were calculated by means of numerical differentia-
tion of the values obtained from Ewald's method,
and were found to agree to within a few percent
with the values obtained from (2.15) and (2.18a)-
(2.18d), with the Q„s& obtained directly by Ewald's
method. Since the Q„B& involve analytical differ-
entiation they are more accurate than the deriva-
tives of the Madelung number obtained by numeri-
cal differentiation. Therefore the derivatives of
M as calculated from the Q„B~ by means of (2.15)
and (2.18a)-(2.18d) are given in Table IV and were
used in all calculations.

where

C„,„(~)=g y. ,X, (~~'). (2.17)

Here X (L, zK') denotes the y component of
R(L, KK ) =R(La) —R(0a''). If the short-range ccn-
tributions to (2.16) are eliminated by means of the
equilibrium conditions (2.6a)-(2.6d), the conditions
(2.16) lead to the four relations

1111
3333
2323
1212
1122
1133
3311
1123

-32.703 713
-12.271 919

6.135 964
25.419 581

-83.542 863
-101.678 325
-100.530 162

4.544 185

nPq (~)

313 (4)
331 (4)
313 (5)
331 (5)
131 (4)
113 (4)
121 (2)
112 (2)

Q„ayb&)

79.127 911
-84.645 764
224,421 183
304.419 58

-202.598 82
-285.066 65
-117.507 15
-89.852 126

TABLE V. Coulomb contributions to the external
strain parts of the elastic constants, Q~g&~= (aV/& & )
&& [eP, yA, J '"', and Coulomb contributions to the quanti-
ties defined in (2.14), Q„g (~) = (V/&2e2)C '8"'(~)
(G. , p, y, A. =- 1, 2, 3; v = 2, 4, 5).

III. DETERMINATION OF PARAMETERS

The eight free parameters of the model were
determined from a least-squares fit of the calcu-
lated six elastic constants and the squares of the
frequencies of the four Raman-active A(I;) modes,
of the four transverse ir-active Br(12r) modes,
and of the eight transverse Raman- and ir-active
Er(1'») modes to the 22 experimental data" "at
300 K.

In order to convert all experimental data into
dimensionless quantities with equal relative
weight the expression

(X
exp ~cele)2/g. exp)2

with weight factors (X~"P) ', i; as minimized with
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IV, JUSTIFICATION OF MODEL

In order to justify the model adopted least-
squares fits to the 16 optical frequencies
(A, Br,Ez.) and to the six elastic constants were

TABLE VI. Short-range parameters A„,B„
(+=1, 2, . . . , 10), angle-bending force constants GB
(P=1,2, . .. , 5), and effective charge Z for modified
rigid-ion model C6A2, based on the assumptions
(2.7a)-(2.7c), and determined from least-squares fit
to 16 TO frequencies and six elastic constants.

Bn b

516.1
461.6
23.8
25.9
26.0
25.2
0.291

32.8
34.0
11~ 1
12 Q 1

-12.0
-11.7

0.075

39.3
66.4

0.236

Az =A8 =As =At o.
b Bz Bs BB=Bfo.' Gq=G2= G3= G4.

respect to the eight free parameters. The results
for all 26 parameters of the model are listed in
Table VI.

Since both. A„&0 and Be & 0 for n = 1, 2 and
~ =7, . . . , 10 the short-range interactions for the
Si-Q neighbors and for the second-nearest Q-O
neighbors do not correspond to a repulsive poten-
tial. The dimensionless second derivatives A.

for the nearest-neighbor Q-Q interactions are ap-
proximately equal and about 20 times smaller
than the Si-Q interactions, and about eight times
larger than the second-neighbor Q-Q interactions.

For the Si-Q interactions the parameters are
approximately 30%%uo smaller, and for the nearest-
neighbor Q-Q interactions they are approximately
60%%uo larger than the parameters in the rigid-ion
model of Elcombe. " The effective charge of
Elcombe's model is twice the value of Table VI.
These differences are most likely due to the sim-
plifying assumptions underlying Elcombe's
model" and to the different fitting procedures
used. Elcombe uses weight factors inversely pro-
portional to the square of the errors of the optical
frequencies and includes the LQ frequencies, but
not the elastic constants in the least-squares fit.
In the present work the LQ frequencies were ex-
cluded from the least-squares fit since they de-
pend more strongly on the electronic polarizabili-
ties, which are neglected in the present model,
than the TO frequencies.

made for three additional models with fewer or
more parameters. In Table VII the individual con-
tributions to the residual sum of squares arising
from the TO frequencies [S'(TO)] and from the
elastic constants [S'(clast)] and the total residual
sum of squares, and the standard deviation
o' =S(tot) /(n -p)'~' for the n -p degrees of free-
dom are listed for the four models considered.
Here p denotes the number of free parameters of
the models. Also included in Table VII are the
residual sum of squares for the 12 LQ modes
(B~,E~), which were not included in the least-
squares fit.

The models considered are all modified rigid-
ion models of the type described in Sec. II, and
are different in that other assumptions instead of
(2.7a) and (2.7c) are made. The four models are
(I) a six-parameter central-force model without
angle-bending forces, denoted by C6, obtained by
setting all angle-bending force constants in the
above model equal to zero; (II) a nine-parameter
central-force model without angle-bending forces,
denoted by C9, without the three constraints
(2.7a), so that the eight parameters A„,Bs (n =3,
4, 5, 6) for the nearest-neighbor O-0 interactions
are independently varied; (III) the eight-parameter
model characterized by the constraints (2.7a)-
(2.7c), denoted by CGA2, representing the final
selection for the present paper; and (IV) an 11-
parameter model with five independent angle-
bending forces, denoted by CGA5, and obtained by
deleting the constraints (2.7c).

The fact that thesmallestvalue of the a occurs
for model C6A.2 suggests that this model is the
best one among the four models considered. In
order to test whether it is also necessary to use
this model, that is whether the standard deviation
is sufficiently smaller than for the other models,
the F test" was applied to the comparison of
models II, III, and IV with model I. The quantity

f [S,'„(I)-S,'.,(K)]/(P -P, ))/[S,',,(I)/(n -P,)],
where P~ denotes the number of free parameters
of model g, has the values 1.73, 3.50, and
1.79, for models II, III, and IV respectively.
From the E tables'4 one obtains for a probability
level of 95%%uo for the corresponding F values:
3.41, 3.74, and 3.20, respectively. Therefore
models II and IV are not statistically significant
at the 95%%uo level, whereas the two additional pa-
rameters of model III improve the least-squares
fit at a probability level close to 95%%uo. This justi-
fies the selection of this model for the subsequent
calculations.

As the data in Table VII indicate for all four
models the residual sum of squares for the 12 LO
modes is smaller than for the 16 TO modes, al-
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TABLE VII. Residual sum of squares

S2+ (X exp X calc)2y(~ exp)2

i=1
for TO and LO frequencies and for elastic constants, and standard deviation 0 = S(tot)/(n -p)~~ for the following: (A)
Four versions of the modified rigid-ion model, with parameters determined from 16 TO frequencies and six elastic con-
stants (n =22). P) The final version CGA2 of the present modified rigid-ion model, with parameters determined from
16 TO and 12 LO frequencies (n = 28). (C) The final version C6A2 of the present modified rigid-ion model, with parame-
ters determined from 16 TO and 12 LO frequencies and six elastic constants (+=34). (D) Elcombe's modified rigid-ion
model (Ref. 22), with parameters determined from 16 LO and 12 TO frequencies (& =28). The following abbreviations
are used for the models: C6, six-parameter central-force model; C9, nine-parameter central force model; C6A2,
model C6 with two additional angle-bending force constants; C6A5, model C6 with five additional angle-bending force
constants.

Model
C6

(&=6)
C9

(&=9)
C6A2

(P =8)
C6A5

(P =»)

B
C6A2
(&=8)

C
C6A2
(&=8)

D
Klcombe (Ref. 22)

(& =5)

~'(To)
~'(LO)
~2(el.ast)
~2(tot)

0'

0.268
(0.163) '
0.482
0.750
0.217

0.292
(0.149) '
0,244
0.536
0.203

0.154
(oe103) '
0.345
0.499
0.189

0.203
(0.126)
0.211
0.414
0.194

0.102
0.038

(4.447) '
0.140
0.084

0.179
0.060
0.337
0.576
0.149

0.223
0.209
(1.801)"
0.432
0.137

' Not included in least-squares fit, in ~~(tot) and in 0.' Calculated without &&3 and by choosing the correct sign for the calculated value of &&4.

though they were not included in the least-squares
fit. This may be attributed predominantly to the
fact that the TQ-LQ mode splitting is small in
a-quartz and is indicative of the smallness of
electronic polarizability effects.

The data in Table VII indicate further that the
reduction of S'(clast) from the value of 0.482 for
model I-C6 resulting from the introduction of ad-
ditional parameters is smallest for the selected
model Ill-CGA2. The other two models (II and IV)
lead to smaller values for S'(clast), but to larger
values of S'(TO) and S'(LO). Especially model IV
which contains five different angle-bending forces
gives a much better fit for the elastic constants
than model III, whereas the fit for the optical fre-
quencies deteriorates somewhat. In spite of this
obvious advantage of model IV for fitting the elas-
tic constants, model III will be used subsequently
because it is the statistically most plausible
model for providing a good over-all fit.

In order to compare the present model with the
modified rigid-ion model of Elcombe" in Table
VII the residual sums of squares and the standard
deviations are also included for the final version
CGA2, but with their parameters determined (as
in Elcombe's work) from the 1G TO and 12 LO fre-
quencies (column B) and with their parameters de-
termined from all 34 TQ and I,Q frequencies and
elastic constants (column C). As expected, in
both cases S'(TO) and S'(LO) are significantly

smaller than for Elcombe's model, and in the
second case the total standard deviation o is only
insignificantly larger than for Elcombe's model
without the contribution from the elastic constants.
The large values of S'(clast) for those cases, for
which the elastic constants were not included in
the least-squares fit indicate that it is not possible
to account for the elastic constants of e-quartz, if
the parameters of the model are determined from
optical data only. Surprisingly, Elcombe's Born-
von Klrmln model gives values for S'(TO) and
S'(LO) about three to four times smaller than her
rigid-ion model, but S (clast) is significantly
larger in that case.

If the eight parameters of model CO%2 are de-
termined from a least-squares fit to the six elas-
tic constants only, S'(clast) is reduced by about
one order of magnitude, but S'(TO) and S'(LO) are
increased by about one order of magnitude. Thus
it is possible to obtain a very good fit for the
elastic constants, however, at the expense of a
poor fit for the optical frequencies with calculated
frequencies being up to three times too large.

As has been shown by Miller and Axe" the elas-
tic constants and the Raman frequencies are re-
lated via the internal strain contributions as given
below in Eq. (4.1). Therefore the procedure of
fitting the parameters of the model either to the
optical frequencies or to the elastic constants
only must be considered as inconsistent.
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TABLE VIII. Optical-mode frequencies (cm ) at
zero wave vector, and elastic constants (10 2 dyn/cm ).

TABLE IX. Calculated and experimental dielectric
and piezoelectric constants (C/m2) of m-quartz.

Representation Experimental Theoretical Calc Exp

(Raman)

M@
T

(Raman and ir)

M@
C

(Raman and ir)

Cgg

~33

&44

~ee
C12

~&3

~&4

207
356
466

1082
364
495
778

1080
128
265
394
450
697
795

1072
1162

388
547
790

1240
129
270
403
510
699
809

1161
1236

0.8680
1.0575
0.5820
0.3988
0.0704
0.119

-0.180

203.9
375.0
474.6

1127.3
379.8
531.4
745.7

1134.7
136.3
256.2
378.0
494.6
667.9
775.0

1086.9
1135.2
388.0
545.5
754.8

1153.4
136.4
256.9
380.6
511.5
668.5
784.0

1086.9
1154.2
0.755
0.655
0.492
0.338
0.0796
0.103

-0.117

Experimental optical data are. from Spitzer and
Kleinman (Ref. 31), except for the two lowest & modes.
Their transverse frequencies are from Krishnan (Ref.
29) and D. Krishnamurty (Ref. 30); their longitudinal
frequencies have been calculated from the transverse
frequencies and from the frequency dependence of the
dielectric constant by M. M. Elcombe (Ref. 22).

Experimental elastic data are from Ref. 32.
Not included in the least-squares fit.

V. NUMERICAL RESULTS AND DISCUSSION

In Tables VIII and IX the optical mode frequen-
cies, the elastic constants, and the dielectric and
piezoelectric constants as calculated from the
selected eight-parameter model C6A2 are com-
pared with the experimental data. For the optical
frequencies discrepancies up to 10%%uo, and for the
elastic constants discrepancies up to 35%%uo (for c»
and c«) occur, but on the whole the agreement for
both sets of data is satisfactory. The calculated

~x

~g

e&&

et4

3.82
3.94
0.050

-0.016

4,44

0.171
-0.0406

R. Bechmann, Phys. Rev. 110, 1060 (1958).
Adiabatic values.

(o.v, V5) = —P J'" „(S)+„a(i)l~'(j), (5.1)

where the sum is to be extended over the Raman-
active modes at the zone center. The coefficients
E„&(j) are sums over products of the first deriva-
tives of the elements of the dynamical matrix with
respect to wave vector, with the components
e 8„(j)of the eigenvectors of the dynamical ma-
trix." From group-theoretical arguments it can
be shown that the internal strain contributions to
c33 and c», and to c44, c„, and cy4 depend onl y on
the modes belonging to the A representation, and
to the E representation, respectively. The re-
maining constants c» and c» depend on internal
strain contributions arising from modes of both
A. and E representations.

dielectric constants e, and e, (not included in the
least-squares fit) are 14% and 15% smaller than
the experimental values, respectively. Because
of the neglect of electronic polarizability in the
present model this discrepancy is, of course, not
surprising. The piezoelectric constants (which
were also not included in the least-squares fit)
show the largest discrepancies, but for both e»
and e,4 the correct sign is predicted. As for the
dielectric constants the discrepancy is most likely
to arise from neglecting the electronic polariz-
ablllty.

As mentioned above, very good agreement of the
elastic constants (within a few percent) is obtained
if the parameters of the model are determined
from a least-squares fit to the elastic constants
only. The agreement for the piezoelectric con-
stants (not included in the least-squares fit) is
also considerably improved, with discrepancies
of 10% for e» and 35% for e„. However, because
of the drastic deterioration mentioned above re-
sulting for the optical frequencies this fitting pro-
cedure is not feasible.

According to Miller and Axe" the internal strain
contributions to the elastic constants as defined
in Eq. (2.11) can be written in tensor notation
(n, y, p„5 = 1, 2, 3)
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In view of an earlier suggestion by Miller and
Axe" (which has been revoked later" ) that the
elastic anomaly in P-quartz near the u-P phase
transition arises predominantly from a single con-
tribution of a soft mode in Eq. (4.1), it was of in-
terest to calculate the individual mode contribu-
tions in the sum in Eq. (4.1). The results of these
calculations are shown in Table X and indicate that
in all cases almost all modes contribute signifi-
cantly to the internal strain parts of the elastic
constants. Exceptions are the softest mode of the
A. representation ( v = 207 cm ') and the three inter-
mediate modes of the E representation with fre-
quencies of 265, 450, and 795 cm '. None of these
frequencies contributes significantly to any of the
internal strain parts, except the mode with fre-
quency 795 cm ', which gives the largest contri-
bution to the internal strain part of c4~.

The diagonal elements of the static dielectric
constant tensor are for the rigid-ion model given
b

(5.2)

where P„(j) denotes the components of the dipole
moment of the j th normal mode at the zone center,
and the sum is over the ir-active modes. In +-
quartz c„depends only on the Er(I', r) modes, and
e, only on the Dr(1'») modes. It was found that
all four B~ modes contribute significantly to e, .
For the E~ modes five modes contribute substan-
tially to e„, but the three modes with calculated

frequencies of 128, 697, and 1072 cm-' possess
small dipole moments and give negligible contri-
butions (smaller than 1%) to e„.

Also listed in Table X are the total internal
strain contributions. They are of comparable
magnitude and opposite sign as the external strain
contributions, so that the resulting total elastic
constants in Table VIII are numerically much
smaller than either the external or the internal
contributions. This fact may explain in part the
relatively large discrepancies between calculated
and observed elastic constant values. In addition,
the neglect of electronic polarizability may have
more serious consequences for the elastic (and
piezoelectric) constants than for the optical mode
frequencies, since the internal strain contribu-
tions may be significantly affected by electronic
polarizabilities. 37

In Table XI the calculated Cauchy differences
cy2 c66 and cy3 c4g are compared with the ex-
perimental values. Fair agreement, with discrep-
ancies of approximately 20%%u~, is found. Since for
central forces the Cauchy relations hold for the
external strain contributions to the elastic con-
stants, "the data in Table XI indicate further that
for ci —c«half of the calculated Cauc hy diff er-
ence, and that for c» —c4, about one-third of the
Cauchy difference arises from the angle-bending
forces.

In Fig. 2 the calculated phonon dispersion curves
of the acoustic branches and of the four lowest
optical branches with wave vector parallel to the
c axis are compared with the experimental data

TABLE X. Contributions «(j) (p, &=1,2, . . . , 6; Voigt notation) from individual normal modes at the Brillouin-
zone center to the internal strain contributions of the elastic constants according to Eq. (4.1) f&C~~ g(j) =I'„(j)I' g(j)/
(v'(j), o., y, p, 6 =1,2, 3; tensor notation], and total internal strain contributions to the elastic constants (in 10 dyn/cm ).

Representation

(j)
(Cm i)

(calc)

ascii

Ac33 c44 Ac&2 Dcis Dci4

Total

204
375
475

1127
136
256
378
495
668
775

1087
1135

-0.0086
-0.6873
-0.7920
-0.1285
-0.1411
-0.0006
-0.1099
-0.0002
-0.1472
-0.0040
-0.1887
-0.1522

-2.3603

-0.0494
-0.6380
-0.9922
-0.2764

0
0
0
0
0
0
0
0

-1.9560

0
0
0
0

-0.2640
-0.0562
-0.0519
-0.0001
-0.0029
-0.6000
-0.0087
-0.0927

-1.0765

0
0
0
0

-0.1411
-0.0006
-0.1099
-0.0002
-0.1472
-0.0040
-0.1887
-0.1552

-0.7439

-0.0086
-0.6873
-0.7920
-0.1285

0.1411
0.0006
0.1099
0.0002
0.1472
0.0040
0.1887
0.1522

-0.8725

0.0206
-0.6622
-0.8865

0.1885
0
0
0
0
0
0
0
0

-1.3396

0
0
0
0

-0.1930
0.0057

-0.0755
-0.0001
-0.0206
-0.0491
-0.0405

0.1188

-0.2543

In calculating the internal strain contributions to the elastic constants the macroscopic field in the E& modes has to
be omitted, so that the contributions from Ez and &J. modes are the same.
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TABLE XI. Calculated external and internal strain
contributions and calculated and experimental Cauchy
differences (in 10 dyn/cm ). 8"- c( —Si 0~

C g2 C66

c~3- c44

Theoretical

-0.129 -0.129
-0.126 -0.264

-0.258
-0.390

Ac'"' Dc'"' Ac' '

Experimental

4c
-0.328
-0.463

7-
I
O

e) 6~
Ol0

Oz
hJ

a 3
bJ0'
U

2

Y

~ ~
Q

~aa

of Elcombe. " For the optical branches very good
agreement is found. The three acoustic branches
exhibit the correct shape and position of the maxi-
mum of the highest branch, but lie up to 20% too
low. Apparently, this results from the fact that
the calculated elastic constants c33 and c44 are
about 38 and 15% too small, respectively. The
over-all agreement of the calculated curves in
Fig. 2 with the experimental data is considerably
better than for either of the two theoretical models
investigated by Elcombe. "

The phonon dispersion curves of all branches
shown in Fig. 3 for wave vectors parallel to the
x, y, and z axes of the Cartesian coordinate sys-
tem of Fig. 1 agree qualitatively with those calcu-
lated by Elcombe, "but there are several signifi-
cant quantitative differences. The most conspicu-
ous feature is the large frequency gap between
about 24 ' 10" and 32 x 10" sec ', which has also
been noted by Elcombe. "

The phonon density of states has been calculated
by the root sampling method from a total of 1000
wave-vector points in the entire Brillouin zone by
using a mesh width of L v=0.25x10"sec-'. The
most noteworthy features of the resulting histo-
gram in Fig. 4 are the relatively broad band be-
tween 2&10" and 24x10" sec ', with various pro-
nounced peaks in this region, and the unusually
large peak near 34x10" sec '. Et appears that
there are two additional small gaps at the high-
frequency end of the spectrum, but it could not be
decided whether they arise from the limited reso-
lution of the calculation.

The specific heat was calculated as a function of
temperature from the same set of wave-vector
points in the Brillouin zone as the frequency spec-
trum. The Debye temperature calculated from
these data with the aid of the tables of Beattie" is
compared in Fig. 5 with the experimental curve,
calculated from the specific heat for constant vol-
ume. '9~' The most noteworthy feature is the un-
usually large increase in 0 by a factor of about 2,
which may be attributed to the large spread of the
frequency spectrum and which is well accounted
for by the calculated curve. While the agreement

0

I

0.40.2 0.3~ tools
REDUCED WAVE VECTOR COMPONENT 2

O. I 0.5
A

FIG. 2. Comparison of calculated phonon dispersion
curves with wave vector parallel to c axis for &-Si02
with experimental data of Elcombe (Ref. 22). Solid lines
and open circles belong to the irreducible representation
4~ corresponding to longitudinal vibrations; dashed lines
and full circles belong to the irreducible representation
42 corresponding to transverse vibrations; long-short
dash lines and full triangles belong to the irreducible
representation 63 corresponding to transverse vibra-
tions.

VI. SUMMARY AND CONCLUSIONS

The model presented here for cg-quartz gives
considerably improved over-all agreement for
the optical and elastic properties as well as for
the phonon dispersion curves as compared with
previous investigations. However, in spite of the

between 100 and 500'K (from 2 X 10"-10x10"
sec ') is excellent, below 100'K the calculated
curve is up to 10%%uq smaller than the experimental
curve. This is to be expected since, with the ex-
ception of c», the calculated elastic constants are
smaller than the experimental values. Therefore
the acoustic branches in directions other than [001]
may also be expected to be smaller than the actual
values, although the difference should be consid-
erably smaller than for the acoustic branches in
[001]. However, the location of the minimum of
the Debye temperature curve is well accounted
for by the theoretical curve. The good agreement
found in the range 100-500'C may be taken as an
indication of the correctness of the calculated dis-
persion curves for the optical branches. The dis-
crepancy above 500'K arises probably from anhar-
monic effects and from the occurrence of the a-P
phase transformation at 850 K.
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FIG. 3. Calculated phonon dispersion curves of n-Si02 along principal symmetry directions. The reduced wave vec-
tor coordinate & is referred to Cartesian axes. In [100], solid lines correspond to the irreducible representation T&

and the dashed lines to the irreducible representation T2,. in [001], solid lines correspond to 6&, dashed lines to a&,
long-short dash lines to 6&.

I I I
i

I I I I

~

I I I I
I

I I I

O.IO—
more elaborate nature of the present model the
agreement for the optical frequencies alone is only
moderately improved as compared with Elcombe's
model. " It is not possible to attribute the im-
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I loo
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FIG. 4. Phonon density of states for n-Si02. Histo-
gram was obtained from 1000 wave-vector points in the
Brillouin zone by using a mesh width for the frequency
of Av =0.25x10~ sec and is normalized according to
J'gdv = l.

400

I I I I I I I I I I

0 100 200 300 400 500
7( K)

600

FIG. 5. Comparison of calculated Debye temperature
of e-SiO& with experimental results obtained from spe-
cific heat-data of E. F. Westrum (private communica-
tion), quoted by R. C. Lord and J. C. Morrow, J. Chem.
Phys. 26, 230 (1957), and of N. S. Natarajan, Indian J.
Pure Appl. Phys. 5, 372 (1967).
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provement to any particular feature of the model.
One crucial factor, however, is the determination
of the parameters of the model from a least-
squares fit to both optical and elastic data, but the
differentiated nature of the short-range repulsive
interactions and the consistency of the model
achieved by considering the equilibrium and rota-
tional-invariance conditions are also necessary
features. Neglecting the equilibrium and rota-
tional-invariance conditions leads to inconsisten-
cies, resulting, for example, in contributions to
the internal strain parts of the elastic constants
from all optical modes, including the A and B
representations, whereas according to the group-
theoretical considerations of Miller and Axe"
only the modes of the E representation can con-
tribute. The importance of other features, such
as the relation between the second-neighbor O-O
interactions and the equilibrium conditions, or the
interrelation between optical frequencies and elas-
tic constants via their internal strain contribu-
tions, requiring simultaneous consideration of
both, have been pointed out above.

The intermediate character of the chemical bond
in quartz, considered partly ionic and partly cova-
lent, is well known. ' The small effective ionic
charge of 0.94 electrons for the Si ions apparently
confirms the weakly ionic nature of a —SiO, . Al-
though thereby the Coulomb contributions are gen-

erally rendered small, they are still essential for
a good fit to all data, so that a pure short-range
force model is inadequate.

The limitations of the present model are, of
course, the neglect of electronic polarizability
and of thermal and anharmonic effects. The suc-
cess of the short-range force model of Kleinman
and Spitzer' with two effective charges in account-
ing for the intensities of the Raman- and ir-active
A and B modes, respectively, seems to suggest
that a conventional shell model with polarizable O
ions would not be sufficient, but that the effect of
the exchange charge accumulated along each of the
Si-0 bonds must be included. On the other hand,
the explanation of the elastic anomaly and the mode
softening mechanism in relation to the o, -P phase
transformation require explicit inclusion of anhar-
monic effects."" The extension of the present
model to incorporate both kinds of effects remains
as a task for the future.
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