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Impurity pair modes in a diatomic linear chain
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The modes of vibration of pair of mass-defect impurities occupying next-nearest-neighbor positions in a
diatomic linear chain are examined using the Green s-function method. The existence of new localized, gap,
and inband resonant modes corresponding to pairs of light, heavy, and a combination of hght and heavy
impurities, respectively, is predicted. The calculations are carried out for two diA'erent cases; first, for a pair of
impurities in the heavy host sublattice and secondly, for the case when the impurity pair is substituted in the
light host sublattice. The Lucovsky-Brodsky-Burstein criterion is used for applying the theory to three-
dimensional crystals. The localized and gap pair mode frequencies thus estimated for different impurities in
KI, KC1, and NaC1 hosts show qualitative agreement with the corresponding experimental values.

I. INTRODUCTION

Recently much attention has been given to the ex-
perimental study of lattice impurity pair modes~ '
using far-infrared spectroscopy. These pair
modes are identified from the characteristic con-
centration dependence of the strength of absorp-
tion, which goes as a quadratic in impurity con-
centration. The observations are confined mostly
to the alkali-halide-impurity systems with rela-
tively high impurity concentrations. The first~
pair mode to be observed happened to be the local
mode due to H H, H D, and D D pairs substi-
tuted in KC1. Since then, impurity-pair resonant,
gap, and localized modes have been observed for
different impurities substituted in KCl, KI, and
NaC1 hosts. Ward and Clayman' have reported
the infrared-active gap modes at 73. 8 cm due to
pairs of Br and at 72. 02, 80. 26, and 82. 84 cm
due to pairs of Cl impurities in KI. Similar mea-
surements have also revealed the existence of
resonant pair modes. for F pairs in NaCl at 32. 7,
40. 02, 44. 3, and 48. 4 cm and for Cl pairs' in
KI at 36 cm ~ (see Table I). 'In all the above-men-
tioned measurements the impurities are always
substituted in the heavy-mass sublattice of the host
crystal. However, measurements have also been
carried out in systems where the impurities are
substituted in the light-mass sublattice of the host.
The observation of local modes due to H, H -D,
and D pairs in KCl at 463. 5, 535, 512. 5 cm ';.
351, 508, 511 cm; and 331.5, 375. 5, 368 cm ',
respectively, essentially belongs to this second
category. Besides, there also exists evidence for
pair modes due to7 Rb' and4 Na' in KI whose fre-
quencies are given in Table I. The experimental
investigation of these pair modes has also indicated
that certain impurity modes (e.g. , the 78. 8-cm ~

gap mode due to Br in KI) which were earlier
thought to be single-impurity modes are actually
due to pairs. 4

Attempts to provide a theoretical understanding

of these pair modes have so far been confined to
either extremely simple models or to very approx-
imate calculations. To understand the local pair
modes due to H and D a simple model of two
coupled localized oscillators was proposed by
DeSouza and Luty. e A molecular model, where
only the impurities and their nearest neighbors
are allowed to vibrate keeping the rest of the lat-
tice rigid, was first proposed by Jaswal to explain
the Na'-pair resonant mode in KCl. Subsequently
it was extended by Ward and Clayman ' to take
into account two different impurity configurations
and hence two different molecular complexes.
However, both these models give only qualitative
results in their prediction of pair-mode frequencies
cies, because of the neglect-of the dynamics of the
host lattice. But from these molecular models"
it becomes obvious that the pair of impurities
(cation or anion) either occupy next-nearest-neigh-
bor sites with an anion or cation between them in
the [100]direction, or they occupy nearest-neigh-
bor positions in the [110]direction. Green's-
function calculations are confined to extremely
restricted defect spaces, again resulting in quali-
tative results.

Recently the potentiality of a diatomic-linear-
chain model to explain the optical-absorption data
of mixed crystals has been ably demonstrated by
Sen and Hartmann. ~~ They developed a theory based
on the calculation of a single defect~3 in a diatomic
linear chain, in order to explain the one-mode,
two-mode, and mixed-mode behavior of mixed
crystals. However, it is well known that a single
mass defect in a diatomic linear chain can never
produce an in-band resonant mode. In view of the
success of their theory, we investigate the problem
of a pair of mass-defect impurities in a diatomic
linear chain with a view to explain the above-men-
tioned experimental data on pair modes. In what
follows we shall demonstrate the existence of in-
band resonant modes, gap modes, and locahzed
modes characteristic of pairs of impurities be-
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Impurity-pair-mode frequencies for ionic crystal-impurity pair complexes, obtained from the experimental
data and the calculations of the present theory.

Host-lattice frequencies
(cm ')

Impurity-mode frequencies
and nature calculated

Experimental
frequencies (cm ~)

System

l. KI".Br Br -0.378 101 139 69 98

(~O)mS.
f f C 8

~g (cm ')

91.62
gap mode

(o~ (cm ')

118.21
no local mode

73.8'

2. KI:Cl Cl -0.721 101 139 69 96. 39
gap mode

126, 06
no local mode

139.8
marginal local

mode

36 72, 02~

80.26

82. 84

3. KCl: Na'Na' —0.414 142 214 no gap ill. 5
no gap
mode

170.98, 185.92 44
no local mode

4, NaCI:F F

5 KI:Na+Na'

—0.463

—0.414

164 264

101 139

no gap

69 98

142. 08
no gap
mode

81.16
gap mode

209. 18, 221. 02
no local mode

132.99, 138.67
no local mode

32 7"
40. 2
44. 7
48. 4

6. KI:Rb Bb' l. 183 101 139 98 63.2
no gap
mode

498 86, 17 ~ ~ .

'See Bef. 4.
"See Ref. 3.
'See Ref. 2.
See Bef. 5.

'See Ref. 7,
See Ref. 20.

~See Ref. 21.

sides the existence of modified characteristic
single-impurity modes. The statement of the
problem with its exact solution is given in Sec. II.
The results of the pair-mode calculations are pre-
sented and discussed in Sec. III. In Sec. IV we
incorporate the criterion proposed by Lucovsky,
Brodsky, and Burstein (LBB) 4 for applying the
diatomic-linear-chain model to real crystals and
conclude by comparing the predictions of the pres-
ent theory with the existing experimental data.

H. THEORY

Consider an ionic diatomic linear lattice with
masses M~ and M2 situated at even and odd sites,
respectively. The defects being either cation or
anion type when substituted in the crystal will go
into only one of the two sublattices, and we shall
henceforth assume that the defect sublattice is the
one with masses M~. The pair of defect atoms
with masses M~ and M~ will therefore occupy
next-nearest-neighbor positions with a host atom
of mass M, situated between the two. For con-
venience we choose their positions to be 1 and
—1, and y is the nearest-neighbor force constant.
The diatomic lattice is treated by the Green's-
function method using the M* transformation

developed by Maradudin et al. "6 This method
has the advantage of reducing the equation of mo-
tion of the Green's function for the diatomic lattice
to that of a monatomic lattice which has a frequen-
cy-dependent mass M*.

The perturbed Green's functions for this problem
can be solved exactly. The impurity modes are
given by the zeros of the real part of the denomina-
tor of the perturbed Green's function. In the three
different regions corresponding to the in-band, gap,
and localized modes these equations can be written
as given below.

(i) In-band regions 0&x& ~, /e„and &u, /~„&x
&1~

1+8e2c2b x y '(1 —t) = 0 .
(ii) Gap region &u~ /&u &x «u2 /v2„:

1 + (Ez+ Ez)bx(y') '/ (t) —4&2&2'b x (y') '

x(2(t —I)+2[t(t —1)j~/~ —(1 —t ~)~/~) =0 .
(iii) Outside-band region x&1:

(e + q&)waxy 1/2( g)
1/2 ~ 4~ etg2x2y 1

&&(2(t 1)+2[t(g I)]&»+(I t-&)&/3) -0
In Eqs. (1)-(3),
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+ /&m. 'y ~R (M2 M2)/M2 1 ~2 (M2 ™2)/M2y

(4a)

5 = 1+ M2/M&, a = 1+Mz/Mz, (4b)

y=(1 —bx)/(1 —ax), (y')if =+(- y) i, t =gbx(1 —x),
(4c)

and ~„(d„and v are, respectively, the zone-
boundary acoustic, optic, and maximum optic mode
frequencies. Solutions of Eqs. (1)-(3) give, re-
spectively, the in-band resonant, gap, and local-
ized impurity-pair modes. The values of b and a
defined by Eq. (4b) get interchanged if M2 changes
from the heavy-mass to the light-mass sublattice,
and as a result the sign of (y')'~2 will change depend-
ing on whether the impurity is substituted into the
heavy-mass sublattice or the light-mass sublattice.
Thus the upper minus sign in Eq. (2) corresponds
to the light-mass sublattice case and the plus sign
to the heavy-mass sublattice case. If we put e,'=0
in Eqs. (1)-(3) these reduce to the results of the
single-impurity case.

III. RESULTS AND DISCUSSION

Equations (1)-(3) are solved numerically and the
zeros are determined. In order to study the vari-
ation of the in-band resonant, gap, and localized
mode frequencies as a function of the mass-defeat
parameters e~ and e~, it is necessary to choose the
parameters a and b so as to correspond to a host
lattice with a large gap. Keeping this in mind the
parameters a and b are chosen to be 1.307 and
4. 256, respectively, corresponding to the case of
KI, when the defect sublattice M2 happens to be the
heavy-mass sublattice. On the other hand if the
defect is substituted in the light-mass sublattice
of mass M& then the values of a and 6 will be inter-
changed. It, is well known from neutron-diffraction
studies'7 that KI has a gap between 69 and 98 cm '.
When the defects are substituted in the heavy-mass
sublattice, i.e. , the iodine-ion sublattice, the val-
ues of one of the mass-defect parameters, E&, are
—0. 721, —0.378, and 2, corresponding to a Cl,
Br", and a heavy impurity with a mass three times
that of the iodine mass, respectively. Similarly
when the defects are substituted in the light-mass
or K' sublattice the values of z& are —0.823,
—0.414, 1.183, and 2.4, corresponding to Li',
Na', Rb', and Cs' mass defects, respectively. In
both cases, the other parameter e& of the second
impurity is varied from -1, corresponding to the
limiting case of a vacancy, to 4, which is an im-
purity of mass five times heavier than that of the
host mass. The variations of the pair-mode fre-
quencies as a function of E~ for both heavy- and
light-mass sublattices are plotted in Figs. 1 and 2,
respectively. In what follows we shall discuss
these results one at a time. Each of the above-
mentioned cases reproduce the single-, ,impurity re-

Kl: Sr 6&=-0.378
Kl: CL 6~=-0.72l
Kt: X 6~= 2

0-I 0 I f 46,
FIG. 1. Variation. of the localized, gap, and in-band

resonant mode frequencies as a function of &2'. The solid
lines correspond to Br with &2= —0.378, the dashed lines
to Cl with e~ =-0.721, and the chain. lines to some heavy
impurity X with &2=2 in KI. The impurities are sub-
stituted in the heavy-mass sublattice.

suit when 6z goes to zero.
rt is well known that when a single light-mass

impurity~3 is substituted in the heavy-mass subl. at-
tice a gap mode and a local mode appear and if the
impurity mass happens to be heavier than the
heavy-sublattice-host mass then no impurity modes
are produced. In Fig. 1, &2=0 corresponds to the
former situation and hence the gap and the localized
modes appearing at this point are characteristics
of the single impurity with mass-defect parameter

It is clear from Fig. 1 that introduction of the
second impurity modifies the single-impurity modes
and as a result their frequencies shift. If the sec-
ond impurity happens to be of lighter mass the gap
and localized mode frequencies (for &AD &0) belong-
ing to the single impurity increases rapidly with
decreasing mass of the second impurity and stabi-
lizes when e~ approaches —1. On the other hand
if e~ &0 the gap-mode frequency decreases rapidly
towards the acoustic band edge and disappears
with a ' subsequent appearance of an in-band reso-+o
nant mo~+~within the acoustic band when E~ in-

cO

creases. With the further increase of e& the fre-
quency of this in-band mode also decreases attain-
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I.6
+

I —6P-0.4I4 Na, =--" 62=I. l83 Rb
+ +-—- 6»=-0.823 Li, ~ 62=2.4 Cs

1.4

1.2

1.0

20.8
4P()

m

0.6

0.4

I 6I 2
2

FIG. 2. Variation of the localized and gap mode fre-
quencies as a function of e&', for the case of the impurity
substitution into the light-mass sublattice. The solid
lines correspond to Na', e, =-0.414, the dashed lines to
Li', &2= —0. 823, the solid line with crosses to Rb', &2

=1.183, and the solid line with circles to Cs', &2 =2.4.

ing a stabilized value for very heavy defects. At
the same time the characteristic single-impurity
localized-mode frequency decreases with increas-
ing value of &2 and attains a constant value for
heavier impurity masses.

A careful examination of Fig. 1 reveals that
aside from the appearance of these gap, localized,
and acoustic-band resonant modes that are identi-
fied as modified single-impurity modes, there also
exist localized, gap, and in-band (both acoustic
and optic) resonant modes that are purely charac-
teristic pair modes. Such a pair localized mode

appears when both the impurities have lighter
masses, and its frequency increases with decreas-
ing value of c2, which again attains a stabilized val-
ue when e2 approaches —1. This mode does not

exist when c~ —= 0. For positive and somewhat large
values of z~ there appears a resonant mode in the

optical band whose frequency decreases with in-
creasing &,'. If e2 increases and approaches zero,
the frequency of this in-band resonant mode in-
creases and approaches the top of the optic band.
Similarly new modes that are characteristic of

pairs of impurities, also appear for aa&0. For
this case if a2 has a value near about —1, two reso-
nant modes appear, one in the acoustic and the oth-
er in the optic band, whose frequencies increase
with increasing e2 and disappear around e2 =0.
Aside from these two resonant modes, a localized
mode also appears whose frequency rapidly in-
creases as e2 tends to —1. For &2&0 a gap mode
appears whose frequency increases with increas-
ing a2. Such modes ean never be expected in the
case of the single impurity because it is well known
that a heavy impurity substituted into the heavy sub-
lattice does not produce any new mode. From Fig.
1 one can also conclude that a resonant mode will
appear only if e, and &3 have opposite signs or only
if one of the impurities is of lighter mass and the
other of heavier mass. Addition of a second heavy
impurity in the presence of a single light impurity
seems to be equivalent to a softening of the force
constant around the light impurity, thus giving rise
to an in-band resonant mode, when the impurities
are substituted in the heavy-mass sublattice.

Similarly Fig. 2 shows the variation of the im-
purity-pair-mode frequencies as a function of &,'

when the impurity is substituted into the light-mass
sublattice. Again we see that when z~ =0 the single-
impurity results are reproduced; that is, there
appears a localized mode when a lighter-mass im-
purity is substituted, and a gap mode when a
heavier-mass impurity is substituted into the
light-mass sublattice. " Besides, one can also
find the modified single-impurity local and gap
modes as well as other local and gap modes which
are characteristic of pure pairs. However, one
distinguishing feature of Fig. 2 as compared to
Fig. l is that the impurity-pair in-band resonant
modes are almost absent in Fig. 2 except for one
mode in the optical band corresponding to &~

= —0.414 and E2 =0.05. Hence it can be concluded
that in-band resonant pair modes are not produced
easily when the impurities are substituted into the
light-mass sublattices. Thus the introduction of a
second impurity produces more dramatic effects
in the case of the heavy-mass sublattice than the
light-mass sublattice.

Figure 3 shows the variation of the impurity-
pair-mode frequencies with the properties of the
host lattice, that is, with the decrease in the gap
of the host lattice. Three different impurity pairs
are chosen for this purpose: one pair of lighter
masses c =&2 = —0. 5; the second pair consists of
one lighter- and the other heavier-mass impurities
with &~= —0. 5 and &~=2, respectively; and the
third is a pair of heavy-mass impurities with e&

=a~=2. The impurity modes are calculated for the
case of the substitution into the heavy-mass sub-
lattice. The gap of the host is varied by varying
~2 (Ma~%) from zero (corresponding to I,=M, )
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l.6—

I.4—

1.2

I.O

0.8

0.6

0.4

62= -0.5
62=-0.5

--- E2= 2

62= -0.5
I

62= 2
I

62= 2

the gap between 0. 198 and 0. 177. The acoustic-
band pair-resonant-mode frequency increases with
decreasing gap. This behavior is similar to that
of the single-impurity resonant-mode frequency as
a function of lattice constant. '8 Finally, for the
heavy impurity pair the gap mode does not occur
for hosts with small gap (i.e. , masses nearly
equal to each other).

IV. CONCLUSION

In this section we shall compare the predictions
of the present theory with the available experimen-
tal data. In order to compare the predictions of
the simple theory with the existing experimental
data, the linear-chain model should be modified so
as to make it applicable to three-dimensional crys-
tals. The prescription for the modification of the
linear-chain model to the calculation of local-mode
frequencies due to single substitutional impurities
was given by LBB, '4 and is achieved by introducing
the longitudinal-optical-mode frequency (d« through
the sum rule

0
I

I I

I.2 2.0
a

FIG. 3. Variation of the local, gap, and in-band reso-
nant modes as a function of the gap of the host lattice.
The solid lines correspond to a pair of light-mass im-
purities ~2=F2 =-0.5, the dashed lines to the case of a
light- and a heavy-mass impurity pair with e2 =-0.5 and
e2' =2, and the chain line to a pair of heavy-mass impuri-
ties with &2=62' =2

~ where all the pairs are substituted
into the heavy-mass sublattice.

to 0. 819 (corresponding to Mz =10M,). It is inter-
esting to note that some of the local, gap, and in-
band modes exist for all the hosts, whereas some
other local, gap, and in-band modes disappear ei-
ther when the gap increases or decreases beyond
a certain critical value. For example, in the case
of a pair of light-mass impurities, out of the two

local and one gap modes the high-frequency local
mode and the gap mode persist for all hosts, where-
as the low-frequency local mode disappears when
the gap or the mass ratio Mz/M~ increases beyond
a certain value. Similarly for the second impurity
pair the local mode and the in-band resonant mode
in the optic band persist for all hosts, whereas the
in-band mode in the acoustic band disappears when
the gap decreases beyond a certain value. An in-
teresting feature worth noting is that for values of.
the gap slightly larger than the critical value at
which the acoustic-band resonant mode disappears,
there appears a second resonant mode, which also
vanishes with the first. In Fig. 3 this second
acoustic in-band mode can be seen for values of

3(dm = 2(dTp+ (dLp ~

which in turn is used to calculate the maximum
frequency of the diatomic linear chain. Then the
local mode will exist if

I Lp (6)

We shall apply Eqs. (6) and (6) to the calculation of
the local-mode frequencies due to pairs of impuri-
ties and a generalization' of the I BB result to the
existence of impurity-pair gap modes as given by

(&w) ~ ~p ~ (~p) i (7)

where (&u„) is the maximum frequency of the
acoustic band or the bottom of the gap and (&up) „
is the minimum frequency of the optic band or the
top of the gap. The experimental values of (dTp and

&uLp are taken from Burstein 0 and those of (&u„)
and (~p) g from the neutron scattering data as
compiled by Bhuerle. ' The values for different
systems on which experimental measurements ex-
ist are given in Table I. Columns 7 and 8 of Table
I give the predicted impurity-mode frequencies and
their nature as determined by Eqs. (6) and (7).
Columns 9-11 summarize the experimentally ob-
served modes. It can be seen that the theory does
not predict a local mode for any of the systems
(except for a mode which lies 0. 8 cm ' above ~„p
in the case of KI:Cl Cl ). In the case of Br and
Cl pairs in KI, the calculated gap-mode frequen-
cies are higher than those obtained from experi-
ment. Moreover in the case of Cl pairs, three
gap modes are observed as compared to one pre-
dicted. These discrepancies between the theory
and experiment are due to the neglect of force-con-
stant changes, which are expected to soften for the
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lighter-mass impurities like Cl and Br . In the
case of an Na' pair in KCl and an F pair in NaCl,
no gap mode is predicted by the theory, in agree-
ment with the experiment. For an Na' pair in KI
the predicted gap mode frequency of 81.16 cm '
is in good agreement with one of the two (84. 2 cm ~)

measured frequencies of 76. 18 and 84. 2 cm '. Fi-
nally, for the Rb' pair in KI the theory does not
predict any gap or local modes, whereas a gap
mode~~ exists at 86. 17 cm '. It is presumed that
substitution of heavy impurities like Rb' in a K'
sublattice may enhance the impurity-host force
constant which, when taken into account, may pro-
duce the observed gap mode.

In the case of H, D, and H D pairs in KCl, the
theory does not predict the observed local modes.
This is expected in view of the well-known fact that
the mass-defect approximation alone, even for sin-
gle impurities of H and D, does not give satisfac-
tory results. ' In all the above-mentioned cases,
molecular models"o predict more modes than ob-
served.

This simple mass-defect theory does not pro-
vide an explanation for the resonant pair modes ob-
served at 44 and 36 cm ' due to Na' pairs in KCl, '
and Cl pairs in KI, respectively, because the the-
ory does not predict resonant modes due to a pair
of light-mass impurities. In order to explain these
in-band pair modes one has to incorporate in the
theory the fact that the force constants around these
light-mass impurities are softened considerably.
We hope that inclusion of force-constant changes
will also improve the agreement between the theo-
retically predicted and experimentally observed
gap and localized-mode frequencies, besides giving
the in-band resonant modes. A preliminary calcu-
lation ' including force-constant changes confirms
this.

ACKNOW( LEDGMENT

We would like to acknowledge the help rendered
by L. P. Singh of the computer center of the Phys-
ics Department of Utkal University in carrying out
the calculations using the IBM-1130 computer.

*Present address: Institute of Physics, A/105, Saheed
Nagar, Bhubaneswar-751007, India.

~Present address: Department of Physics, Utkal Uni-
versity, Vani Vihar, Bhubaneswar-4, Orissa, India.

M. de Souza, A. D. Gongora, M. Aegerter, and F.
Luty, Phys. Rev. Lett. 25, 1426 (1970).

T. L. Templeton and B. P. Clayman, Solid State Commun.
9, 697 (1971).

3C. R. Becker and T. P. Martin, Phys. Rev. B 5, 1604
(1972).

R. W. Ward and B. P. Clayman Phys. Rev. B 9, 4455
(1974).

~R. W. Ward, B. P. Clayman, and S. S. Jaswal, Solid
State Commun. 14, 1335 (1974).

M. DeSouza and F. Luty, Phys. Rev. B 8, 5866 (1973).
VC. de Jong, G. H. Wegdom, and J. Vander Elsken,

Phys. Rev. B 8, 4868 (1973).
I. G. Nolt, R. A. Westwig, R. W. Alexander, and A.
J. Sievers, Phys. Rev. 157, 730 (1967).

S. S. Jaswal, Phys. Lett. A 42, 309 (1972).
OR. W. Ward and B. P. Clayman, Can. J. Phys. 52,
1492 (1974).

~T. M. Haridasan, R. K. Gupta, and W. Ludwig, Solid

State Commun. 12, 1208 (1973).
P. N. Sen. and W. M. Hartmann, Phys. Rev. B 9, 367
(1974).

~P. Mazur, E. W. Montroll, and R. B. Potts, J. Wash.
Acad. Sci. 46, 2 (1956).

4G. Lucovsky, M. H. Brodsky, and E. Burstein, Phys.
Rev. B 2, 3295 (1970).

5A. A. Maradudin, P. Mazur, E. W. Montroll, and G.
H. Weiss, Rev. Mod. Phys. 30, 175 (1958).
K. Patnaik and J. Mohanty, Phys. Rev. 155, 987 (1967).

VG. Dolling, R. A. Cowley, C. Schittenhelm, and I. M.
Thorson, Phys. Rev. 147, 577 (1966).
A. J. Sievers, in Elementary Excitations in Solids,
edited by A. A. Maradudin and G. F. Nardelli (Plenum,
New York, 1969), p. 193.
K. Patnaik, P. Nayak, and S. ¹ Behera (unpublished).

20E. Burstein, in Lattice Dynamics, edited by R. F.
Wallis (Pergamon, New York, 1965), p. 315.
D. Bauer].e, Springer Tracts Mod. Phys. 68, 76 (1973).
R. W. Ward and B. P. Clayman, Can. J. Phys. 52,
1502 (1974).

3K. Patnaik and S. N. Behera, Nuclear Physics and Solid
State Physics (India), Vol. 16 C, 1974 (to be published).


