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Origin of the second-order optical susceptibilities of crystalline substituted benzene
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An analysis of the second-order optical nonlinearities of crystalline substituted benzene is presented. A new

irreducible tensor formalism for the decomposition of a crystal tensor as the sum of the contributions of
microscopic units is developed and applied to the study of the second-order susceptibility in four benzene
derivatives with related structures and substituent radicals(m-dinitrobenzene, m-nitroaniline, m-aminophenol,

and resorcinol). It is shown that an additivity approach can precisely account for the crystal nonlinearities and

enables one to calculate the contributions of each radical to the nonlinearity of the molecule. these
contributions are found to be strongly related to the donor or acceptor character of the radical. A very simple

model is proposed to explain this relation.

I. INTRODUCTION

Recently, several theories have been proposed
to explain the linear' and the nonlinear ' optical
susceptibilities of some families of inorganic crys-
tals. The underlying principles of all these theo-
ries are the following. '' Under the hypothesis of
additivity of microscopic polarizabilities a crystal
is decomposed into an assembly of microscopic
units (MU). These elementary building blocks are
chosen according to the crystal structure as well
as to the physico-chemical properties of the com-
pounds. For example, biatomic bonds, regular
and irregular tetrahedra, and distorted octahedra
have been successfully used as MU to describe
semiconductors and ferroelectric compounds. If
no simple elementary building block can be found
it is always possible to use as MU the primitive
crystallographic cell. The crystal susceptibility
tensors are written as the sum of the contributions
of the various MU within the crystal,

x"'=g~(s), x"'=g p(s), x"'=Py(s)
S S S

In these equations X'"' is the nth-order crystal op-
tical susceptibility; the subscript (s) covers all
the MU within the crystal; and n(s), p(s), y(s), . . . ,
are the linear, quadratic, cubic, etc. , polariz-
ability tensors of the MU with subscript (s). Such
a decomposition raises difficult questions. In
particular only very heavy quantum-mechanical
self-consistent calculations can account for the
local-field effects. Although a detailed formal
scheme has been proposed" there have been to the
best of our knowledge no full calculations per-
formed to date. Several simple attempts have
been made such as including the local-field effects
in the definition of the microscopic polarizabili-
ties, ' ' ' ~ using the experimental refractive index
to calculate the local-field factor from the linear
susceptibility expression or using electrostatic
cavity results for a "Lorentz"-type correction.

None of these approaches is completely correct
and they all indicate the difficulty of giving a sim-
ple account of these effects.

The next step is to find a model which correctly
accounts for the microscopic properties of the
building blocks. To be useful this model should
apply to some family of related materials and hope-
fully predict the properties of unknown compounds.
In addition, the models should be simple enough
to indicate physico-chemical trends, in order to
be a useful guide for material selection.

Theories developed along these lines have suc-
cessfully explained the linear and nonlinear optical
effects up to the third order in the family of tetra-
hedrally coordinated semiconductors, as well as
the linear and nonlinear second-order effects in
oxygen-octahedra ferroelectrics. It is worth no-
ticing that successful modeling was possible in
these two cases because the large amount of re-
liable experimental data on large groups of re-
lated compounds provided an invaluable guide to
theorists.

The origins of the nonlinear optical properties
of organic crystals are by far less well understood.
Owing to the abundance of organic compounds sys-
tematic survey' ' only became possible with the
powder technique developed by Kurtz and Perry. '6

Evaluation of the second-order nonlinearities shows
that they are in some cases anomalously larger
than would be predicted from their refractive in-
dices and the Miller's rule. Although the me-
chanical and optical qualities of most organic crys-
tals make reliable experiments difficult to per-
form, several measurements on single crystals
have confirmed the results on powders. But up
to the past few months no model in quantitative
agreement with experiment has been proposed.

Recently, the situation has quickly changed. The
experiments of Gott and Herma, nn et al on
glasses and on liquids, and the theoretical analysis
of Rustagi and Ducuing undoubtfully stress the
fundamental role played by electronic delocaliza-
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tion on third-order susceptibilities in unsaturated
organic compounds. As for second-order suscepti-
bilities there have been several measurements by
dc-induced second-harmonic generation both on
saturated ' ' and unsaturated molecules, which
show that the second-order polarizabilities of
saturated molecules are only a few percent of
those of the unsaturated molecules. A typical
example is the comparison of nitrobenzene (C6H, —
NO3) with nitromethane (CH~-NOR) performed by
Levine and Bethea. They found that while the
static dipoles p, of the two molecules are of the
same order of magnitude [lj, (CH~-NO&) = 3.4 D;
p(C&H5-NO&} =4. 2 D], the nonlinearity of the ben-
zene substitutes is about 30 times larger than that
of the methane substitute. While Miller's rule
qualitatively agrees with the results for, substituted
aliphatic molecules it underestimates the quadratic
polarizabilities of aromatic substitutes by at least
an order of magnitude. All this experimental evi-
dence indicates that the system of delocalized elec-
trons is responsible for the anomalous behavior
of these molecules. Molecular symmetry causes
the w-electrons contribution to second-order polar-
izabilities to vanish for most of the nonsubstituted
conjugated molecules, and one must therefore at-
tribute the major part of the second-order non-
linearities of the substituted conjugated molecules
to the distortion of the n-electrons system (w-ES)
of the molecule by the interaction with the substit-
uent group. This, together with the reliable ex-
perimental data on several related crystalline ben-
zene substitutes '~6 has led us to present a very
simple model relating the second-order polariz-
abilities of benzene substitutes to the deformation
of the m-ES of the benzene ring induced by the sub-
stituent group and measured by its mesomewic
moment &p, (often called the electromeric dipole).

The mesomeric moment introduced in chemistry
to explain the difference in dipole moment between
aliphatic and aromatic molecules36'37 character-
izes the overall interaction of the substituent group
with the m electrons of the molecule. In this inter-
action the m-ES looses its center of symmetry and
thus gains a moment and a quadratic polarizability
which are very likely to be related. To describe
the nonlinearities of multisubstituted molecules
we assumed the additivity of the second-order po-
larizabilities associated with radicals bound to a
benzene ring.

In this paper we develop an analysis of.the op-
tical susceptibilities of benzene substitutes. We
first present a theory of the decomposition of a
molecular-crystal tensor into the sum of the con-
tributions of microscopic units (Sec. II). Besides
considering the local-field correction, we make
extensive use of irreducible tensors and their re-
lationships to Cartesian tensors. High-rank Car-

tesian tensors can always be decomposed into a
direct sum of irreducible tensors, each with a
specific physical meaning. By contrast with Car-
tesian components, the different-weight irreducible
tensors (which transform as spherical harmonics)
do not mix together in a transformation of refer-
ence frame from microscopic axes to crystal axes.
This makes it possible to separate the microscopic
contributions with different symmetries. In Sec.
III we check the validity of the additivity scheme
for the quadratic polarizabilities associated with
a substituent group bound to a benzene molecule.
Four crystalline substituted benzene with related
crystal structures and substituent groups are con-
sidered; o.'-resorcinol (OH-Ph-OH), m-ami-
nophenol (OH-Ph-NHz}, m-nitroaniline (NHz-
Ph. -NO, ), and m-dinitrobenzene (NO, -Ph-NO, ).
In these compounds only three radicals B are in-
volved, namely, OH, NH„NO, . The geometrical
analysis of the macroscopic nonlinear susceptibil-
ities overdetermines the quadratic polarizabilities
associated with the microscopic units R-Ph and
thus provides a test of the validity of the additivity
approach. In Sec. IV the results of the geometri-
cal analysis are compared with the theoretical
model both in respect of sign and magnitude. The
vector parts of the MU quadratic polarizabilities
are shown to be directly connected with the meso-
meric moments of the substituent groups, the
sign being directly linked to the nature (donor or
acceptor) of the substituent.

II. DECOMPOSITION OF A MOLECULAR CRYSTAL INTO

AN ASSEMBLY OF MICROSCOPIC UNITS

In a molecular crystal the intermolecular forces
are mostly owing to Van der Waals interactions,
and are much weaker than the forces within a mol-
ecule. Consequently, a number of crystal proper-
ties can be accounted for by assuming that the mol-
ecules are almost independent. This is the case
of their response to electromagnetic perturbations.
Furthermore, in the special case of inorganic
molecules the additivity of the linear bond polariz-
abilities is well established. " Some recent re-
sults both on molecules '3 and on crystals
indica. te that the bond polarizability approach can
be generalized to higher-order effects as, for in-
stance, quadratic polarizabilities.

In relating the nonlinear polarization source
term ' to the sum of the contributions of all the
MU in the crystal, one has to make local-field cor-
rections. The exact values of these corrections
are very difficult to evaluate in a closed form.
For the organic crystals which we consider the
refractive indices are not large (roughly around
1.6), and the local-field corrections are expected
to be small. It has been sometimes stressed that
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TABLE I. Crystallographic cell parameters and refractive indices of four
crystalline substituted benzene: m-dinitrobenzene, m-nitroaniline, m-amino-
phenol, and m-resorcinol. The refractive indices are taken from Refs. 22-26.

NO)-P h-NO2
NO)-P h—NH2

NH2-Ph —OH
OH-Ph-OH

13.257
6. 5

11.23
10.53

14.048
19.33
6. 1
9. 53

3.806
5. 08
8.28
5. 66

Y

1.706 l. 655
1.72 I, 682
l. 736 l. 636
I.558 I.599

1.47
1.635
l. 562
l. 60

1.49
I, 724
1.589
I, 634

the m bonding is so spread out that the microscopic
field seen by the m electron can be taken on aver-
age equal to the applied field. It seems to us that
this is too crude a treatment, in particular in the
sense that it does not at all account for the crystal
symmetry. Nevertheless, it is true that the m

electron wave function is rather extended and the
field they probe on average smooths out the rapid
local-field spatial variations at different points of
the unit cell. It is therefore possible to approxi-
mate the true local-field effects by using an effec-
tive local field E'", which is assumed to be uni-
form over the primitive cell. Such an effective
field is related to the applied electric field through
the tensor fear, which at least has the crystal sym-
metry. Then the macroscopic second-order sus-
ceptibility tensor d "can be written '

parameters are too different to justify the use of
a spherical cavity calculation as in the Lorentz
correction (Table I). A better estimate of the local
field may be found by using an ellipsoidal cavity
whose axes are chosen proportional to the cell
parameters a, b, and c. The ellipsoidal cavity is
more consistent with the anisotropic shape of the
crystallographic cell. The electric field inside a
polarized dielectric ellipsoidal cavity may be found
from the solution of the Maxwell equations and of
the boundary conditions in electrostatics. 3 In
this case the local-field factor along a crystallo-
graphic axis I can be written

fear = I+ (&r —I)Ar ~

AI is an elliptic integral which has been extensive-
ly tabulated,

dry'r' = fa frrfrrrr drrrr ~

with

(2a)
abc

I 2
[(u+a )(u+b )(u+c )i 'r2 2, (4)u+a

Er f1IEJ'

d=+ p(s) . (2c)

In these equations we assume the crystal sym-
metry to be high enough, so that the tensor f is
diagonal in the crystallographic frame.

A well-known approximation to evaluate the lo-
cal-field factor is to use the anisotropic Lorentz
cavity correction (modified spherical) and to put

fear
-—

~ (nz~+ 2), where rrr is the refractive index along
the I axis. All the compounds that we consider
are orthorhombic and the crystallographic cell

where ar =a, b, and c for I=1, 2, and 3. The vaj. —

ues of the Ar's satisfy grAr -1. In the case of a
cubic cell (a = h = c), Ar =

& and Eq. (4) yields the
customary Lorentz correction. Table I gives the
crystallographic cell parameters of the four com-
pounds we analyze as well as the refractive indices
for the corresponding directions, the two wave-
lengths chosen are those of the YAlG: Nd laser and
its second harmonic, which were used for all the
measurements. Table II compares the modified
cavity and the ellipsoidal cavity corrections. In
the latter case, the anisotropy of the f tensor is
quite large and depends strongly on the cavity
shape, i. e. , on the crystallographic cell geometry.
By contrast the mean values —,(f, + fz+ f,) are very

TABLE II. Local-field corrections calculated for a spherical cavity and for an ellipsoidal
cavity.

Modified ellipsoidal cavity
f4) f4) f4) f24)

Modified spherical cavity
fCO f40 f24)

NO2-Ph —NO2

NO2-P h-NH2
NHp-Ph-OH
OH-P h-OH

1.31
l. 74
1,44
1.34

1.26
l. 16
l. 77
1.42

1.79
1.87
1.46
1.76

l. 83
2. 02
l. 49
l. 82

1.64
1.65
1„67
1.47

l. 58
l. 61
I.56
1.52

l. 39
1.56
1„48
1.52

1.41
1.66
1.51
1.56
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similar in the two cases and are moderately large.
Although the ellipsoidal cavity correction may
overestimate the magnitude of the actual local field
field, it correctly accounts for the crystal anisot-
ropy. For this rea, son we use the ellipsoidal cavity
correction all through this paper, keeping in mind
that it is an upper limit of the local-field factors.

The tensor d as well as other various crystal
tensors are expressed as a sum of microscopic
contributions over the MU which form the crystal.
Let us consider a physical property of a crystal
described by a tensor T. Usually, in order to use
the selection rules owing to the crystal symmetry,
the tensor T is expressed by its Cartesian com-
ponents Tl«. ..„ in the crystallographic axes (X,
Y', Z). Now suppose that for the property de-
scribed by T, the crystal can be decomposed into
an assembly of MU labeled by the index (s). Each
individual MU has its own set of natural axes
[x ",y'", z'"], and a microscopic tensor f(s) de-
scribing the physical property under analysis. In
order to express the MU symmetry f(s) is given in
the natural microscopic frame. T roust then be
written

scheme as well as the use of irreducible tensors
for studying physical properties of crystals are
discussed elsewhere. For practical convenience
irreducible components of symmetric second- and
third-rank tensors are explicitly written in the
Appendix.

Since irreducible subspaees are disconnected
each irreducible component of the crystal tensor
depends only on the microscopic tensors compo-
nents with same weight, and

T =g f(s)

-+ T&l& ~ t&l) (6)

It will be shown later that each irreducible com-
ponent has a very specific physical meaning. The
fundamental equation (6) expresses the remarkable
possibility of separating the microscopic contribu-
tions associated with the different irreducible com-
ponents. As already noted we may choose the
2l+1 components of T " so that they transform
like the spherical harmonics. Consequently the
equivalent of Eq. (5) for each irreducible compo-
nent of T is

&& cos8r(, ' ' cos8)f ) f;j~(,...
where 6j~" is the angle between the macroscopic
M axis and the microscopic nz'" axis. In an equa-
tion such as Eq. (5) all the components of t(s) mix
to give one component of T, and it is almost im-
possible to follow up to the macroscopic scale the
consequences of an hypothesis made on the micro-
scopic scale. It is therefore quite difficult to dis-
cuss different types of microscopic models. To
keep track of the microscopic symmetry up to the
crystal scale, it is necessary to use quantities
which do not mix together in a change of coordi-
nates frame, i.e. , quantities which are irreducible
with respect to the rotation group.

We now present the irreducible tensor formal-
ism well suited for relating macroscopic tensor
properties to the microscopic contribution. Irre-
ducible tensors are widely used in atomic and
nuclear physics but are scarcely used in crystal
physics. Their introduction in nonlinear optics is
owing independently to Maker44 and to Jerphagnon.
An irreducible Cartesian tensor of rank n. and
weight / has 3" components, only 2l+1 of which
are independent. They can be chosen so that they
transform like the spherical harmonics F, . A
tensor of rank n is generally reducible and ca,n be
written as a direct sum of irreducible tensors of
weight l ~n; T =g, T'". The decomposition of re-
ducible tensors of rank two and three can be found
in Refs. 45 and 46. The general decomposition

T((( g gP &)) (q(s) 8(s) y(s)) f ((('(s)
m'

where R'" is the Wigner matrix associated with
the change of a. coordinates frame. The Euler
angles of the natural axes of the MU labeled (s)
are g'", 8'", and (t)'".

It has to be noted in fact that the practical use of
the expression of T, is very simple. It is well
known that the Wigner matrix can be written
R"' =e ' ~r„'" (8) e ™'.The matrices r„'"„(8)
are tabulated up to I = 7 in Ref. 48. Furthermore,
owing to crystal symmetry for each MU in the
crystallographic unit cell there must be number of
identical MU obtained by simple geometric oper-
ations. Let us call V the volume of the unit cell
and use the label (s) to characterize the groups of
nonequivalent MU, and the index (y) to distinguish
among the equivalent MU within a group. All the
MU within a group, i.e. , with same (s) index have
the same microscopic tensor t(s) so that T", can
be rewritten

In almost all practical cases the sum in large
parenthesis is straightforward to calculate. We
illustrate this with an example, which will be use-
ful later on. Consider a crystal whose point group
is mm2, built up of MU whose microscopic point
group is also nsrn2. In general there a,re four
identical MU of each type in the unit cell. There-
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fore if one MU has the set of Euler angles (g, 8, Q),
there are in the cell three other identical MU
whose sets of Euler angles are: {P,8, Q + v), (—g,
8, p), and (-tt, 8, v —p). Using these values in
the sum into curly brackets of Eq. (7) we obtain

T", = —Q t", (s)(2[1+(- 1) ']
V

~ [cos(m'y'" + my'") ]r„",' (8'") I.
To apply this theory to the optical susceptibility

tensors, we must discuss the form and meaning
of their irreducible components.

The general decomposition of the linear and of
the second-order susceptibility tensor has been
given in Ref. 45. The linear case is well known.
For a nonabsorbing crystal it is a symmetric sec-
ond-rank tensor (six independent components),
which is the direct sum of a scalar (l =0, one com-
ponent) and a deviator (l = 2, five components).
The scalar describes the average susceptibility,
for example, as measured in liquid phase. The
deviator describes the anisotropy of the susceptibil-
ity and is therefore directly connected with the
birefringence. The case of the second-order sus-
ceptibility is less well known. In the most general
configuration it involves seven irreducible parts.
One pseudoscalar (l =0), three vectors (l= 1), two
pseudodeviators (l = 2), and one septor (l = 3),
which all together correspond to the number of in-
dependent Cartesian components (3s = 27= 1&1
+ 3 &&3+ 2 && 5+ 1 &&7).

The pseudoscalar and the pseudodeviators al-
ways contain differences of Cartesian components
with identical indices but arranged in different
orders. For example, the only component of the
pseudoscalar is do =a(dias —disa+&asi —dais+dais0 1

-ds„). They therefore characterize how far the
spatial indices and the frequency indices are in-
dependent. The pseudoscalar has the same sym-
metry as the rotatory power in liquid phase and
describes frequency mixing in a noncentered iso-
tropic medium. It vanishes for second-harmonic
generation or more generally when two of the fr e-
quencies involved are equal. The pseudodeviators
have the same symmetry as the structural part of
the rotatory power. They describe the disper-
sion of the susceptibility tensor in the crystalline
state. The two pseudodeviators become equal
when two frequencies become equal, for example,
in the case of second-harmonic generation or the
static electro-optic effect. They vanish if the
system exhibits no dispersion, i.e. , if the so-
called Kleinman symmetry ' holds. The three
vectors are the traces of the susceptibility tensor
(g„diaz~, /~dpi~, and g~d~zi). Two of them are
equal when two frequencies are equal, and they are
aH equal if the system exhibits no dispersion.

(Qa)

(»)Ts = (1/~10) (2Tsss 3Tsaa 3Tsgg)

~3
s 0 ~ { ski saa) (9c)

These can be expressed as the sum of the contribu-
tions of the MU for which we also assume the point
group mm2. According to Eq. (5),

Tg = —Q 4(cos8) tg (10a)

0 1
Tso = — 2(5 coss8 —3 cos8) ts

S

Finally, the septor involves differences of Car-
tesian components having different indices such
as {2dsss —3dsaa —3ds»). It describes a deviation
from isotropy (for an isotropic system dsss = 3dsaa
= 3dsyy) ~

Selection rules owing to crystal symmetry can
result in a vanishing vector or septor. The vec-
tor only exists in the ten polar crystal classes,
whereas the septor exists alone in the eightclasses
222, 23, 32, 4, 42m, 43m, 6, and 6m2.

In the transparency domain of the system where
dispersion is negligible, the frequency dependence
of the susceptibility tensor is irrelevant dI«be-
comes fully symmetric in the exchange of its Car-
tesian indices and depends on ten independent
parameters. The three components of the unique
vector left provide three parameters and the septor
the seven others. In this case the susceptibility
tensor and its irreducible parts describe the geo-
metrical properties of the system. For a system
having a center of symmetry, the second-order
susceptibility tensor vanishes. This tensor there-
fore measures how far a system is from having a
center of symmetry. Consider a highly symmetric
system which is isotropic and centered. Under
an axial perturbation it loses its symmetry center
and gains a third-rank tensor, with only a vector
part. An octupolar perturbation also eliminates
the symmetry center but in this case the system
gains a third-rank tensor with only a septor part.

The decomposition of the susceptibility tensor
into two irreducible parts means that as far as
third-rank tensors are concerned the most general
noncentered system can be obtained from an iso-
tropic and centered system by application of two
independent perturbations, one with dipole sym-
metry and the other with octupole symmetry. This
geometrical interpretation of the susceptibility
tensor and its irreducible components will be used
throughout this paper.

Coming back to our example of a system with
point group mm2, there is one component for the
vector part (along the polar axis) and two compo-
nents for the septor part,

Tl '0 s {Toss + Tsaa + Tall)0
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+ 2(~0cos2$ cos8 sin~8) ts~, (10b)

3cos~8- 1X=+~, &X=+""8

8 S
(12)

where 8 is the angle between the system optic axis
and the MU optic axis. These forms do not include
local-field factor, they apply as they are to mole-
cules considered as the sum of uniaxial building
blocks such as biatomic bonds. In the case of
crystals, the local-field factors have to be written
explicitly ~ or should be included in the definition
of the polarizabilities.

III. ADDITIVITY APPROACH FOR SUBSTITUTED BENZENE

The molecules constituting the considered crys-
tals are substituted benzene. The benzene mole-
cule is an hexagonal centered system whose point
group is 6/mmm. It exhibits no second-order op-
tical effects. The second-order optical suscepti-
bilities of the substituted benzene are consequences
of the change of symmetry owing to the substitution,
and it is necessary to analyze the effect of the sub-
stituent group on the benzene molecule. This mol-
ecule is formed by six o(C-C) bonds, six o(C-H)
bonds and a system of six delocalized m-electrons.
The individual C-H bonds are accentric, but their
overall contribution vanishes because of the sym-
metric positions of the six bonds. The C-C bonds
and the 7t-ES are individually centered and give no
contribution. The replacement of a hydrogen
atom by a radical R has three effects. First, one
of the C-H bonds is replaced by the C-B group
and the geometrical cancellation of the C-H bonds
is eliminated. The symmetry of the v(C-C} is
destroyed by the so-called inductive effect of the
radical, '3 which is a short-range effect that also

Ta~ = —g(~0cos2$ cos8 sin38) to~

S

+ [2cos2( cos2&f& cos8(3cos38 —1)

+4 sin2( sin2$(1 —2cos~8)]t~~, (10c)

where the index (s) in the expressions under the
summation sign has been dropped for simplicity.

Finally, let us consider another useful example,
the case of the linear susceptibility tensor of an
uniaxial system built up from uniaxial MU. X is
the susceptibility tensor of the system, and 0. is
that of the MU. In the transparency domain X and
0. are symmetric tensors having two irreducible
parts, a scalar and a deviator, which can be writ-
ten in terms of the Cartesian components X~~ =X„,
and XXX = Xry = K

X-(Xii+2X.}&A 6X-J~(Xii-X )

Equivalent expressions hold for a. The additivity
scheme is simply written

appears in the saturated molecules. Finally, the
radical has a "nonclassical inductive effect' " on
the m electrons and may also contribute to the m

bonding by the mesomeric effect. '4

The first two consequences of the substitution
are the same in aliphatic and aromatic molecules,
and should, therefore, induce second-order non-
linearities of the same magnitude. For example,
one can expect the substitution and the inductive
effect on the sigma bonds in nitrobenzene to be of
the same order of magnitude as they are in nitro-
methane. Some recent measurements on substi-
tuted saturated molecules by Hauchecorne et al. ,3

Levine and Bethea, and Ward and Bigio show
that the second-order polarizabilities of aliphatic
molecules are only a few per cent different from
those of aromatic molecules. Thus w'e attribute
the nonlinear susceptibilities of substituted benzene
almost entirely to the distortion of the delocalized

. m electrons.
To describe the nonlinear susceptibility of disub-

stituted benzene we make the hypothesis of the
additivity of the nonlinear susceptibilities asso-
ciated with a radical bound to a benzene ring. This
type of additivity approach seems to be very dif-
ferent to that usually admitted and may at first
glance be surprising. But if we consider the geo-
metrical interpretation of the second-order sus-
ceptibility tensor developed in Sec. II we see that
we are indeed assuming the additivity of the dis-
tortions of a centered system under application of
two perturbations. From this point of view our
hypothesis is more reasonable and should at least
be a sensible starting point. It is possible to gain
an idea of the accuracy of this hypothesis by look-
ing at the difference between the observed dipole
of disubstituted benzene and the dipole calculated
from the additivity hypothesis. " For the meta-
disubstitutes the agreement is better than 6%, but
for ortho- and para-disubstitutes the agreement
is in some cases not better than 20~j(). Luckily all
the disubstituted benzene for which we have re-
liable experimental data have radicals in meta
positions.

The crystal structures of the four compounds
considered are given in Refs. 56-58. They all be-
long to the crystallographic point group mm2. In
each cell there are four identical molecules. Since
the MU are chosen as a radical bound to a benzene
ring, there are three different MU to consider;
(Ph-NO&), (Ph-OH), and (Ph-NHz) which cor-
respond, respectively, to the values 1, 2, and 3
of the superscript (s). . The point group symmetry
of the MU is very close to mm2 so that Eqs. (10a}-
(10c) directly apply to the four crystals.

It is necessary to define the microscopic axes of
the MU in the crystals. According to the x-ray
data the centers of the six carbon atoms are not
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strictly speaking in a plane, but are found within
a small dihedral angle (& 5' for all four com-
pounds). By a mean-square program we calculate
a "mean plane" for the benzene ring that we choose
as the yz plane. The normal to this ylane at the
center of the ring is the x axis. The Line joining
the center of the ring to the first atom of the sub-
stituent group generally makes a small angle (& 1')
with the yz plane. Vfe take the projection of this
line on the "mean ring plane" as the s axis. y is
taken perpendicular to the other two axes. For
each MU the microscopic axes in situ are defined
according to these lines, they determinate the
Euler angles (Fig. 1) and therefore the geometrical
factors appearing in Eqs. (10a)-(10c).

The macroscopic nonlinear susceptibiLities are
available from the experimental data, the micro-
scopic hyperpolarizabilities are unknown. Let the
superscript (u) cover the four compounds under
analysis. Equations (10) can be written for the
vector and the septor parts of the four crystals as
a set of linear equations

d', (u) =A33'(u, s)P,'(s), (13a)

d, (u) =A33'(u, s)tC(s) +A03'(u, s)p, (s), (13b)

d33(u) =A333'(u, s)P3'(s) +A333'(u, s)P33(s) . (13c)

The numerical factors A„"'. are calculated from
the x-ray data on the four crystal structures. The
12 d, (u) are known, and the nine P", (s) are over-
determined. To obtain a best fit we use a multiple
regression program to minimize the standard de-
viation as described in Ref. 39. In the regression
various weights can be attributed to the experi-
mental data; if the weight is the same for all equa-
tions then the fit tends to optimize the larger ob-

TABLE III. Experimental nonlinear susceptibilities
relative to d&& (SiO2) of the four crystalline substituted
benzene. The signs in parenthesis are those which cor-
respond to the best fct.

NO)-Ph-NO2 a

NOp-P h-NH2"
NH, -Ph-OH'
OH-P h-OH

431

(+) 1.5
(+) 27
(-) 4. 7
(-) 1.8

(+) 5.9
(+) 3
(-) 1.5
(-) 4. 5

(+) 1.4
(+) 32
(-) 6. 6
{-)3.7

'See Ref. 26.
~See Ref. 24.

'See Ref. 25.

served constants. We have used a weight giving
equal importance to all experimental observations
(v; =1/d; with the notations of Ref 39.). This is
more consistent with the fact that the relative ac-
curacy claimed by the experimentalists is roughly
the same (= 20%). The best fit gives a mean rela-
tive deviation lV' ~g ", (d,~ -d,„,)/d, „,of 10/g, which
compares weIl with the experimental accuracy and
indicates that the additivity approach gives correct
results. When an equal weight is given to all the
equations, then the average mean deviation is
larger but the va. lues of the P(s) remain remark-
ably constant. The Cartesian components of the
macroscopic nonlinear susceptibilities are listed
in Table IQ. Experimentally it has been verified
for each crystal that the three nonlinear coeffi-
cients have the same sign, but there is no absolute
sign determination at the moment. The fit for the
vector part (=d3$$+(g333+lg333) is only possible with
a set of signs, which are indicated between brack-
ets in Table IG. Our analysis, therefore, provides
a direct and simple method discriminating among
the possible absolute signs for all the nonlinear

TABLE IV. Experimental and calculated spherical
components of the crystal nonlinear susceptibilities (in
10 ~ esu). Best fit for the spherical components of the
microscopic quadratic polarizabilities (in 10 30 esu).

NO) -Ph-NO2 experimental
calculated

experimental
calculated

d,'

2. 6
2. 9

9.3
7. 0

7
—3.4

—2. 8
—2. 2

—1.6
—1.4

3.4
3, 1

NH2-P h-OH

OH-Ph-OH

experimental
calculated

experimental
calculated

—3.6
—3.7

2 ~ 3

0. 5
0. 5

1.5
1.6

0. 7
0. 6

FIG. 1. Definition of the Euler angles of the micro-
scopic units.

Ph-NO2
Ph-NH2
Ph-OH

—1.42
1
0.37

p0

—1.35
0.43
0.17

—0. 03
0. 07
0.18
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coefficients. In Ta,ble IV we give the experimental
spherical components of the d tensors, the best
fit for the P(s), and the calculated spherical com-
ponents of the d tensors using the best fit.

We have also performed the same calculation
with the modified Lorentz local-field factors, in
order to cheek the effect of this the correction.
In this case the average mean deviation is not bet-
ter than 20% but again the values of the p(s) giving
the best fit do not vary drastically.

The accuracy of the best fit is better than the
experimental uncertainty. This result provides
a good confirmation of the first step of our analy-
sis. It shows that the nonlinear susceptibilities of
substituted benzene can be accounted for by the
additivity of the nonlinearities associated with sub-
stituent groups bound to a benzene ring. We now
examine in Sec. IV how the microscopic nonlin-
earities can be expla, ined.

IV. ORIGINS OF THE SECOND-ORDER NONLINEARITIES

OF SUBSTITUTED AROMATIC MOLECULES

The interactions of substituent groups with un-
saturated molecules have been studied extensively
by Sutton and his co-workers. '6"" They may be
analyzed in the following way. First the electric
field of the substituent group may polarize the o
bonds of the aromatic molecule giving rise to the
inductive effect similar to that in saturated mole-
cules. This effect falls steadily with distance
from the inducing group and dies down rapidly. '
The substituent group also intera, cts with the m

electrons of the molecule. This is because of the .

delocalization of the w-ES is a long-range effect
and it can be decomposed into two parts. The sub-
stituent may participate in the m orbitals giving
rise to the mesomeric effect, it can also through
nonclassical inductive effect so much affect the
conjugated system in the molecule that the n-bond
order is changed. ' The last two effects occur
through the same medium. They are therefore
not independent, and both result in a, drift of elec-
trons to or from the substituent group. Chemists
have sought for a quantity to characterize the over-
all interactions of the various substituent groups
with the conjugated electrons of aromatic mole-
cules. This quantity is the mesomexic moment
&p, originally introduced by Sutton. It is defined
as the moment resulting from the substitution of
the m-ES alone. The sign of &p, yields to the well-
known classification of substituents into donor and ac-
ceptor groups, which successfully explains the direct-
ed chemical activity of substituted benzene molecules.
In practice &p, can be measured by the difference
in dipole moment between the substituted aromatic
molecule and a suitable aliphatic molecule with
the same substituent group. This aliphatic mole-
cule must be such that its dipole reproduces as

p = aE+yE (I4)

In this equation n and y are the linear and cubic
m'-ES polarizability tensors. According to the
choice of axes defined in Sec. II and Fig. 2, the
nonvanishing elements of the polarizability tensors
are e =a», e, =capp Q33 y y»» y —

yppgp y3333

3y33pa and ylt J y$$33 y»33 Here again we only
consider the transparency domain and neglect the
dispersion so that n and y are symmetric under
permutations of their Cartesian indices.

The mesomeric and nonclassical inductive ef-
fects are quantum mechanical. Their overall con-

far as possible the moment of the a bonds of the
aromatic molecule. This results in some discrep-
ancy among the values quoted in the literature,
even in the ease of the most common rad-
icals'6' 3' ' 6~

[NH2, OH, NOR, CN, N(CH3)~,
CHO, . . .]. In fact, only the over-all dipole of the
molecule ean be directly measured and several
corrections have to be considered to isolate the
moment of the m electrons, such as, for instance,
the change in moment of the o bonds from the
aliphatie molecules to the aromatic molecules.
These corrections vary slightly according to the
various authors, and this has some important
bearing on the values of &p. which appear as the
difference of two moments of the same order of
magnitude. Nevertheless the sign of the meso-
meric moment is well established and the absolute
values are consistently defined within a factor of 2.
The chemists were interested in explaining the
directed chemical activation of the benzene sub-
stitutes and only considered dipole moments. The
approach is, however, more general and along
these lines we can consider the relevance of this
analysis to high-order multipoles, which can now
be observed using the techniques of nonlinear
optics. 6

The first point to be noted in the vector part of
the MU in Table IV is that the sign of Po(Ph-NO2)
is opposite to those of P,(Ph-OH) and Po(Ph-
NHz). NO& is an acceptor group (meta-directing),
while NH2 and OH are donor groups (ortho Para-
directing). The vector part of the MU second-or-
der polarizabilities has no obvious connection
with the total moment of the molecule, but has the
same sign as the moment of the m-ES. This tends
to confirm our attribution of the major part of the
nonlinear response of the molecule to the deloeal-
ized electrons. As in inorganic crystals the vec-
tor part of the second-order polarizabilities seems
to be strongly correlated with the permanent dipole
moment of the system responsible for the non-
linear susceptibility.

The benzene molecule m-ES is centered and the
dipole induced on it by an intense electric field E
is given by
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x, and is isotropic in the plane (yz) for tensors up
to the fifth rank. This particular symmetry re-
sults in the relation P~B = 3P32. According to the
linear combinations of Cartesian components in-
dicated in Eqs. (10a)-(10c), the spherical compo-
nents of the P tensor are

P,
' = ~a[(4r, + 3r„,)/c', J&u, (17a)

FIG. 2. Definition of the axes of the perturbated and
unperturbated systems.

P3=(6/M)[(r, —3r„,)/~, ]~a,
P3'=g[(3r„, —r, ) /o, ]&V

(17b)

(17c)

=&p+ &'E+PE +yE3+ ~ ~ ~ . (15)

In addition to the creation of the mesomeric mo-
ment &p, = QE0+&Ep —o.Ep the substitution results
in a modification of the linear susceptibility re-
lated to the optical exaltation, and in the appearance
of a second-order susceptibility P=3yEO. The
linear polarizability becomes o,'+ 3yE0. We do not
consider the effect of the substitution on the linear
susceptibility in the present paper, but concentrate
on the second-order susceptibility. A full calcula-
tion, keeping track of the tensor nature of the quan-
tities involved in Eq. (15}a,s well as the transfor-
mation from static field to periodic field responses,
has been given in Ref. 35. The elements of the
second-order polarizability tensor measured in
second-harmonic generation can be expressed in
terms of the third-order polarizability tensor ele-
ments measured in third-harmonic generation by
the following relations3':

P„=3P„=6(y, / )&oV. ,

Pgg = 6(rishi/&i)& u ~

(16a}

(16b)

The original system belongs to the point group
6/mmm. Owing to the axial symmetry along the z
axis of the perturbation, the perturbed m-ES now
belongs to the orthorhombic point group mm2.
The unperturbed system has a sixfold axis along

sequence is the appearance of the mesomeric dipole
&p, . The mesomeric dipole arises from the action
of the substituent group along the axis (3), Fig. 2.
It is possible to interpret the interaction of the sub-
stituent group with the m-ES as equivalent to a cer-
tain field Ep such as &p, = nE0. According to this
interpretation the mesomeric and nonclassical in-
ductive effects not only create a permanent dipole,
but they distort the electronic distribution modify-
ing the polarizabilities and creating multipole mo-
ments. When an external field is applied to a sub-
stituted benzene molecule, the n-ES dipole is equal
to the dipole of the m-ES of the benzene molecule
under the total field E~ =E+Ep. Then according to
Eq. (14) we have

P = &Eo+ yE30+ (o. + 3yE~~)E+ 3yEOE2+yES+ ~ ~ ~

This form can be explained by use of the parentage
scheme of irreducible tensors as follows. The
cubic polarizability tensor has three components
in the dispersionless configuration, a scalar (j =0),
a deviator (j = 2), and a nonor (j = 4). For the ben-
zene m-ES the sixfold axis is equivalent to axial
symmetry for y and only its m =0 spherical com-
ponents do not vanish. They are yo =~(3y„+8y,
+ 15Y J), rg 21(3r„4r,+-3r„,), and r4 =~ (y„+r,0 1

—6y„,). The equivalent field Eo is a tensor with
weight j =1. According to the rules of composition
of spherical tensors, when Ep is multiplied by a
tensor of weight j it gives three tensors of weight
j —1, j, and j+1. The vector part of P, therefore,
comes from the multiplication of Ep by the scalar
and the deviator, whereas the septor part comes
from the multiplication by the deviator and the
nonor,

0) = 2'(5ro —7ra)(& p/n. ), (18a)

(18b)

(18c)

To obtain numerical results the w-ES linear and
cubic polarizabilities have to be evaluated. The
linear polarizabilities of the benzene molecule,
and those of the o(C-C) bonds, e~ and o(C-H) bonds63
are well known. All the electron systems in the
benzene molecule being uniaxial, Eq. (12) applies
directly. They can be written

6+cene 2 (65Gcc + 6'5QQs) + '5lX~ za

CGHG Q™CC+ 6 CH + r-ES ~

The resolution of these equations gives3' n„(w ES)-
=2.34x10 esu and o.',(~-ES) =3.45x10 2 esu.
This last result is in agreement with the two theo-
retical calculations by Boltone; n„(w-ES)
=3.3x102 esu andh n, (v-ES) =4x10 I esu.

The cubic polarizability has recently been mea-
sured by Hermann~ using third-harmonic gener-
ation in liquid benzene. He found I'c s ——(1.74

CGHG
+ 0. 58) x 10 [d„(Si03)]~= 2. 5 x 10 '4 esu. In liquid
phase the molecules are oriented at random, the
contribution of all the irreducible components with
nonzero weight vanishes by geometrical average
and I'c „=Nf yo, where N is the number of mole-
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P3 4/2P 1& Pp — Q8P1 ~ (20)

This relation is certainly owing to the oversimpli-
fied model, which results from our lack of informa-
tion about the cubic polarizability. In fact, since
the mesomeric moment is equivalent to a static
field, the true tensor to use should be y(2ur = +
+ &@+0), which is not symmetric. Unfortunately,
at the present time we have reliable data only on
the third-harmonic generation tensor. We should
not be surprised if the numerical calculations are
not very accurate.

TABLE V. Vector part of the quadratic polarizabilities'
calculated from the model and determinated from the
best fit. Q, p is in 10 esu and is P~ in 10 esu. )

cules per unit volume and f is the Lorentz local-
field factor. This gives y0 —-9&10 esu with an
accuracy of 30%.

It is now necessary to isolate the m-ES contribu-
tion. Hermann and Ducuing have experimentally
proved the validity of the additivity scheme for the
scalar part of the polarizability of saturated mole-
cules involving only o(C-C) and o(C-H) bonds (see
I'ig. 1 of Ref. 29). The contribution of the o bonds
of the benzene molecule can therefore be calculated
according to

ye 6ycc GycH

pp(C pHy4) 2yp(C H4) = 0. 13 x 10 e su

so that we can take y~g —-0.77@10 esu. It is
apparent from Eq. (18) that a full calculation also
requires knowledge of the deviator and the nonor.
Unfortunately, this information is not at present
available and so we have to use approximations to
get numerical results. From the geometry of the
m-ES in the benzene molecule we can expect the
polarizability component in the plane perpendicular
to the ring to be quite small compared with that in
the ring plane. Calculations by Schweig tend to
support this hypothesis, he also points out that
y,' »y~, , y'„, . Thus, finally, we can take for
our numerical calculations

y' = 1.44 &10 esu, y' —0

We are now Left with only one independent quantity,
i.e. , (yJn, )&p, and the ,vector and septor parts
of P are dependent,

In Table V we compare for the three substituent
groups OH, NHp, and NOp, the vector part P, cal-
culated from Eq. (17a), and the various values of
the mesomeric moments, which can be found in
literature, with the value obtained from the best
fit in Sec. II. As can be seen the sign agrees very
well showing that the sense of the electronic flow
to or from the substituent groups is directly linked
to the vector part. Moreover, the magnitude of
the best fit lies within the range of values calcu-
lated from the various mesomeric moments and is
rather close to their average value. The model cor-
rectly accounts for the vector part of the micro-
scopic units. For the two septor components in
Table VI, we compare their ratio to pp, as given
by the best fit to the theoretical ratio obtained
from Eq. (20). In the case of the m =0 component
the sign is correct and the magnitude although in-
accurate is in satisfactory agreement for OH and
NH2. It is worth noting that these are the two rad-
icals for which the hypothesis of an axially sym-
metric perturbation is most likely to be a sensible
one, whereas for NO2 the size of the two oxygen
atoms may result in more complicated intera, ctions,
For the m =2 component the sign is reversed.
There are several reasons which may explain this
discrepancy. First, within the content of the mod-
el we have neglected y„„ this quantity is suspected
to be small but so far there are no experimental
data on it to support this assumption. Another
questionable point is the validity of Kleinman sym-
metry. The relevant tensor is y(2&@= &o+ &o+ 0) for
which the hexagonal symmetry implies that

„,2a) cd to 0 2a) cd a) 0 n 2' ao co 0y3 333 y3 223+ y2 323
but

2' Go 4) 0 g 24) 4) 4) 0
y3 2 2 3 y2 3 2 3

We have no indication how far these two compo-
nents are different and this may have some conse-
quences for the value predicted by the model. The
only experimental data available upon the breaking
of Kleinman symmetry in this type of molecule are
those of Levenson and Bloembergen on liquid ben-
zene. 6 For visible frequencies, they measured
I'2323=1. 21"3223 for the process co, + oo& —a&2-~3 far
from any vibrational resonance.

OH
+ 0.12
+0.25

Substituent group 6 p

60
62

+0.3
+0.65

+0.37

Reference pf (calculated) p& (best fit) TABLE VI. Theoretical and experimental ratio of the
septor component to the vector component.

NH2

NO2

+0.32
+1
—0.88
-0.79
—0.76
—0.3
-0.3

53
54

36
62
54
60
61

+0.83
+2, 6

2Q 3
—2

-1.42

Model,

Ph-OH
Experimental ph NH2

Ph-NO2

pp'/pp,

+0.31
+ 0.46
+ 0.43
+0.95

—0.28
0.48
0. 07
0. 02



4544 D. S. CHEMLA, J. L. OUDAR, AND J. JERPHAGNON 12

A much more serious point is that which is con-
nected with the symmetry of the perturbation. We
have shown in Sec. II that the most general per-
turbation should have a part with dipole symmetry
(angular dependency Y', ), and a part with octupole
symmetry (angular dependency Y,"). By symmetry
the equivalent field Eo can only account for the
first part of the perturbation. Therefore it can be
expected that the vector part P, is well described.
For the septor part several terms should be con-
sidered. A contribution which comes from the
anisotropy of the unperturbed system [a dipole
perturbation can give a septor through the coupling
with the deviator F~ and the nonor F4 part of the
cubic polarizability, see Eq. (18)]. Another con-
tribution is due to the octupole coupling of the rad-
ical to the benzene ring. This might be the major
contribution, but lack of information about this
part of the perturbation prevents us from taking
it into account. We think that this is the reason
for the discrepancy between P~o and P3~. In fact, no
measurement by linear optical techniques can give
information on the octupole coupling of the radical
to the benzene ring. This coupling could be quite
large especially for NQ2 because the oxygen atoms
are large and polarizable and can therefore inter-
act with the m-ES. We may look at the problem the
other way around, and consider that nonlinear op-
tics combined with irreducible tensor analysis
gives direct access to parameters not measurable
by other means. The geometrical analysis of Sec.
III supports the additivity approach and should
provide us with tables of physico-chemical param-
eters as useful as the mesomeric moments and
which might be used to explain the chemical prop-
erties of substituted aromatic molecules.

CONCLUSIONS

%'e have developed a theory well suited to pro-
ceed to the geometrical analysis of crystal tensors
in terms of the contributions from microscopic
units. It is based on the decomposition of Car-
tesian tensors into irreducible t"artesian tensors,
and their relationships to the spherical. tensors.
Its most interesting result is the separation of the
contributions of microscopic tensors with differ-
ent weights. We have applied the theory to the
second-order susceptibility tensors of four molec-
ular crystals with related structures and involving
related aromatic molecules. The geometrical
analysis shows that it is possible to account for the
crystal nonlinearities by attributing definite micro-
scopic quadratic polarizability tensors to substi-
tuent groups bound to a benzene ring. This type
of additivity may seem different from the usual
bond additivity, but the quadratic polarizability is
indeed connected with the distortion of a centered
system such as the n electrons of benzene. Qur

approach shows that the distortions of benzene
disubstitutes are the sum of the distortion owing to
the two substituents and that the crystal may be
described as the geometrical sum of the molecules.
We also presented a simple model explaining the
microscopic polarizability as arising from the
mesomeric and nonclassical inductive effects of
the substituent groups on the delocalized electrons.
This model correctly accounts for the vector part
of the second-order polarizability tensor as well
as for the m = 0 component of the septor part.
There are some discrepancies between the predic-
tion of the model and the microscopic m = 2 com-
ponents determined by the additivity approach.
Several reasons can be put forward to explain
these discrepancies; the most likely is that the
interaction of the substituent with the radical. not
only produces a distortion with dipole symmetry
for the mesomeric moment, but may also produce
an octupolar perturbation. This type of interac-
tion induces modifications of the electronic dis-
tribution of the m-electron system, which cannot
be reached by linear optical techniques. Reversing
the point of view we can consider the microscopic
septors resulting from the geometrical analysis
as a measurement of the octupolar perturbation of
the substituent groups. The additivity of the sep-
tor parts shows that these quantities can be attrib-
uted specifically to the substituent groups. It
therefore appears to us that nonlinear optics and
irreducible tensor analysis provide new informa-
tion on molecular electronic distributions, which
is complementary to that ususally considered in
physical chemistry and may be useful as, say,
the dipole moments.

A, last comment can be put forward concerning
our approach. In Equation (16) quantities which
characterize the unperturbed system are isolated
in parenthesis, whereas the mesomeric moment
is specific to the substituent group, i. e. , the per-
turbation. Although the exact value to be assigned
to y in this equation may be a matter for discus-
sion, the form of this equation is likely to be valid
for many substituted conjugated molecules, It is
therefore possible to optimize the m-ES and the
substituent group independently. Qn the other
hand, the linear polarizability and the absorption
bands of numerous organic radicals are well known.
A molecular engineering approach to design a
Priori the linear and nonlinear optical susceptibil-
ity as well as the transparency domain of organic
compounds is very likely to be developed soon.
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APPENDIX' IRREDUCIBLE COMPONENTS OF

SECOND- AND THIRD-RANK CARTESIAN TENSORS.

To form the irreducible components with weight
(t) of a symmetric Cartesian tensor, one can ex-
press the spherical harmonics Y& as a function of
the three components of a unit vector, x= sin8 cosQ,
y=sin8 sing, and s=cos8, and build up the linear
combination of tensor components whose indices
reproduce the expressions of the Y& . In addition
if the rules of spherical tensor algebra are to be
used such as in the transformation of reference
frames, these linear combinations must be normal-
ized according to the rules used for spherical har-
monics.

It is possible to define the norm of a Cartesian
tensor as the sum of the square of all the compo-
nents. This definition is such that the norm of the
tensor is equal to the sum of the norms of the ir-
reducible parts in their Cartesian form. We there-
fore adopt the following normalization conventions:

$ ~ fa ~ ~ ~ 3%

g.(1) P. tm tm y

if~ ~ ~ tn

A, symmetric second-rank tensor t has six inde-
pendent components and can be written as the di-
rect sum of a scalar and a deviator, t = t' '+ t'2'.
The spherical components are

t 0 (tu+ taa+ tss)/P, t a (2tss tii taa)/+6,

8 81 8 3ai 8 8( 11 aa 32 18)

A, symmetric third-rank tensor has 10 independent
components and can be written as the direct sum
of a vector and a septor t = t'" + t' ',

1 P~( 833 388 + sii)

1 + F10 I. 111+tlaa+ t133) + (taaa + tali + taas)1 i

s ( /~)( sss 311 —3 saa) ~

~40~( 188 188 111) (4 ass aaa taii)] y

3 pg( 311 383+ 23 tias)

t3 ( / ~)still 3tlaa) + ( tall taaa)]
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