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Local-field and excitonic effects in the optical spectrum of a covalent crystal*
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A method of calculating the dielectric response in the time-dependent Hartree-Fock approximation u. ing the
Wannier representation is described and applied to the optical spectrum of diamond. The local-field effect
reduces the prominent peak in the optical absorption spectrum asymmetrically, more severely on the low-

energy side. The electron-hole attraction gives rise to the continuum-exciton eA'ect which tends to enhance the
prominent peak in a similarly asymmetric fashion. These results are important for the identification of
structures in the experimental optical spectrum with electronic interband transitions, and quite generally for
calculating dielectric response in a covalent crystal.

I. INTRODUCTION

In calculating the optical spectrum from an elec-
tronic energy-band structure, two approximations
are frequently made: (a) neglecting the local-
field effect, and (b) taking the polarization in the
random-phase approximation (RPA). In this paper
we attempt to improve on these two approximations
and examine the consequences of the improvements
on the optical spectrum of diamond. '

In a crystal, a weak external electric field of a
small wave vector q and frequency co will induce
microscopic fields of large wave vectors q+G, 0
being a reciprocal-lattice vector, which in turn
contribute to the macroscopic dielectric response"
of wave vector q and frequency co. The effect of
these "Bragg-diffracted" fields has been termed
the local-field effect. Alternatively, it may be
viewed as the indirect contribution to the nonlocal
dielectric function by the electric field due to the
induced polarization distributed. throughout the
crystal. In a nearly-free-electron solid, the lo-
cal-field effect is unimportant. ' In the tightly
bound limit, it can be accounted for by the
Lorentz-Lorenz relation, ~ or more generally by
a multipole expansion. ' For a covalent crystal,
where the electrons are neither completely local-
ized nor completely delocalized, Van Vechten and
Martin' were the first to calculate the local-field
effect using the plane-wave expansion. In Sec. II,
we discuss a different method for calculating the
local-field effect in terms of the Wannier or lin-
ear combination of atomic orbitals (LCAO) rep-
resentation.

In the random-phase approximation, ' the (irre-
ducible) polarization is due to the uncorrelated
electron-hole pair, depicted by the diagram, Fig.
l(a). We have used the time-dependent Hartree-
Fock approximation as opposed to the commonly
used time-dependent Hartree approximation, which
is equivalent to RPA. Thus, the polarization con-
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FIG. 1. Polarization diagrams.

tains terms from the self-consistent Fock term,
illustrated by Fig. 1(c), which is the exchange
counterpart of the terms in RPA, illustrated by
Fig. 1(b). These exchange processes may also be
viewed as the electron-hole attraction. They may
be shown to reduce to the effective-mass approxi-
mation for excitons' (bound or unbound), in the
Wannier limit for frequencies near the fundamen-
tal band gap. Even in the effective-mass limit,
the bound and unbound excitons have strong effects
on the optical spectrum. ' In addition, there is a
rich variety of excitonic effects besides those in
the neighborhood of the band gap. ' The sum of all
the exchange processes is expressible in an inte-
gral equation for the polarization, which is form-
ally solved in the Wannier representation. Super-
ficially, the excitonic effect simply modifies the
Coulomb-interaction terms of the density response
in RPA. This Hartree-Fock theory of the dielec-
tric response is discussed in Sec. II.

Section III is devoted to a description of our ap-
proximate construction of the band structure and
of the local representation of the electron wave
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functions of diamond for use in calculating the op-
tical spectrum. Section IV discusses the results
of the calculation of the optical absorption. Vfe
have found the local-field effect in diamond not to
be negligible, but more importantly, ihe continu-
um-exciton effect to be indispensable. The com-
bined local-field and continuum-exciton effects
shift the main absorption peak by about 1.5 eV to
lower frequencies compared to the RPA calcula-
tion without local-field corrections. The implica-
tions of these results for the identification of
structures in the experimental optical spectrum
with electronic interband transitions are discussed.
In Sec. V, we present a simple model providing an
explanation of our results for the optical proper-
ties of diamond, which may have wider applica-
bility. Finally, we discuss the inapplicability of
the Lorentz-Lorenz relation in covalent crystals.

II. THEORY OF DIELECTRIC RESPONSE IN INSULATORS

A. Local-field effect

the tota1 screened potential, "
n,.„~(ij+5', (u) =g(q+5', q+5; (g)

x Vt„(q+Q, (u). (2.3)

Since the total potential is the sum of the external
potential and the induced potential due to n,.„„the
dielectric function is given by

c(q+5, q+5';(u)
= 5o Gi -v(q+G)g(q+5, q+G; (u), (2 .4)

where v(q) = 4n e'/Q, q' is the Coulomb potential,
Qp being the volume of the unit cell. To find the
macroscopic dielectric constant from Eq. (2.2) in-
volves an inversion of the dielectric matrix (2.4).
The contribution of the nondiagonal elements of
the dielectric matrix to the macroscopic constant
is known as the local-field effect. ' If one were to
neglect the 5gQ' elements, the macroscopic di-
electric constant would simply be given by

e((u) =lim e(q, q;(u). (2.6)
When a crystal is perturbed by an external po-

tential V,„, (q+G, &u) of wave vector q+G and fre-
quency +, the total potential seen by a test charge
is given, to the first order, by

V...(q+G', &u) =e '(q+G', q +G; ~)

x V,„, (q+5, &u),

1
e (M) = 11m

0 & (q~qi~)
We have considered only the longitudinal dielec-
tric constant. If we confine our attention to cubic
crystals, for simplicity, then the transverse di-
electric constant, relevant to the optical proper-
ties, is equal to the longitudinal dielectric con-
stant" and is given by Eq. (2.2).

In a calculation of the dielectric constant, one
usually starts with the "polarizability", which
measures the induced electron density n. due to

(2 .2)

(2 .l)
where e ' is the inverse dielectric function. 0' is
a reciprocal-lattice vector, signifying that the in-
duced potential can have a wave vector, differing
from that of the perturbation by a reciprocal-lat-
tice vector. As a consequence, the macroscopic
dielectric constant, which measures the macro-
scopic response to a macroscopic perturbation,
i.e., for vanishingly small q, is given by"

This much used approximation is only justified for
systems with constant electronic density, i.e., for
nearly-free-electron systems. For crystals with
more or less tightly bound electrons the local-
field effect, or formally, the inversion of the di-
electric matrix, has to be considered.

B. Inversion of dielectric matrix in Wannier representation

We have developed a method of inverting the di-
electric matrix by expressing the electron wave
functions in terms of Wannier functions or
LCAO's. "" We briefly review the method, intro-
ducing some notations needed for the subsequent
discourse. The single-electron Bloch wave g„, of
band n and wave vector % is expressible in terms
of a set of Wannier functions" "y„.

f„,(r) =N 'i' P c„,(k) e'"'R& p„(r -R, ), (2.6)
V f

where N is the number of lattice vectors %, . The
number of Wannier functions is equal to the num-
ber of bands in contact with each other but isolated
from the other bands.

Quite generally, the polarizability function, de-
fined in Eq. (2.3), has the form, in terms of the
Bloch waves, of"

(2 .7)

g(q+5, q+G'; ~) = P (g„, i e ("' "ig„„,) g(n, k+q, n, k, n, k', n, k'+q; q, &u)
ny' ~ ~ n kAi4

When the Bloch waves are expressed interms of the Wannier functions, the polarizability has the "separa-
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ble" form

g (q+ 5, q+0'; &u) =g 4, (q+ 5)N„i (q,, ar g,* (q+0'),
es'

where

A, (q+0) = d r p„* (r) e 'i"'»"
y (r -% )

(2 .8)

(2 .9)

N„, (q, &o} = g c„,(R)c„„(k+q)e'~"'~» Ri g(n, k+q, n, k, n, k', n4k'+q; q, &o)

t'ai

~ ~ »pl~ kk

xe ' "'+~ ' &'c„*,„i (k'+q)c„,.(k'). (2.10)

The index s stands for the set of indices l, p, and

p, occurring in Eq. (2.9). We may interpret A,, as
a form factor for a generalized "charge-density
wave", and N„i as the polarizability of the charge-
density wave s induced by the wave s'.

From Eq. (2.4) for the dielectric function, it
follows that the inverse is given by the equation

e '(q+5, @+5';&u) = 5G G, +Z v(q+5)
II

xg(q+0, q+6"; (u)e '(q+5», q+ 5'; ~). (2.11)

The separable form of the polarizability, Eq. (2.8),
and therefore of the kernel of Eq. (2.11), enables
this equation to be solved, ""

e '(q+0, q+5'; ~) = 5o g, +v(q+0)

xg~ (q+'5)S„, (q, ~)~,*,(q+'5'),
ss'

where the screening matrix S is given by

(2.12)

s =N(1-vN)-'. (2.13)

N is defined by Eq. (2.10) and the Coulomb inter-
action between the charge-density waves by

v„, (q}=Zw.'(q+0)v(q+5)A. , (q+5')
G

=pe '~' m d'r I
d'r' y„*(r -Rg —5 )

NI

x y„(r -%„)v(r -r') Q„*,(r')Q„, (r'-Tt, , ).

(2.14)

lf the Bloch waves (or, strictly speaking, the
pseudo wave functions) are expanded in terms of
plane waves, the dielectric matrix &(q+Q, q+Q; u)
can be inverted directly. ' By contrast, the method

described here is more practical if the Bloch
waves are more tight binding than nearly-free-
electronlike. Then, the dimension of the matrix
which has to be inverted in Eq. (2.13) is conve-
niently limited. "'"

C. Hartree-Pock approximation for polarizability

There remains the problem of calculating the
polarizability function g. In RPA or the time-de-
pendent Hartree approximation, it is given by the
noninteracting electron-hole pair'

»( (nik +q, n k, nsk', n4k' + q; q, (u)

= 5„,5„,„5 „go(n,k+q, n,k; (u)

54yi 5»&»45n2n&2N (fn&»44 fnp)-
E k

—E k
—(d-20

n +I n2

where E~ and f„4 denote the single-electron energy
and occupation number for the Bloch state nk. The
factor of 2 comes from the spin degeneracy. The
corresponding RPA term for the polarizability in
the Wannier representation, denoted by N,', , (q, m)

is given by substituting Eq. (2.15) in Eq. (2.10).
We work in the time-dependent Hartree-Fock

approximation and include the exchange effects.
For the polarizability X, we have to add to the
bubble diagram (RPA) of Fig. 1(a) a series of
ladder diagrams, the first two terms of which are
represented by Figs. 1(c) and 1(d). We assume
that pure self-energy corrections such as Fig. 1(e)
are included in the electron energy E~. The sum
of all these ladder terms can be expressed in
terms of an integral equation, ' as shown in Fig. 2,
glvlng

g (n, k + q, n, k, n,k", nP" + q; q, e ) = »t, (n,k + q, n,k; &u)5„„5„„5»1—»»|,(n, k + q, n, k; &u)

x g v(n, k + q, n, k, n, k', n4k' + q)g (n,k' + q, n,k', n,k», n,k» + q; q, &u),

n nkvd

(2.16)
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where the exchange Coulomb integral is

v(nqn q, n n, nq', n q +q)'= fd r 'd'r' q„(r)q„(r')v(r —r')q„",(r')q„, (r). (2.11)

By using Eqs. (2.6) and (2.10), the integral equation
(2.16) for the polarizability can be put in the
Wannier representation

N„(q, ~) = N,',.(q, ~)

bard-type approximation yields incorrect bound-
exciton contributions to the dielectric constant. "
We have tested the Hubbard approximation" for
the optical spectrum of diamond and found it to be
unsatisfactory (see Sec. IV).

- -,' g N,', (q, ~)V", . (q)N. ..(q, ~),

(2.18)

where N' is the RPA expression and V" is the ex-
change Coulomb interaction

x y, (r' -Q„)v(r r')—y,*,(r')y„, (r -5, , ).

(2.19)

By comparing this expression with Eq. (2.14), it
is clear that V"„.is the exchange correspondence
of V„,.

Formally inverting the matrix in Eq. (2.18) yields

D. Long-wavelength limit

To obtain the optical constant, we have to take
the q -0 limit. Now, the inverse dielectric matrix
involves divergent Coulomb factors v(q) and it is
convenient to isolate them. Following Ref. 2, we
define lt(q+G, q+G'; ~) as the sum of all polariza, —

tion processes not involving the long-range part
of the Coulomb interaction v(q). Call it the sus-
ceptibility function. It is given in terms of the po-
larizability X by

Z(q+6, q+G'; ~) =g(q+6, q+G'qn~)

+ g )((q+G, q+G; (d))

N=N (1+2 VN )
'

and by Eq. (2.13),

(2.20) xv(q+G")y(q+G", q+G'; u).

(2.22)

S —N [1 —(V —2 V")N j ' (2.21)

The effect of the electron-hole attraction is to
modify the matrix of the Coulomb-interaction en-
ergy between the charge-density waves. For
studying the properties of the exciton, this repre-
sents a generalization of the contact-interaction
approximation. "

The Coulomb interaction in the exchange integral
is subject to further screening. In the effective-
mass limit, it is appropriately screened by the
macroscopic dielectric constant. ' However the way
in which we shall make use of the exchange term,
the local terms are more important than the long-
range terms. Thus, it is more appropriate to
use the unscreened Coulomb interaction.

A different method of approximately including
the exchange and correlation effects in the
dielectric function of a. crystal has been sug-
gested. ""'"In Eq. (2.4) for the dielectric func-
tion, the polarizability is taken in RPA, and
v(q+6) is modified by a factor which has been
taken as approximately accounting for the exchange
and correlation effects of the dielectric function in
the homogeneous electron gas. ' '" Such an ap-
proximation applied to a crystal is not as firmly
based on the method we presented above. For
semiconductors with small direct gaps, the Hub-

Furthermore, the inverse dielectric function has
a term

e '( q, q; (o) = [1 —v(q)X( q, q; (o)] ' . (2.23)

x(q, q; ~) = x'(~)e'+ o(q') (2.24)

Hence, by Eq. (2.2), the macroscopic dielectric
constant is

E((d) = 1 —)( ((d))4lT8 /Qo. (2.25)

This expression holds for all orders of perturba-
tion theory in the Coulomb interactions.

The inversion procedure described in Sec. II C

A k+q

)l

A k'+q
6

lIA k

A k"

A k+qj~ i( A k
I

Ak+q, ), A k'
)I

Ak+q~, ~(A k

FIG. 2. Integral equation for the ladder sum of ex-
change processes.

It has been shown" that, for insulating crystals,
y(q, q; ~) is proportional to q' for small q. By Eq.
(2.22), for cubic crystals, as q-0,
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can be used to solve Eq. (2.22) for the susceptibili-
ty X. In the Wannier representation, we obtain the
dielectric constant

advantage that the short-wave-vector properties,
as in Eq. (2.24), are more evident, but the density
is simpler to interpret physically, as we shall see
in Sec. III.

e(u&) = 1 —4ii e'0, 'Pf,"S„((v)f,"*, (2.26)

where

ss' III. LOCAL REPRESENTATION FOR DIAMOND

A. Band-structure interpolation

f,"=
) d'rQ*„(r)r~Q„(r —R, ), (2.2't)

n denoting a principal axis of the cubic crystal. S
is given by Eq. (2.21), with

No, , ((d) =2N ' Q c„*„(k)c„„(R)
go ~ ~ nA4

ik Ri f»)I) f 2»Xe E --E „—m —z0nP

xe ' ' 'c„*„(k)c„,„(%), (2.28)

(2.29a)

d'x f d r i(ri—'R,'—R„)i„(r—R )
m

x v(r —r')Q*„.(r')(t)&i(r'- R, ), (2.29b)

V*„,= pfd'r fd'x'i (r —R, , —r( )p„(T"-R„)

xv(r -r')ihip„*i(r')gi(r -R, i). (2.30)

E. Current representation

So far we have treated the dielectric constant in

terms of the density response. We could equally
well have used the current response. ' " Instead
of the matrix elements of the density e '~'( 'G&'~,

we have those of the current

j (q) =(pe '~' +e '~'p)/2m, (2.3 1)

A,(j+6)= (t(+6)f d'ri „(r))' (j+G)(„(r —R ),
(2.32)

p being the electron momentum. The formulas are
the same as before, except that

Since Wannier functions are not yet available, we
have used Hall's method'4 to construct approximate
local orbitals for the diamond lattice, which em-
phasize the covalent nature. The s-like orbital
B,(r) and theP-like orbitals rR»(r) are combined to
form the hybridized orbitals according to Pauling's
pr es cription, "

y„( r) = (4v ii ) '[R,(r )+ )f 3 ( v r/r)R»(r)], (3.1)

v being one of the tetrahedral vectors (1, 1, 1),

(1, 1, 1), (1, 1, 1), (1, 1, 1). The pair of hybridized
orbitals from neighboring atoms directed along
the line joining their positions are added and sub-
tracted to form bonding and antibonding orbitals,
r esp ectively,

(3.2)

b =~a, a being the lattice constant, and N, the nor-
malization constants (see Fig. 3). These orbitals
form the Bloch waves by Eq. (2.6).

Linear combinations of the four bonding orbitals
are used to construct the valence bands and linear
combinations of the four antibonding orbitals to
construct the conduction bands. Cohan et al."have
found the effects of bonding and antibonding cross
terms on the band structure of diamond to be quite
small. We neglect the nonorthogonality of the or-
bitals on different sites. As is well known, the
orthogonality correction may be taken into account
by a unitary transformation of the one-electron
Hamiltonian, giving rise to a modified band struc-

f,"=m-' d'rg*, (r)V„Q„(r—R, ), (2.33)

and

yo(n, k+q, n2k; &v) =2N '(f„»+, f„»)/—
[(E„»,, —E„,» —(() —i0)

x(z„,„,—E„2»)'j. (2.34)

(0,0,0)

The current form of dielectric response has the FIG. 3. Unit cell of diamond.
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ture. " Using our diamond parameters, we found
the energy difference of the dominant optical tran-
sition (X, —X, ) and the shape of the lowest conduc-
tion (h„h, i) and highest valence bands (6,) only
s lightly modified by orthogonal corrections.

We include the overlap integrals of the one-elec-
tron Hamiltonian with respect to bonding and anti-
bonding orbitals up to the third-nearest neighbors
and treat them as parameters to fit the energy
bands calculated by Painter, Ellis, and Lubinsky"
from first principles. This procedure yields two
sets of 4&4 secular equations, one for the con-
duction bands and one for the valence bands, de-
termining, for each k, the energy and coefficients
c„„(k)of the orbitals by Eq. (2.6). The results of
this third-nearest-neighbor energy-band fit are
shown in Fig. 4 in comparison with the bands of
Painter et al. The overlap parameters are given
in Table I.

Although for the purpose of the interpolation of
the energy bands the use of bonding and antibond-
ing orbitals is completely equivalent to using the
atomic orbitals, ' i.e., orbitals located on the
atomic sites, we have found the former very much
more convenient for evaluating the dielectric prop-
erties.

gR (x}=~c (8 sg&~ djx& e-By&r+dg„l ) (3.4)

where

d~„= (1, 0, 0}«/Ptq~s. (3.5)

TABLE I. Overlap parameters of the third-nearest-
neighbor energy-band model.

The p-type orbitals are the so-called Gaussian
lobe orbitals. " The displacement vector d is de-
signed to reproduce the angular dependence of the
wave function. In diamond this angular dependence
is well reproduced for values of & less than 0.1.'
We set & equal to 0.02. The Gaussian orbitals are
convenient for LCAO band calculations. "'" We
have also found them invaluable in the dielectric-
response calculation, as we shall show later.

In principle, one can fit the atomic orbitals to
the Hartree-Fock orbitals of an isolated atom"
and proceed with an LCAO calculation, as was
done by Chancy e~ al." To keep our dielectric
calculation within reasonable limits, we have trun-
cated the Hamiltonian to the third-nearest neigh-
bors, and obtained its elements by interpolation to
a calculated band structure. " The third-nearest

R,(r) =pa,. e "&"' (3.3)

B. Gaussian representation for atomic orbita1s

The atomic orbitals are expressed in terms of
Gaussian functions, "

Parameter

Nearest neighbor s
parallel:

(a] If]a) 16.3156 35.3719

Bonding Antibonding
(eV) (eV)

0—

anti parallel:

(al nfl b)

Second-nearest neighbors
parallel:

(ai ai a')

antipar all el:

(aJ ai b')

-1.4844

0.8203

-0.0490

-0.6724

0.5479

-50 —'

I I I I

I" Z X K X

Third-nearest neighbors
parallel:

(a( H(&a")

antiparallel:

(ai ai b"),

-0.0622

0.0318

-0.4
-0.055

0.1750

0.2318

-0.1172

-0.0339

-0.3
-0.0989

0.1495

FIG. 4. Band structure of diamond. Solid line, Painter
~t al. , Ref. 28; dashed line, third-neighbor LCAO inter-

polationn.

' {aI&( a) denotes the matrix element of the Hsmilto-
nian %'ill respect 'to orblt818 0 etc,
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C. Density-density interaction matrix

The product of two Gaussians centered at differ-
ent sites is another Gaussian, "

8 A)2 g(I 8 )2 ra - g(I -C )e (3.6)

with

y = o. + p, C = (nA+ pB)/(n+ p),

K =exp[-(A —B)'nP/(n + P)] .

neighbor is not far enough for convergence. "
Thus, our wave functions, based on isolated-atom
orbitals, would be rather poor. Instead, we take
advantage of some arbitrariness in the local orbi-
tals" and vary the parameters in Eqs. (3.3) and
(3.4) to improve the wave functions. As discussed
in Sec. IIE, the dielectric constant can be calcu-
lated in terms of either the density response or
the current response. To achieve a certain mea-
sure of internal self-consistency, we take two
Qaussians for each atomic orbital and adjust the
parameters in the Gaussians such that both the
density and the current representation give the
same dielectric constant &„p~(~) in RPA without the
local-field correction. The resulting Gaussian
parameters are listed in Table II. For compari-
son, we also list the parameters of a fit to the
2s and 2P Hartree-Fock (HF) orbitals of the carbon
atom. "

In evaluating Eqs. (2.26)-(2.30}for the dielectric
constant, we include up to the nearest neighbor
overlaps between the bonding and antibonding orbi-
tals, having found that the contributions of the
second-nearest neighbors of the bonds to f," and

A, are about (5-10)%. The dimension of the ma-
trices ~, V, and S is then 28&28. In terms of the
directed hybridized orbitals centered at the atomic
site (Fig. 5), the overlaps included are given in
Fig. 6.

This property not only facilitates the evaluation of
the multicenter integrals, which can be carried
out analytically, "but also provides us with a sim-
ple physical interpretation. The "charge density"
Q*, (r)P&(r —R,} is a sum of Gaussian orbitals, and
as a result, the Coulomb energy V„and the ex-
change energy V"„are just the sum of Coulomb
energies between pairs of charges with Gaussian
distributions. For example, if only the 8 orbitals
are considered, the Coulomb matrix V„ is due to
the pair interaction of charges centered at the
atomic sites and the bond sites (midway between
two nearest-neighbor atomic sites) as shown in
Fig. 7. If the P orbitals are included, each of the
charges 1-6 in Fig. 7 becomes a cluster of charges
centered at closely spaced sites. The equivalent
charges produced by the s and P orbitals are ap-
proximately a combination of monopoles, dipoles,
and quadr upoles.

The symmetry of the diamond lattice is used to
simplify the matrices V and N . In the nearest-
neighbor overlap model each of the 28&&28 ma-
trices has only 26 independent elements.

For V" the dominant contribution comes from
those exchange processes within the same bond;
i.e., in the sum of Eq. (2.30), the terms kept are
either

8 =8, and v= p,', (3.7a}

or

8 =-8, and p, =v'. (3.Vb)

There are also terms of these types in the direct
Coulomb energy V„.

D. Polarizability matrix

The k sums in Eq. (2.28) for the real and imagi-
nary parts of No are calculated separately by the
Gilat-Raubenheimer method. " The sum over the
full Brillouin zone is first mapped onto a sum over

TABLE II. Coefficients of 2+ and 2p Gaussians.

Parameter
Current-conservation fit

(a.u.)
Fit to HF atomic orbitals

(a.u. )

Pg

Pg

1.3570

0.0887

0.502

0.213

8.5691

7.1294

0.25

0.4685

0.4605

0.502

0.155

15.4981

13.0291

1.55
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V. MSCUSSION

Let us try to understand the results of our cal-
culation of the local-field and excitonic effects in a
simple and fairly general way. To avoid cumber-
some matrix notation, we treat the matrix N' and
others like it as scalars. If we write the inverse
of N',

(No) '(v) =W, (e)+iW, (v),

where W, and W are real, then,

No(~) = (W, —iW, )/(W', + W')

and

(5.1)

(5.2)

S = [(W, —V +-,'V") —i W]/[(W, —V ~=,.' V")2 +W2].

(5.3)

If the imaginary part of No(&u) is approximately

the exchange effect, which we attempt to take into
account. The correlation effect in the proper
polarization part should be smaller than the ex-
change term for an insulating crystal with a large
band gap.

Louie et al."have recently calculated the local-
field effect within BPA in silicon in the same way
as Van Vechten and Martin did for diamond. Again
the local-field effect lowers the strength on the
low-energy side of the prominent peak, but not as
much as in diamond. This is expected since the
wave functions in Si are more extended than in

diamond. In Si, there also clearly remains the
discrepancy of the calculated BPA optical absorp-
tion with experiment, being too weak on the lower-
energy side of the prominent peak and too strong
above the peak for a range of several eV. This can
again be explained by the exchange term creating
the continuum-exciton effect.

a Lorentzian centered about a zero of W, (~),
-~ —6, from Eq. (2.28), then the imaginary part
of S(&u) is a Lorentzian with its peak moved in

energy by V —2V". The change in height of the
peak depends on the change of W, (&u). In RPA, the
peak position is changed by just V, which is posi-
tive, being the Coulomb-interaction energy be-
tween the charge-density waves. The electron-
hole attraction V" moves the Lorentzian peak to a
lower energy.

In many materials, when the imaginary part of

&gpA calculated without the loc al-f ield and excitonic
effects is compared with experiment, the low-
energy side of the prominent absorption peak
above the band gap is too small. " The local-field
effect within RPA would increase this discrepancy
with experiment. The continuum-exciton effect,
as formulated in Sec. IIC, would account for it.

It is interesting to note that the Lorentz-Lorenz
relation can be put in the same form as our scheme
above with

& =1+4wo./(1 ——', we).

If the atomic polarizability n is written

-3/4rrn =W, (tu)+ iW2(m),

(5.4)

(5.5)

in analogy with Eq. (5.1}, then the dielectric con-
stant is

e =1 —3/(W, +1+ iW, ). (5.5}
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The effect of the Lorentz-Lorenz relation is also to
move a peak in the polarizability to a lower energy.

A dipolar expansion of the local-field effect
within RPA yields a very similar formula to Lo-
rentz-Lorenz with the addition of a self-interaction

FIG. 7. Distribution of equivalent charge densities
in the Gaussian representation.

FIG. 8. Imaginary part of the dielectric constant.
See the text for a detailed explanation of the legends.
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term of a dipole. ' This formula will move a Lo-
rentzian peak to a higher energy. To obtain the
classic Lorentz-Lorenz relation, it is necessary
to exclude the self-interaction of a dipole by re-
moving from the time-dependent Hartree approxi-
mation the self-interaction term of an electron
on the ion. ' ' This overwhelms the local-field
effect in RPA, resulting in Eq. (5.6).

Finally, we wish to comment that the Lorentz-
Lorenz relation is not applicable to the covalent
crystals, even though it has the same qualitative
feature as our formulation in terms of the Wan-
nier functions. Sinha, Qupta, and Price4' have
derived the Lorentz-Lorenz formula by assuming
the following separable form for the polarizability:

X(q+G, q+G'; ~) = g (q+G)„f„( q+G)
&BK K

&«.&,, 8(q, &)f,* (q+G')(q+G')8.

(5.7)

The index & need not have the same meaning as
the Wannier representation index s. However, let
us consider the question whether a first-principles
calculation in the Wannier representation can yield
the particular separable form, Eq. (5.7), which
leads to a Lorentz-Lorenz relation. In terms of
Wannier functions, the form factor of the charge-
density wave is, from Eq. (2.32), of the form

A, (q+G) = g (q+G) &,„(q+G). (5.8)
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To arrive at the ansatz, Eq. (5.7), we further need

E,„(q+G) =W,„f, (q+G), (5.9)

where 8',„ is independent of G. This is possible if,
for instance, the valence-band %'annier function is
P-like, the conduction-band function s-like, and

both are tightly bound so that intersite overlap can
be neglected. For the covalent crystals such as
diamond, with the Wannier functions having the
symmetries of the bonding and antibonding orbitals
as discussed in Sec. III, such a form as Eq. (5.9) is
not a satisfactory approximation. Let us conclude

by mentioning that the polarizability n in the Lo-
rentz-l. orenz relation (5.4) has to be independent
of density, a condition which can be examined ex-
perimentally by measuring the pressure depen-
dence of the refractive index. This density inde-
pendence of a was found far from fulfilled in dia-
mond and even less fulfilled in other covalent
crystals like Si.s
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