
PHYSICAL RK VIEW B VO LUME 12, NUMBK R 1 0 15 NO VEMBER 1975

Enhanced stimulated Raman scattering and general three-boson parametric instabilities*
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A recent theory of stimulated Raman scattering explained a Stokes-intensity-enhanced gain that had been
observed but that was not predicted by earlier theories. It is shown that in the earlier golden-rule analyses
(perturbation-theory treatment of occupation numbers n) the enhancement was lost by neglecting the increase
of the vibrational amplitudes above their thermal-equilibrium values. Even though the probability of an
individual ion or molecule being excited is small, the occupation number of the phonon in the Raman process
is large. In the previous mode-amplitude analyses, the enhancement was lost in the method of linearizing the
nonlinear differential equations. By solving these same mode-amplitude equations for the n s without using the
previous linearization scheme, the enhancement is obtained and the equivalence of the mode-amplitude and
golden-rule boson-occupation-number results is demonstrated explicitly. The analysis shows explicitly that the
loss of phase information in using the boson occupation numbers does not cause the loss of enhancement. The
results are applicable to other three-boson splitting processes that are important in ferromagnetism, phonon
interactions, plasma instabilities, and device physics.

I. INTRODUCTION

Stimulated Raman scattering was first observed'
and analyzed '3 in 1962. It was recently realized
that a parametric instability in the Raman Stokes
process causes a Stokes-intensity gain enhance-
ment that explains a number of observed anomalies
including a nearly discontinuous increase, or
"jump, " in the Stokes intensity Iz as a function of
the laser intensity I~ in the absence of self-focusing
and feedback. The purpose of the present investi-
gation is to resolve the discrepancy between early
theories3" that did not give the gain enhancement
and the later theory that did. In addition to identi-
fying the assumptions in both types of the early the-
ories that led to the loss of enhancement, the equiva-
lence of the results of the occupation-number (n)
rate-equation analysis and the mode-amplitude (a
and a ) analysis is demonstrated, and it is shown
that the loss of phase information in the occupation-
number analysis does not affect the enhancement
results. The results are of interest in the general
three-boson splitting problem, which arises in a
number of fields of physics, as discussed below.

The characteristic feature of a parametric in-
stability is that as the amplitude no of some mode
0 increases, the amplitude n~ of a mode k that is
coupled to 0 first increases slowly, then increases
rapidly to a great value as No approaches a critical
value. For example, in the Raman process a laser
photon is annihilated, a Stokes photon is created,
and a fundamental (reststrahl) phonon is created.
As the laser-photon occupation number nz approach-
es a critical value n~, the occupation numbers n&

and n~ of the fundamental-phonon and Stokes-photon
modes become very large. This increase in the
value of n~ is the gain enhancement and jump al-
ready mentioned.

Any three-boson splitting process is potentially
unstable parametrically. There are analogies be-
tween the instability in the Raman process and pre-
viously studied instabilities in ferromagnetic reso-
nance ~ (premature saturation of the main reso-
nance, subsidiary absorption below the main reso-
nance, and parallel-pumping absorption), plasma
physics, and electronic devices.

The physical interpretation of these instabilities
is rather simple. The balance of energy put into
the f phonons by the Raman process against that
removed from the f phonons by relaxation is a key
to the explanation. The power out by relaxation
(by interaction with impurities or other phonons,
for example) increases linearly with the number
of phonons n&, which is just the condition that a re-
laxation time exists. On the other hand, the power
into the f phonons increases nonlinearly with in-
creasing n& since the Raman process is a three-
boson process (which results in products of boson
occupation numbers in the expression for the pow-
er). Thus, at a critical value of the laser intensi-
ty, the amplitude n& becomes very large.

Previous analyses of stimulated Raman scattering
and other parametric processes used either the equa-
tions of motion of the boson occupation numbers ob-
tained from perturbation theory (the golden rule) or the
equations of motion of the mode amplitudes (crea-
tion and annihilation operators or Fourier compo-
nents and their complex conjugates of the electric
field, for example). In the case of stimulated
Raman scattering, the previous results from the
mode-amplitude analysis do not give the enhance-
ment obtained by the recent occupation-number
analysis.

In the present paper the relation between the two
approaches is demonstrated explicitly, and the
points in the previous analyses at which the enhance-
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ment was lost are identified. In the previous gold-
en-rule-type analyses, the enhancement was lost
by neglecting the deviation of the vibrational ampli-
tude from the thermal-equilibrium value. Even
though n& becomes large, the probability of an in-
dividual ion or molecule being excited is small,
roughly speaking. Specifically, n&/N«1 is usually
satisfied, where N is the number of unit cells or
molecules. It was this fact that the individual ions
or molecules are not highly excited that led to the
assumption that the thermal-equilibrium values
were maintained in the previous analyses. There
are similar results for other three-boson process™
es. For example, in ferromagnetism, magnon
occupation numbers are large at the threshold,
while the probability of an individual electron spin
being in the reversed-spin state is small.

In the previous mode-amplitude analyses, the en-
hancement was lost in the method of linearizing and
decoupling the nonlinear differential equations for
the mode amplitudes aL, a» a&, and their complex
conjugates (or Hermitian conjugates in the quantum-
mechanical solution). It is shown specifically that
reducing the nonlinear equations to parametric lin-
ear equations (that is, linear equations with
time-dependent coefficients) by assuming that the
laser-field amplitude aL =bL e '"L~, where bL is a
constant, results in the loss of the enhancement.
The same linearization scheme applied to well-
known magnon or phonon parametric instabilities
results in the loss of the steady-state solution,
even though damping is included and a steady-state
solution is expected on the basis of simple physical
arguments. By solving tA;e same mode-amPlitude
equations for the n's without using this lineariza-
tion scheme, the difficulties are removed and the
equivalence of the mode-amplitude and golden-rule
results is demonstrated explicitly for the stimu-
lated-Raman- scattering and magnon problems.

The central features of enhanced stimulated
Haman scattering are classical. In the classical
analyses, care has been exercised to keep the or-
der of the a and a~ correct so that the equations
can easily be converted to quantum equations in
Sec. IV. The present analysis is concerned only
with the steady-state solution.

In Sec. IV several points that are not apposite
to the central results, but are of general interest,
are discussed. These include a ferromagnetic
instability, purely quantum-mechanical effects,
resolution of a difficulty in the quantum treatment
when dissipation is included, and the problem of
phases mentioned above. Important results are
indicated by underscored equation numbers.
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where the a's are the Fourier components of the
fundamental phonon field f, the laser field L, and
the Stokes field S, the a 's are the complex conju-
gates of the a' s, V is the coupling coefficient for
the coupling of the three fields, and V* is the com-
plex conjugate of V. Equations (2. 1)-(2.3) and the
complete treatment of Secs. II and III are classi-
cal. If (2. 1)—(2. 3) are to be interpreted as quan-
tum-mechanical operator equations, a noise source
must be added to preserve the commutation rela-
tions since damping has been added in these equa-
tions. The quantum treatment will be considered
in Sec. IV.

The previous solutions were obtained by linear-
izing these equations by assuming that aL =QLoe-'"',
where a» is a constant, as discussed in Sec. I.
There are several possible ways of solving these
equations without using this linearization method,
as discussed in Sec. IV. The simplest method,
which also best illustrates the relation to the gold™
en-rule results, is to convert Eqs. (2. 1)-(2.3) to
rate equations for np —=afapy nL L L& and n& =ariz»
which will be solved for the steady-state solution.
This is easily accomplished by using

afBag
Bt dt

and similar equations for n~ and nL, which give

ously solved by a common linearization approxima-
tion to obtain gain without enhancement are solved
without making this linearization approximation.
The present solution gives the gain enhancement and
agrees with the results of the golden-rule analysis,
as discussed in Sec. III.

The mode-amplitude equations have been obtained
classically from Maxwell's equations with terms
added to account for the coupling of the electromag-
netic and elastic waves. ' ' Specifically, an
interaction Lagrangian was added to the sum of. the
electromagnetic and elastic Lagrangians and the
field-amplitude equations were obtained from the
Lagrangian. The resulting second-order partial
differential equations were reduced by standard
methods to the following first-order partial dif-
ferential equations 0'

II. MODE-AMPLITUDE ANALYSIS OF ENHANCED
STIMULATED RAMAN SCATTERING

In this section the same mode-amplitude equations
for stimulated Raman scattering that were previ-
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=-F-c
t 8~ t (2. 6}

BF = 2lVl [ni(ny+ns) -nsny]- sl'F1 (2. I)

F =- —Var, a&as+ c.c. . (2.8)

cs =4lVl I' '[nz, (ny+ns) -nsny]
Bx

(2. 9)

na [nz, (ny+ns) —nsny] —ny = 0, (2. 10}

where n„-=I' /4) V ( ~ Neglecting the saturation
term nsny in (2. 10}, which has been considered
elsewhere~~ and not apposite to the argument, and

solving for n& gives

(n~/n„)ns
nf 1 —nz/na

The results (2. 11) and (2. 9) with nsny neglected
give the enhanced stimulated-Raman-scattering re
suit

ns =+ns (0)s s~~"

where

(r/c, }n,
n„(I n/nz„)-' '—

(2. 12}

The results (2.9)-(2. 12) are identical to the re-
sults derived previously using the golden rule.
In passing, notice that nJ. can be considered as a
constant in (2. V}.

Equation (2. 'I} was obtained by substituting (2. 1)-
(2. 3) into

-BF Ba~ t t Ba& t t Bast

Bt
V

Bt
V t' a +Vaja& +

Bt Bt

The term

Bar. t Bast
L 8

ay s+ Vcsal, ay + c.c.
Bx Bx

vanishes since a Stokes photon is created for every
laser photon annihilated and the propagation of the
two photons is the same for cs =c~.

Setting the time derivatives of n&, ns, and F equal
to zero, as discussed in Sec. IV, gives the steady-
state solution

a =-b e-'"~~
L L t (3.2)

where bl, is indeyendent of time. Then substituting
ay=bye-'"y' and ats=btse'"s' into (2. 1) and the Her-
mitian conjugate of (3.2} gives

Vbibs —a~by ~ (S.Sa)

Bb s Vybt Bb s
t

Bt '~ sBx (S.3b)

~for the case of resonance, thatis, ~~ = &s+ &&. Set-
ting the time derivatives equal to zero and elimi-
nating bI from the two equations gives

which has the solution

b(s~) = b,(0)e'", (S.4)

where g = 2 I V I nz, /c sI', which shows no gain en-
hancement. A nonzero steady-state solution (3.4)
was obtained in this previous analysis because the

pump b& acts as a source. This is yarticularly
clear in the analogous problems of a parametrically
pumped pendulum or moving-plate capacitor, where
the energy is supplied by the mechanism that
changes the length of the pendulum or moves the
cayacitor plates.

In order to further show how the assumption (S.2)
causes the loss of enhancement, (3.3) with b~ inde-
pendent of time will be solved by another method,
in direct analogy with the solution of Sec. II where
the time dependence of bl, was retained. By the
same method used in Sec. II, (S.Sa) and (3.3b) give

ni ng s

Substituting this expression into (2.9}, neglecting
the saturation term nsni, and solving for ns gives

ns = ny(eS»+ —1)+ ns(0)es»s", (3.1)

where P»s= 4) V ] nz/I'cs = (I'/cs)(nz;/ns). This is
just the previous Raman gain factor with no en-
hancement.

In the latter of these two previous type of analyses,
the nonlinear Eqs. (2. 1) and (2. 2), which were
treated as classical equations, were linearized and
decoupled from (2 ~ 3) by assuming that

III. LOSS ENHANCEMENT IN PREVIOUS ANALYSES
Bny

Bt
=F - I'ny (S.5)

Previous treatments~' of stimulated Raman
scattering did not yield the enhancement obtained
in Sec. II. These analyses either specifically as-
sumed no increase in the vibrational energy above
the thermal-equilibrium value or solved Eqs. (2. 1}
and (2. 2) or their equivalents by a method equiva-
lent to that described below. In the former case,
(2. 11) [or (4. 19) in Sec. IV] is replaced by

Bns F BnsF cs (S.6)

BF ebs
Bt

=2IVI nL(ny+ns} sFF — csVbz, by +c.c.
l

.
Bx

(3 'I)

By neglecting the time dependence of b~, the non-
linear term —2) V ( snyns in (2. 7) is lost and the last
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term in (3.7), which did not appear in (2. 7), is
gained. The former makes the solution incorrect
in the saturation region and the latter eliminates
the enhancement. Neglecting the time dependence
of b~ is equivalent to neglecting the last two terms
in (2. 3) for da~/dt. By so neglecting the last term
cl, ca&, /Bx in (2. 3), the cancellation of the similar
term c~saz/sx from (2. 2) does not occur in the
equation for BE/st; thus, the last term in (S.7) is
present. Neglecting the other term gaza in (2. 3)
corresponds directly to the absence of the term
2[V i n~n& in (3.7). This discussion indicates that
the physical significance of the linearization by us-
ing (3.2) is that the effect of increases in the ampli-
tudes a& and a~ on the amplitude a~ is neglected and
the spatial rate of change of ar, is neglected while
a comparable term of a~ is retained.

Stated differently, it is tempting to neglect the
time derivative of b~ when b~ is large so that the
fractional change in b~ is small. However, db~/dt
must be retained since it is of comparable magni-
tude to other terms such as

dbms/dt

that are re-
tained. It makes no difference that the fraction
change in b~ is large while that in b~ is small.

Finally, the loss of enhancement in (S.5)-(3.7)
can be seen by setting the time derivatives equal
to zero, en'/ex=an&, and Bb~/sx= ,'aber in (3—.5)—
(3.7) and eliminating E. This gives

n~(ny+ns) a(r +csP)csgns = 0

c,gn, = rn, .
Eliminating n& gives

2
~

V
~

I' n~ (cgP + I') —
~ (cea + I')c ~g = 0 .

Dividing by ~~ce(cza+ I') gives

8 = g.„-=4iV i'/c, I',
in agreement with (S.4).

IV. FERROMAGNETIC INSTABILITIES, QUANTUM-
MECHANICAL EFFECTS, AND PHASES

The considerations of this section are not essen-
tial to the explanation of differences in the three
types of treatment of enhanced Raman scattering,
but are of general interest. First consider the
parametric instability in the simplest three-boson
process, illustrated in Fig. 1, where one boson,
0, is annihilated and two bosons having equal fre-
quencies and damping are created. The propaga-
tion of all three bosons is negligible. As specific
examples, in the case of ferromagnetic subsidiary-
resonance absorption, 5-~ boson 0 is a uniform pre-
cession (wave vector k= 0) magnon, and in parallel
pumping, boson 0 is a photon in the microwave
cavity. In both cases, the output bosons are mag-
nons having wave vectors k and —k. Propagation
effects are negligible since the magnons cannot

FIG. 1. Three-boson splitting process that exhibits
a parametric instability.

propagate out of the. sample and the sample is small
with respect to the electromagnetic wavelength.
The process also represents phonon processes'~
and other boson processes.

It will be demonstrated that the equations of mo-
tion of the mode amplitudes can be solved to give
the golden-rule results directly. The same mode-
amplitude equations will be solved by an approxi-
mate method of converting nonlinear differential
equations into linear differential equations with
time-dependent coefficients, or so called para-
metric equations. This approximate method,
which is the same method used in the early treat-
ments of the stimulated Raman scattering, gives
incorrect results in the present magnon problem
as it did in the stimulated-Raman-scattering prob-
lem.

The equations of motion of the Fourier compo-
nents, a's of the k = 0 and the + k and —k modes,
denoted 0, +, and —,and the complex conjugates
are~'7

da»
dt

' = -i~ a —Baoa»-ya +

da»

dt
"=—iso a —B aoa —ya+

(4 ])

(4. 2)

dao ~

ioao+ ~*a+a (4. 3)

db,
(4. 4)

where B is the coupling constant. This set of Eqs.
(4. I)—(4. 3) and the Hermitian-conjugate equations
is a set of six nonlinear classical differential equa-
tions for the six variable a,. and a»&, with i = 0, +, —.

A previous classical method of solution was to
linearize the equations by formally assuming that
ao=boe 0 and ao=boe'"o~, where bo and bo are con-
stants, as in Sec. II. Then (4. I) and (4. 2) are a
set of two parametric differential equations for a,
and at. Substituting these expressions for ao and
at along with a, =b,e "+' and at =bte'"-' into (4. 2) and
(4. 3) and taking the derivatives gives
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db ybf
dt (4. 5) "„",' =E,-I (n. -n.), (4.8)

The time-dependent coefficients were eliminated
by assuming that the resonance condition p= , ++
is satisfied. Since these two equations are linear
with constant coefficients, their solution is simple.
Taking the derivative of (4. 4), using (4. 5) to
eliminate b, and substituting the trial solution b.
= b,pe"' into the resulting equation gives

dno

= E,—I'(n + n ), (4 9)

(4. 10)

(4. 11)

a —e-&+&e-~&(b &+~e ~& &p~& + b ~-&e- ~»p~&h+- + J ~ (4 6)

There is no nonzero steady-state solution except in
the singular case of )Bbp) =y. The common expres-
sion "parametric instability" arises from the fact
that a, becomes infinite as t ~ when the amplitude

Ibo( of the zero mode is sufficiently great, that is,
when

(4. 7)

The classical effect of neglecting the time de-
pendence of bp is somewhat less dramatic in the
present case of the magnon instability than in the
Raman scattering case since the correct steady-
state solution for small values of bp is a, = 0 even
when the time dependence of bp is retained. In the
case of large values of bp, the difference between
the zero steady-state solution obtained for the case
of bp independent of time and the nonzero steady-
state solutions (4. 13) and (4. 14) for the case of
time dependence included is of course more signifi-
cant. In passing it is mentioned that in parametric
equations the terms such as Bbpb~ and its complex
conjugate in (4. 4) and (4. 5) are source terms,
which give rise to the energy flow from the k= 0 to
the +k modes. Thus, the steady-state solution is
not b, =b =0, in general.

To resolve the difficulty of no classical steady-
state solution, a method of solution other than the
parametric linearization used above is needed.
One approach would be to linearize (4. 1) simply
by considering apa as a single variable. Since
aoa is coupled to a. according to (4. 1), the standard
procedure is to consider the equation of motion for
aoa . If this equation contains only a, and aoat (and
no product a~oa ), then the two linear differential
equations could be easily solved. Unfortunately
the equations do not uncouple at this step. Further-
more, taking the derivatives of the additional vari-
ables that appear in the apa~ equation couples in
still more variables, and the chain of equations be-
comes large. Nevertheless, this method, along
with several other powerful and elegant methods,
afford useful tools for attacking the problem. As
already noted in Sec. II, a simpler method is to
start with the operator a~a, =-n„rather than a,.
Just as in Sec. II, it is found that

N =n, = )B2[ I'~3(2n n,o-n },~ (4. 12)

which are the standard results obtained from the
golden rule. For np&n, —a, where & is very small,

where E,= —Zapata + c.c. and I' =- 2y, the factor of
2 arising as usual from the fact that a"e-"' implies
that )a )~- e ~"'. The terms X'n, and I'n were added
formally to make n, and n. relax to their thermal-
equilibrium values n, and n . As in the previous
cases, the treatment is classical. If the usual
commutation relations for the a and a are used
formally, then n, +n in (4. 11) is replaced by n,
+n + 1. The considerations of the commutation re-
lations and of adding damping, noise sources, and
thermal-equilibrium values that are addressed be-
low for the case of Raman scattering are not con-
sidered here since this would carry us too far
afield.

There are several physical situations for which
the solutions to (4.8)-(4. 11) are of interest. The .

first is that to which the golden rule is commonly
applied. That is, at time t = 0 the system is in the
state in which n~ is very large and all other modes
are in thermal equilibrium, roughly speaking. The
perturbation -ikBapa~a~+ c.c. is then applied for a
time short with respect to the time for np to change
substantially, but sufficiently long for energy con-
servation to be well satisfied. The case in which

np is maintained at a constant value by the micro-
wavefield in the cavityalso is of interest. In both of
these cases, np is constant, or approximately con-
stant. However, dn~/dt in (4.10) is not zero because
(4.10} is only the contribution to the rate of change

of np from the coupling to the +k modes. Stated
differently, S&gySno/dt from (4. 10}gives the power
from the zero mode to the pair + k, which is not
zero in the steady state. The contribution to dno/dt
from the coupling of the zero mode to the micro-
wave field could be added, by replacing (4. 10) with

dno/dt = constlo-E„ for example, but this would

carry us too far from the issue at hand. In pass-
ing notice the physical significance of E, as the en-
ergy flow from the zero mode to the pair +k, in
units of quanta per second.

The steady-state solution to (4.8) and (4. 9) is
obtained by setting dE,/dt = 0 (i.e. , constant energy
flow) and dm Jdt = 0 and solving for n, and n This.
gives
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p28+
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where n =n„ for no&n, +e the solution is

(4. 13)

where )R) 2 is the matrix element for increasing n,
by 1, IXII is that for decreasing n, by 1, p(&) is
the density of states, and the relaxation term
I'(n, -n, ) is added formally. For a single transi-
tion on resonance (&g, = +,+ &g ) the appropriate value
of p(&o) is~'6'4 p(~) = 1/wI'. Using the usual expres-
sions for the matrix elements of the a's and a~'s
gives

n =n, =2(no —n,), (4. 14)

and for uo=n„ the solution is n =n, =(2non, )'I .
These results are obtained simply from the golden

rule as follows: The standard expression (2v/R~)
x 1(flXIi) I'5(&) for the transition rate between
states ii) and If) gives

The simplest damping mechanism is that of two-
boson damping induced by a localized imperfection
such as a void or impurity ion. (For nonlocalized
imperfections, wave vector is conserved and the
sum on j below is reduced to a single term. ') Even
though this damping mechanism is not often the ac-
tual dominant mechanism, we follow the standard
practice of using it in order to illustrate how in-
cluding the damping reservoir resolves the com-
mutator difficulty and gives relaxation to thermal
equilibrium. The reservoir is taken as a set of
bosons, say phonons to be concrete, with creation
and annihilation operators a~& and a&. Then the
Hamiltonian for the interaction with the reservoir
is

X,—~SA&a&a&+H. c. ,

where H. c. denotes Hermitian conjugate. The
Heisenberg equation of motion of a&, with this in-
teraction included, is (2. 1) with ——,'I'a& replaced by

rG~—= —g, ~A~a~ .

—n~ (no+ 1)]—I'(n, —n,). (4. 15)

Since the bracket factors in (4. 15) and (4. 11) (with
the replacement n. +I n, +n + 1) are equal, the
steady-state solution to (4. 15) is given by (4. 13)
and (4. 14) as already mentioned. Notice that when
the factor of 1 is added to (4. 11), n, in (4. 13) is
replaced by i,+ no/2s, .

Even though only the steady-state ease is con-
sidered here, it should be mentioned that the tran-
sient solutions of (4.15) and of (4.8)-(4.10) ax'e dif-
ferent in general. The simplest case of n~ neg-
ligible, n, (0) = const, and no = const can be solved
trivially to illustrate this point.

In the quantum-mechanical treatment it is well
own9(b), s(c)&13,1 that formally adding the term

——,'I'aI to Eq. (2. 1) for da&/dt is inconsistent with

the commutation relation [aI, a&] = 1. The difficulties
with the commutation relations and with relaxation
to zero have been the subjects of numerous previous
investigations. ' '"' In the magnon problem, re-
laxation to thermal equilibrium has been treated
classically by formally adding a noise source. s

Both the commutation-relation problem and that of
relaxing to zero can be treated by enlarging the sys-
tem to include the modes that are responsible for
the damping, that is, by including a damping reser-
voir explicitly. 9~') ~ ~s"4 Since noise'problems are
not addressed in the present study, it is not sur-
prising that the phenomenological damping used
above can be justified within the usual enlarged-
system approach as follows.

r
Gag = & ~ Agag

-————,'X ay+ Ga (4. 16)

where

G = -i 0 a (0)e-~"&~a

is the noise source and

r=2v Q in, i'5((g, -(g~)

is the golden-rule result for the relaxation fre-
quency. The real parts of the frequency shifts
arising from (P are ignored for simplicity.

The equations of motion for the n's and F can be
obtained directly from the Heisenberg equations
or from the equations for the a' s, with —~Pa& re-
placed by the right-hand side of (4. 16). In either
case, using

( ( )) =- (-GQ)Q&e&)D)ee(e)e'" e H. e) =—)'ee,

which is not difficult to derive, ~c' gives

=& —I'(ng -ng)+g@(t), (4. 1V)

By writing the Heisenberg equations of motion of
a& and a& as integral equations which are substituted
into G&, taking the Laplace transform of G&, using
the approximation

[8 - 2((dy —QPg)] = w5(&dy —hip) + l(P((dt - (dg)

(since the pole of interest is near s = 0 in the per-
turbation-theory limit" ) with s denoting the prin-
cipal part and s the transform variable, and in-
verting the transform gives
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where

g.,(~) = G.,(~) —(G.,(f)&

and siimlar equations for n~, g~, and F. Taking
the averages over the reservoir (the phonon-bath
mode) of all terms in (4.22) and using (g„)= (G&)
—(6„)=0 gives

(4. 18)

and similar equations for (ne), (n~&, and (E).
Thus, (2.4)-(2. 7) with the n& term added as above
are valid when the operators n&, etc. , are inter-
preted as averages over the xeserv0ir. Recall that
n& is the thermal-equilibrium value of nI, that is, the
average over the completeensemble, while(n&) is the
average over the reservoir only (phonons in ther-
mal equilibrium). Notice that in the absence of the
source, (aI& relaxes to zero while (aia&) relaxes to
the thermal-equilibrium value n&.

The following physical description of the damp-
ing and noise term is useful in visualizing these ef-
fects even though the explanation is oversimplified.
The energy flow from the f phonons to the phonons
in the bath is not a smooth function of time. For
example, if the energy transfer is visualized as the
interchange of quanta of energy between the f
phonons and the bath, then in the time inter-
val 0 to t„ there may be 10 net quanta of ener-
gy entering the bath. In the interval t, to 2t, there
may be 8, in the interval 2t~ to 3t~ there may be 12,
and so forth. The average value of, say, 10 quanta
per time tz corresponds to X', and the fluctuations
of, say, 2 quanta per time I;& correspond to the-
noise term that averages to zero. There are also
fluctuations in the energy flow F from the laser
photons L to the Stokes photons S and phonons f
since F depends on the fluctuating amplitude of the

f modes.
This visualization explains why it is not rigor-

ously correct to set the various time derivatives
equal to zero in the "steady state. " That is, the
fluctuations are still present when average values
have reached constant values. Since the interest
here is in the average values rather than the fluc-
tuations, the time derivatives can be set equal to zero,
or, mathematically, the reservoir averages can
be used in order to eliminate the fluctuation terms.

Consider the purely quantum-mechanical effects
in the Raman scattering problem. When the mode

amplitudes in (2. 1)-(2.3) are o}~erators with the
usual commutation relation [a&, a&] = 1, the factors
~q+n, in (2. 7), (2. 9), and (2. 10) are replaced by
n&+ ne+ 1~ Replacing I'

n& by I'(n& - n&) formally in
the relaxation terms in (2. 4) and (2. 10) gives a

. relaxation of nI to its thermal-equilibrium value
n& T. he complete expression I'(nI —n&) is of course
obtained in standard quantum-mechanical calcula-
tions of relaxation. '~ With these two additions,
(2. 11}and (2. 12}become

n~+ (nl, /n„)(ns+ 1)
nf= 1-n, /n„

(4. 19)

n, = (n, + 1)(e'« ~" 1)-+n,(0)e"-" (4. 20)

Thus, comparison of (4. 20) with (2. 12) shows that
the quantum-mechanical effect is that the zero-
point oscillation is amplified (e «~~ —1 term),
and the effect of including n& is that the term
n&(e~s«~" —1) accounts for "amplification of the
thermal-equilibrium value of n&.

"
Finally, consider the physical explanation of the

result that the loss of phase information in using
the golden rule does not affect the final result in
view of the fact that the phases are important in
some sense. Specifically, a parametric process
which increases the amplitude of a given phase will
decrease the amplitude of a mode that is g rad out
of phase with the increasing mode. The reason
that the loss of phase information in using occupa-
tion numbers is not important in the final result
is that the modes in the original thermal distribu-
tion that have the correct phase are the ones that
are amplified. A similar situation exists in the
simple case of a classical harmonic oscillator
responding to an applied harmonic force. The phase
of the oscillator is important since it determines
whether energy is extracted from or delivered to
the driving force. This does not imply that energy-
conservation arguments, which suffer from an anal-
ogous loss of phase information, are not valid.
It should be mentioned that wave-vector and fre-
quency phase matching are included in the occupa-
tion-number approach. Wave-vector phase match-
ing arises from Kronecker 5's in sums over wave
vectors, and frequency phase matching arises from
the energy-conserving 5 function. The present
calculation settles the question of the importance
of phases in obtaining the enhancement by showing
explicitly that the phases are unimportant in the
result.
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