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Boundary scattering of phonons in noncrystalline materialse
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Thermal-conductance measurements on thin Mylar and glass plates indicate that abrasion of the plate surfaces
does not suppress specular reflection of phonons, contrary to the behavior in crystalline materials. This
reinforces the suggestion that nonspecular reflection at crystal surfaces is caused primarily by lattice
defects —defects which are absent in amorphous materials.

I. INTRODUCTION

As discussed in the previous paper' the thermal
conductivities x of noncrystalline materials are
very similar in both magnitude and temperature
dependence, independent of the constituents of
the amorphous material. The data reported in
the present paper represent our initial attempt
to learn something about the excitations involved
in the propagation of thermal energy in amorphous
materials by measuring both ~ and the boundary
scattering or geometrical mean free path, l, in
the kinetic expression

g= 3Cgl.

In brief, we compared the x of bulk samples
(z„) and of very thin sheets (z). If acoustical
phonons were the heat carriers, one would expect
boundary scattering of phonons to reduce K at
temperatures below ~1K.2 Thus, the ratio z„/z
would increase from unity, at temperatures T + 1K
to much greater than unity at T& 0. 1K as would
happen in a crystalline material having v„~T
Instead the measured ratio z /z remained close
to unity at all temperatures, indicating either
that phonons were not involved or, more likely,
that the phonons were reflected specularly by the
surfaces. Attempts to roughen or damage the
surfaces to reduce specular reflection essentially
did not change e„/e.

Analysis of these results had to wait until the
work reported in Ref. 1 was completed. That is,
until we knew that z was provided by acoustic
phonons we could not analyze our earlier data.
It is concluded from the two materials used in
the present measurements that, in contrast to
the case of crystalline materials, it is difficult
to suppress specular reflection of phonons from
the surface of a noncrystalline sample by using
mechanical abrasion techniques, at least at
temperatures below ~1 K. The results and a
discussion of these results are presented in Sec.
III.

A general treatment or review of the role of
boundary scattering in phonon thermal transport
does not appear in the literature, and occasionally

incorrect or misleading formulas or statements
have been presented in papers on thermal con-
ducivity. In Sec. II, therefore, we summarize
the theoretical and experimental situation for the
more widely studied case of crystalline materials.
This review will provide a background for the
discussion of the phonon thermal conductivity of
amorphous materials.

II. REVIEW OF BOUNDARY SCATTERING

A. Experiment

It has been well established empirically that
for crystalline materials the lattice thermal con-
ductivity z is influenced by phonon scattering due
to the presence of boundaries or surfaces, pro-
vided those surfaces have been abraded. ' With-
out abrasion the thermal conductance of the sample
may be much larger than expected in the boundary
scattering limit. This larger conductance is
assumed to be due to phonons reflecting specularly
from the surface. This is a process which leaves
the flow of heat unaltered.

Although boundary scattering has been used
routinely in calculations for fitting low-temperature
thermal-conductivity data, the mechanism of
phonon scattering and the reason for the scattering
being apparently independent of frequency are not
understood. The mechanism first suggested was
diffuse scattering of phonons caused by the rough-
ness of the surface produced by abrasion. ' But
there is evidence that nonspecular reflections
occur predominately in the damaged region im-
mediately beneath the abraded surface and that,
at least in some cases, the surfaces appear black
in an optical sense. ' That is, the phonons are
thermalized so that upon leaving the surface they
are independent of the incident phonons in energy
(frequency) as well as in direction of propagation.
Thus, the words "diffuse reflection" or "diffuse
boundary scattering" may not accurately represent
the scattering process and should be used advisedly.

Worlock suggested that nonspecular reflection
may be caused by the dense tangle of dislocations
immediately below the abraded surface. Various
abrasion, polishing, etching, and thermal treat-
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ments support the view that dislocations and/or
other lattice defects are responsible. 4"' Ex-
plicit evidence of the dynamic role of dislocations
is obtained from p-ray irradiation experiments
in which the resulting point defects apparently
pin the dislocations, thus suppressing the localized
excitations associated w ith dislocations. There
is also evidence that the apparent boundary at
which the phonons scatter lies within the damaged
region. " This would be of importance in the
analysis of small samples, where the thickness
of the damaged layer is significant relative to
the smallest sample dimension.

At very low temperatures, some specular re-
flection may reappear at an abraded surface de-
pending on the extent to which the surface has
been damaged. '" This indicates that the scat-
tering mechanism is to some extept wavelength
dependent. In the case of Ge it has been reported'
that even above 1 K dislocations (or other lattice
defects) fail to eliminate specular reflections.
Independent measurements on Ge, ' however,
indicate a strong influence from surface damage
in agreement with other crystalline materials.

Occasionally boundary scattering appears to
dominate K, but the phonon mean free path l de-
duced from K is not that expected from the simple
expression K = 3Cvl, with l related to a character-
istic dimension of the sample. This may happen
if one or more phonon modes are strongly scattered
within the bulk of the crystal so that only the re-
maining modes reach the boundaries, or if the
bulk scattering has a very strong frequency de-
pendence such that only phonons within a certain
frequency spectrum can reach the boundaries. "
The same effect will appear in anisotropic crystals
if phonon focusing is ignored, ' and one should
be aware of this problem in data analyses appearing
prior to approximately 1970.

In summary, there is considerable experimental
evidence that phonons are scattered nonspecularly
at crystalline surfaces containing dislocations or
other lattice defects produced by some technique
of abrasion. At least in some cases the phonons
are thermalized at these boundaries.

B. Theory

The original calculation' by Casimir for the
boundary-scattering-limited phonon thermal con-
ductivity assumes that all phonons arriving at
the boundary are absorbed and reradiated with a
frequency distribution determined by the tempera-;
ature of the boundary. If certain simplifying as-
sumptions are made, such as no internal scattering
and no anisotropy, one finds for an infinitely long
cylinder an average phonon mean free path l equal
to d, the diameter of the cylinder. That is,
K = gCvl = 3Cvd, where c is the specific heat of

the phonons and v is an appropriate average of the
sound velocities. There is some confusion in the
literature over what happens for rectangular geom-
etries, so we have attempted to clarify the
situation in the Appendix. In particular, we will
be interested in the case where the thickness is
much smaller than the width and length of the
sample.

When internal or bulk phonon scattering is in-
cluded, the problem becomes more complicated.
In the case of boundary scattering of electrons
expressions have been worked out for a thin plate"
and a cylindrical rod, ' But these formulas apply
as weLL to phonon boundary scattering as shown

by Baush and Waidelieh. " If l; is the phonon
mean path in the bulk,

~3 ~5 1 8 tx/l$

for a thin plate of thickness t with a fraction p of
the phonons colliding with the boundary being
speculary reflected. ' In the ease of a cylindrical
rod, a similarly complicated formula may be
approximated ' to within a few percent by the
phonon equivalent of Mathiessen' s rule, E= (d '
+I; ') '. It is here being assumed, of course,
that all phonon modes have a similar l; .

Baush and Waidelich' have attempted to show
theoretically that dislocations may be responsible
for the nonspecular reflection at a damaged sur-
face. They use a shorter phonon relaxation time
in the damaged layer than in the bulk of the crystal.
Unfortunately, although dislocations do appear to
be involved from empirical evidence, the appro-

, priate relaxation time is not known. Hence in
the present paper we will continue to assume that
all phonons relax thermally at the boundary except
a fraction p which are specularly reflected. Also,
since the measurements are made at low tempera-
ture, it will be assumed that phonon normal pro-
cesses are not important. ~'

III. RESULTS AND DISCUSSION

The samples were made from a 2. 9x10 -cm-
thick Mylar sheet or from 7. 1& 10 3-cm-thick
(Corning 0211) glass plates. Thicker Mylar sheets
were measured but provided no additional infor-
mation, and so will not be discussed. The tech-
niques used in the measurements have been pre-
sented in Ref. 1, and will not be repeated here.

The thermal conductivities of the as-recieved
materials are presented in Fig. 1. The thermal
conductivity of the Mylar sheet agrees to ~20/o
with the measurements on thicker sheets, and is
in reasonable agreement with a previous measure-
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FIG. 1. Thermal conductivity of a 2. 9&&10 4-cm-thick
Mylar film (a) and two 7.1 &&10 3-cm-thick glass plates
{O,X). Other data lie directly under the data shown.
Mylar data refer to the top temperature scale, the glass
to the bottom scale. Curves through the data were com-
puted as explained in the text.

ment made using an entirely different technique
and geometry. Other measurements on the glass
are not available, . however, the thermal conduc-
tivity of this glass is within 20%%uo of that of the boro-
silicate glass used in Ref. 1. In brief, the pres-
ence of the surfaces has not altered significantly
the thermal conductivity of the present samples.
Since phonons are known to transport the thermal
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FIG. 2. Ratio, for Mylar, of the thermal conductivity
v„of a film with smooth surfaces (i.e. , x of the bulk
material) to that of the abraded sample. Solid curve is
the experimental result for a sandblasted sample. . Dashed .

curves are the results of theoretical calculations for dif-
ferent fractions p of specularly reflected phonons.

FIG. 3. Ratio, for glass, of the thermal conductivity
of a plate with smooth surfaces (i.e. , tI' bulk material)
to that of abraded samples. Dashed curves are the re-. .

sults of theoretical calculations for different fractions p
of specularly reflected phonons. Solid curve is the ex-
perimental result for mechanically ground surfaces;
dotted curve is for a sandblasted sample. Latter curve
is probably systematically =10% high as explained in the
text.

energy, ' the majority of the phonons must have
been reflected specularly from the surfaces. It
will be shown below that, were this not the case,
the thermal conductivity would have been smaller
by =400% at the lowest temperatures.

Specular reflection of phonons from the smooth
surfaces of these samples is not unreasonable in
light of the discussion in Sec. IIA. %e there-
fore attempted to damage the surfaces in the
manner used for crystalline materials. The sur-
faces were etched, were mechanically ground
with 27- p, m abrasive particles, or were sand-
blasted with the same abrasive in an air-borne
jet. There was very little change in the thermal
conductivity of the samples, indicating that specular
reflection was still dominant.

The above results are presented more quanti-
tatively in Figs. 2 and 3 as « /», the ratio of the
thermal conductivity of the bulk material (thick
ness t-~) to that of thefilm or plate. Actually
the data of the as-received samples with smooth
surfaces are used as a good approximation for z,
and so Figs. 2 and 3 show the change in II.' resulting
from surface damge. Since data points were not
obtained at the same temperatures for the various
samples, curves were smoothed through the in-
dividual sets of data and the ratios of these curves
as a function of temperature are plotted in Figs.
2 and 3. The use of the ratio «„/» also reduces
the importance of systematic errors introduced
in determining the geometry of the samples. This
is especially true for the Mylar since the heaters
were placed very close together making the "length"
of the specimen difficult to estimate. ' The same
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spacing, however, was used for all samples.
Figure 2 gives the ratio &„/« for Mylar film

with sandblasted surf aces. Mechanically ground
surfaces had the same appearance as the sand-
blasted surfaces when viewed in a scanning electron
microscope, and so were not measured. The
surfaces appeared rough with a typical asperity
of ~10-4cm. Were phonons actually to impinge
on the visible surface, diffuse scattering should
have occurred down to ~0. 01 K. The ratio «„/«
expected theoretically under this condition can
be obtained from

«(r) =—1
3

(2)C(~)el((u) d(o,

where, from the Debye model,

C(ar) = sh'&o'e""~'r /2v'kT'o'(I —e""~' r) ,2(4)

and f (&o), the net phonon mean free path, is ob-
tained from Eq. (2). For the internal or bulk
mean free path f; to be inserted in Eq. (2) we

use, for convenience, that discussed in Ref. 1

( the nonresonant term is negligible at low T),

l; (ar, T) = { [(kA/k~) coth (8(o/2kT) ]
'

+ [B(k/h(u)'] ' ] (5}

Parameters A and 8 are selected to give a rea-
sonable fit to the measured bulk thermal con-
ductivities z„of the samples which, as noted
above, are closely approximated by the data of

Fig. 1. The curves of Fig. 1 were in fact ob-
tained using, for Mylar, 24 A = 2. 2x 10 4 cm K and

8 = 2~10 cmK and, for the glass, 'A = 2. 6&10
cm K and B = 0. 5 cm K~. Equation (5) need not

reproduce z precisely since only the theoretical
ratio «„/« is of interest. The adjustable param-
eteris the fractionpof phonons reflected specularly
from the surfaces Calcula. ted ratios of « /«are
shown in Fig. 2 as dashed lines for three values
of p. With P= 0 (no specular reflection) theoreti-
cal reduction in «near 0. 04 K would be ~400%%uo.

The data indicate that over 90%%uo of the phonons
undergo specular reflection from the severely
abraded surfaces.

Similar information for the glass is presented
in Fig. 3. The solid curve is for a mechanically
ground surface. A chemically etched surface,
followed by mechanical grinding, gave the same
ratio. The ground surfaces appeared extremely
rough when viewed under a scanning electron micro-
scope, withan asperityof ~10 3cm. Hadthe phonons
reached the visible surface, diffuse scattering
should have occurred at all temperatures of the
measurement. Instead over 80%%uo of the phonons
were reflected specularly. It may be that the
specular reflection occurred at cracks near the
bases of the tall, narrom peaks formed by abrasion.
Such cracks were occasionally observed in sectioned

samples using a scanning electron microscope.
The dotted curve in Fig. 3 is for a sandblasted

sample. The surfaces were pocked or pitted.
The width of the rounded pits was ~7x 10 4 cm,
with a depth of about one-half this value. In such
a case primarily specular reflection would be
expected, and indeed the data of Fig. 3 are nearly
horizontal with a mean value of «„/«~1. 2. It is
likely that the actual ratio is closer to 1. 1. This
is because the thickness t used to compute v from
the thermal conductance was in all cases measured
mechanically. In this sandblasted sample the
mean reflecting boundary' is certainly closer to
the bottom of the pits, which mould reduce the
effective f by ~10%%uo. A similar but less definitive
statement can be made about the other samples
of Figs. 2 and 3. In brief, the experimental ratios
of «„/«are maximum values, and might be sys-
tematically a fern percent smaller corresponding
to an even greater amount of specular reflection.

Other chemical etching techniques on the glass
plates did not provide sufficiently rough surfaces
to cause diffuse reflection, and thus a was not
measured for those samples. Stephens experienced
similar difficulties. ~6 He measured the thermal
conductivities of the fine soda-silica glass fibers
and interpreted the results as indicating specular
reflection of phonons from the surfaces. The
specular reflection could be sujjxessed however,
with varying success, by chemically etching the
surfaces. Presumably this provided a sufficiently
rough surface to produce diffuse phonon scattering.
This technique is sensitive to etchant and to the
type of glass used. For example, the etchant
used by Stephens did not appropriately roughen our
glass plates.

The results available thus far may be summarized
as follows. (i) In crystalline materials nonspecular
boundary scattering of phonons is thought to occur
in the thin damaged layer beneath an abraded
surface. In noncrystalline materials it has not
been possible to produce this effect. This implies
that defects indeed are responsible for the non-
specular reflections in crystals and, not sur-
prisingly, that amorphous materials do not support
the kind of defects common to crystals. Therefore
(ii) nonspecular boundary scattering in amorphous
materials must be provided by diffusive scattering
from a truly topographically rough surface.

APPENDIX

According to Casimir, ' for an isotropic, in-
fznttely long rod of unform cross section m&th a
constant temperature gradient ~ T in the x direction,
the heat flow g is

~ mk T&T
Q= q q ~t ) )j(Yam cos&g cosHg/213) dgldS3 ~108 v'

(A1)
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FIG. 4. Ratio of I/t, the net phonon mean free path
in a long rectangular rod divided by the thickness of
the rod, vs the ratio w/t, the width divided by the thick-
ness, for the case of no specular reflection from the
surfaces and no internal or bulk scattering mechanism.
Exact calculation is represented by curve l&. Other
curves are discussed in the Appendix.
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where dS, is an element of area on the boundary
of the rod, dS~ is an element of area in the cross
section of the rod at x = 0, x» is a vector con-

g dSi to dS» x» is the x component of ri2y

8, and 8, are the angles between ~» and thenormals
todS& and dS» and k and the other symbols have
their usual meanings. 3 Defining a mean free
path l, for boundary scattering through the for-
mulas z = 3Cv l~ and C = 2v~k4TS/5v~a~, and noting
a = (Q/A)/'PT, where A = f fd83 is the cross sec-
tional area, one obtains

S f f f f (x)2 cos~y coseg/+$2) d~g d~a
(A2}l~- ffds,

Corrections to Eq. (A2) for a rod of finite length
are discussed in Ref. 15. If the rod has a rec-
tangular cross section with thickness I; and width

zo, then

+ (1+ n a)~~a]+ Sln[n+ (1+ na)~~a] j, (A4)

where n = m/f, as has been obtained previously. '0's
This, however, is not the formula typically

used to fit thermal conductivity data. Instead,
reference is made to a "Casimir length" l, which
is assumed to be the phonon mean free path due
to boundary scattering. Since different authors
use different expressions for l„we compare
these different expressions to each other and to
Eq. (A4) in Fig. 4. That calculated from Eq. (A4)
is labeled l, . Also I, = (4A/~), where A again
is the cross-sectional area of the rod, '

/3
= 4A/P, where P is the perimeter of the rod, '4'a~

and"

l4 = (Sf/4) {inLn + (I+na)'~2]+n ln[n '+ (1+n )
~ ]).

Other formss' of /, eA~ may be scaled from the
plot for /2. In each case p =0, i. e. , there is no
specular reflection. It is seen from Fig. 4 that
/2 gives the best approximation to the exact ex-
pression /, as the cross section approaches a
square. It also has the advantage of giving the
correct mean free path for a circular cylinder.

One must be careful in using these expressions
as n = zo/f becomes large and the rod becomes
a thin plate or film. In the limit of large n

I, - (Sf/4) ln(S. S ~/f), (A5)

and it would appear that the mean free path and
hence the conductivity becomes infinite. This
comes from phonons traveling almost parallel
to the plane of the film. In reality, the thermal
conductance is then governed by the intrinsic
mean free path I, in the bulk. If one uses Eq. (2)
for a thin plate in the limit of l, » t, then ~p

I -(St/4) ln (1.5' /t). This is very similar to
Eq. (A5) with width m replaced by e -,'I&. In
other words, a thin film acts like a rectangular
rod with an equivalent "width" determined by the
bulk or internal phonon scattering.
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