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Using the method of double-time temperature-dependent Green's functions and Kubo formalism, a

general expression is derived for the complex dielectric constant of a defect ferroelectric crystal in the

paraelectric phase taking into account the change of mass as well as harmonic force constant between

impurity atom and host-lattice atoms. The results are used to obtain an expression for the frequency

and temperature dependence of the dielectric loss at microwave frequencies due to impurity and

anharmonic scattering. Neglecting the polarization of ions it is shown that the influence of defects on

the dielectric constant at low frequencies can be expressed by a change only in the Curie temperature,

as is known experimentally. To a first-order approximation of the defect parameters, the

Curie-temperature shift is found to depend only on the harmonic-force-constant changes between the

impurity and host-lattice atoms, and is proportional to the concentration of defects, as has been

experimentally established.

I. INTRODUCTION

It is now well known' that the lattice defects in
ferroelectric materials greatly influence their
static dielectric constant in the paraelectric
phase. The effect of defects can generally be
expressed by a change only in the Curie temper-
ature T~, without essentially changing the charac-
ter of the temperature dependence of the dielectric
constant, that is, the Curie-Weiss law remains
valid with practically the same Curie constant.
Various impurities change the Curie temperature
of the same material in different ways. For ex-
ample, on the substitution of Pb ions for Ba ions
in BaTiQ, the Curie temperature increases, while
Sr ions decrease the T~. On the other hand, the

change in Tc when Ca ions are substituted for Ba
ions is negligible. It has been shown' that these
changes in T~ cannot be accounted for simply from
considerations of change in lattice constant or
polarizability of impurity ions.

Microwave losses in the pure and doped ferro-
electric materials BaTiO, and SrTiQ, as a function
of temperature and frequency have. been experi-
mentally measured in the past by many workers. ' '
Above the phase-transition temperature the results
of loss measurements can be well represented by
the temperature dependence of the microwave
(dielectric) loss tangent tan5 through the following
relation:

(T Tc) tan5= n+P—T+yT',

where T~ is the Curie temperature. The parame-
ter o. vanishes for pure single-crystalline materi-
als, but in doped and polycrystalline samples, it
depends strongly on the defect concentration. It
is a measure of losses which are introduced by

defects in the lattice. The parameters P and y are

unaffected by the defects added to the lattice Bnd

represent the intrinsic characteristics of the per-
fect lattice being determined by the anharmonic
terms in the interionic potential. The loss tan-
gent, and therefore the parameters o., P, and y,
is found to be proportional to frequency + for all
materials in the frequency range studied.

It is now clear on theoretical grounds that the
absorption of microwaves cannot be due to absorp-
tion or creation of single phonons. Energy and

momentum cannot be simultaneously conserved in
the process, since the momentum of the micro-
wave photon is negligible compared to that of ex-
cited phonon. It is possible, however, to excite a
virtual phonon with energy equal to that of a micro-
wave photon which subsequently decays into a real
phonon due to interactions with lattice imperfec-
tions. The imperfections simply play the role of
absorbing the excess momentum of the phonon.

Owing to anharmonic interactions between the

phonons, degradations into other vibrational
modes of the material are also possible.

Recently Vinogradov' has calculated dielectric
losses at superhigh frequencies in ionic crystals
with various defects on a simplified model. He

has shown that a linear frequency dependence for
losses is obtained if point charged defects are
present in the crystal. A similar frequency de-
pendence for microwave losses in SrTiQ, has been
obtained by Silverman' using a linear chain mod-
el of a ferroelectric with defects consisting of

changed force constants between the nearest ions
distributed at random. However, if such defects
are considered in a three-dimensional lattice, a
cubic frequency dependence for n will be obtained
which is contrary to the observations.

In this paper we present an explanation for the
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change in the Curie temperature caused by the
substitutional defects, and the temperature and

frequency dependence of microwave loss in ferro-
electrics in the presence of defects, taking into
consideration the detailed characteristics of the
defect on the basis of its interactions with the
other ions in the crystal. For this purpose at the
first stage, using the method of time-dependent
Green's functions, ' we derive a general expression
for the complex dielectric constant c at frequency
+ of a ferroelectric crystal having cubic symme-
try in the paraelectric phase, involving anhar-
monicities up to fourth order with substitutional
defects of low concentration distributed at random.
The impurities introduced are characterized by a
different mass than the host atoms and with modi-
fied nearest-neighbor harmonic-force constants
around their sites. Their influence on the anhar-
monic coupling coefficients in the Hamiltonian is
neglected. For the sake of simplicity the ions are
assumed nonpolarizable. Such a formulation is
particularly interesting as the real part of the di-
electric constant, e', will lead to an expression

-for the change in the Curie temperature resulting
from the presence of the impurities. This com-
bined with the expression for the imaginary part
of the dielectric constant, e", would give the mi-
crowave loss tangent of the material in the pres-
ence of defects and anharmonicities.

In Sec. II, we give a general formalism of the
dielectric constant in terms of double-time
Green's functions. In Sec. III, we set up the
Hamiltonian for a ferroelectric in the presence of
defects. Section IV deals with the evaluation of
Green's function for this Hamiltonian by the equa-
tion-of-motion method. In Sec. V, the results are
used to obtain an expression for the impurity de-
pendence of Curie temperature. In Sec. VI we
treat the frequency and temperature dependence
of microwave loss tangent in the presence of de-
fects. Section VII summarizes the results.

II. COMPLEX DIELECTRIC CONSTANT

The response of a crystal to an externally applied
electric field is most conveniently described by
the dielectric susceptibility of the lattice. Using
the Kubo formalism, ' the general expression for
the complex dielectric susceptibility tensor y» (&u)

can be written

g~ p(QJ) = —11111 2 1jG~~((d + ie) p

g -+Q

where G»(&u) is the Fourier transform of the re-
tarded double-time Green's function between the
pth and vth components of the crystal dipole-mo-
ment operator M(t) in the Heisenberg representa-
tion defined by

lt((u) = —2aM„'(0) G((a+i~), (4)

where the limit e-0 is understood, M~(0) =M„(5j),
and

G(++i') =((A'(t);2;(t'))) „,= G'(v) -iG" (&u),

A,' being the phonon operator for the Cochran soft
mode. In the presence of relaxation effects the di-
electric constant e(v) can be separated into real
e'(e) and imaginary e"(&u) parts. Using the rela-
tion between the dielectric constant and suscepti-
bility, we get the following expression for the real
part of the dielectric constant:

c'(&u) —l = —8w'M'„(0) G'(~) .

The microwave- or dielectric-loss tangent tan~
for the dissipation of power, defined as the ratio
of imaginary and real parts of the dielectric con-
stant, can be written

tan&((u) = G "((u)/G'((g) .

Thus it is enough to know only the retarded one-
phonon Green's function G(v) to determine the di-
electric susceptibility and hence the dielectric
constant and loss tangent.

Here 6(t —t') is the usual Heaviside step function
and the symbol ( ~ ~ ), denotes the statistical aver-
age vat.ue for E =0.

The dipole moment M of the crystal depends on
the lattice configuration like the potential energy
and can be expanded in a phonon series. ' " Ne-
glecting the polarization of ions, the expansion
contains only the linear dipole-moment coefficients
M~(k). Because of cyclic boundary conditions im-
posed on the ionic motion, only the k =0 optical
mode has a nonzero polarization associated with
it. Thus only the coefficients M&(5j) contribute
to the susceptibility, where j relates to the optic
modes of the phonon spectrum. We shall consider
only one transverse-optic branch (denoted by the
index j) which is possible with ferroelectric crys-
tals in the paraelectric phase. It is known that the
dielectric properties of ferroelectrics are de-
termined mainly by one Cochran soft (optic-trans-
verse) mode with an anomalously low frequency in
the neighborhood of the Curie temperature. With
these considerations, for ferroelectric materials
which have cubic symmetry in the paraelectric
phase, the scalar susceptibility y(&o) =y»(&u) can
be written
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III. HAMILTONIAN

H =H~+H, (8)

The harmonic contribution H„ to the Hamiltonian,
using the method of Ref. 11 is given by

H„=Q S&u» (a»ta'„+ —,') + Q K(d» (a»ta'„+ —,')

—«h()o (B«o B;+A;Ao) —kC(0, 0) B;B;

+AD(0, 0)A;A; —kB;X+RA; 1'+@I. ,

where we have put

The Hamiltonian of the defect ferroelectric crys-
tal is constructed by a method similar to that used
in another study, " from the crystal model pro-
posed by Silverman and Joseph, "by augmenting it
with fourth-order anharmonic interaction terms
involving ferroelectric optic modes of lowest wave
vector. It is known that this Hamiltonian provides
a satisfactory interpretation of neutron scatter-
ing, "'"anomalous behavior of sound near the
Curie points, "electric field dependence of Curie
temperature, "and temperature dependence of
thermal conductivity of ferroelectrics, " "and
contains essential characteristics of a displacive-
type ferroelectric with perovskite structure. It is
assumed that the introduction of defects in the
lattice causes changes in the harmonic-force con-
stants besides the mass change; their influence
upon anharmonic coefficients is neglected. This
is true for isovalent and nonpolarizable defects
because they cause changes in the short-range
forces only. For small concentration of defects
the impurity-impurity interaction can be neglected.

Assuming that the doping of the crystal causes
the modification of the harmonic-force constants
only, i.e., neglecting entirely the changes of an-
harmonic coefficients due to defects, the Hamil-
tonian of a defect ferroelectric can be written

X= Q [C(k, , 0) B» + C(k„0)B»]

= Q C(k g, 0) B, , (10a)

1'=Q [D(k, , 0)A;+D(k„0)A;]

= P D(k„o)A„', (10b)

I = g [D(k,', k,")A» A» +D(k,', k,")A„' A»„

+D(k,', k,")A'„A;- —C(k,', k,")B» B»

—C(k,', k,")B;.B„'„—C(k,', k,")B', B», ]

[D(k )„k)',)A» A» —C(k q, k)",) B~, B~„]
n', a", X

+ Q [D(k,', k,")A» A»„—C(k,', k,")B'„B'.],
yl yll

(10c)

with A=a, o, A, =a~+a ~ and B,=a„—a „, a~ and a„
being the annihilation and creation operators for
the mode of wave vector k. All the long-wave-
length soft modes which become unstable in the
harmonic approximation are collectively lumped
together into a single mode with zero wave vector
and are assigned an imaginary frequency ie,'. The
prime on the summation excludes this k =0 mode.
The superscripts a and o denote the acoustical and

optical modes, respectively, and we have used the
abbreviations

C(0, 0) = C(5j; t)j); D(0, 0) = D(5j, t)j) .

The parameters C(k, k') and D(k, k') depend upon

changes in the mass and force constants due to
substitutional impurities and are given by

C(q q/) —
( )&/2 9 c& (( ( ~ q) a (p ~ql) f ~ e(()+ )') «(») ~ '(a+ ~') «( )

q q' 4~ ~ n
n S

(11a)

D(q, q') =((d, +, )
' '-- g P (M'M" )

' 'v ()(~q)o()()('~q') r»4„8(s)(;s')(') e'( " ' '" '" ' '(() () +() .(), )
SK n s'0' g

(11b)

where %is the number of unit cells in the lattice,
x(s) gives the position vector of the sth unit cell,
the symbol (ip) identifies the position of an im-
purity atom in the ith unit cell, 64 „()(s)(;s ')(')

represents the change in the harmonic force con-
stant between atoms at (s)() and (s ')(') when one

of these sites is occupied by an impurity atom.
~„ is the circular frequency of the normal mode
described by k = (kj), k being the phonon wave vec-
tor and j the branch index of the phonon dispersion
spectrum, and P()(~k) is the associated unit polar-
ization vector (eigenvector) of the lattice mode
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belonging to the sublattice v. M~ is the weighted
harmonic mean of the masses of atoms of the type
p defined by

(u, = (u', + 4C(0, 0) = »u', ,

&u, = e', -4D(0, 0),

(18)

(19)

I/Mq=f/Mq+(I- f)/M», ' f=n/N,

n being the number of impurities, l»» =M»M'/
(M z

- M&) and

M" =M„+(M;-M, ) 6„.

(12)

(13)

with Z = Y+P +A+ S. The equation of motion of
&(F,(t);A;(t'))) with respect to time argument f'
gives

(~'+ ~,~.) (& F,(t);A;(f '))) = ' + && F,(f);F,(f ')))

M~ and M~ are the masses of host and impurity
atoms of the pth kind.

Using Szigeti's" theorem which asserts that for
a crystal with a center of inversion symmetry the
coordinates of optical modes come in pairs, the
anharmonic contribution H, which includes dom-
inant third- and fourth-order anharmonic interac-
tion terms in the lattice potential-energy expan-
sion can be written as

where

I2 = 4&iAo@ + 2~,Z —2wX

and

e =g P'(k)&A." A;) =P P"(k)n,'.

(20)

(21)

(22)

H, = ffAOP + RAO A o q + LAO R + LAO» S

where

Combining Eqs. (16) and (20) the equation of mo-
tion for G(&u) can be written in the form of a Dyson
equation:

P= Q a(k)A»tA'

q=g p (k)A A, A=a, o

(15a)

(15b)

G(~) =S (~)+Z(~)P(~) g(~)
= a (~)+g (~)11(~)G(~),

where

(23)

R= Q y(k„k„k,)A» A» A'„

g((d) = (dz/7l(QP+ (dz(d»),

P(»d) =4wg+ (v'/(u', ) «F,(t);F,(t ')))

(24)

(25)

From Eq. (23) the expression for the polarization
operator can be written

S = Q p,(k„k„k,)A; A; A»

Ag»lt2 ~ 43

(15d)
11(~)=P(~)/[I+P(~) g (~)] (26)

Here n(k), P'(k), P'(k), y(k„k„k,), and p, (k„k„k,)
are Fourier-transformed third- and fourth-order
anharmonic coupling constants. The three- and
four-phonon processes generated by these terms
are dominant among those which involve the ferro-
electric mode &u,'. The definition (lla) shows that
the coefficient C(00, 00) vanishes. In Eqs. (10) the
summations over optic modes excludes the Cochran
mode of lowest transverse-optic-branch frequency.

At frequencies far enough from the poles of the
denominator, one may expand the latter in a power
series of P and retain the first term in the lowest
approximation, i.e. , II(ap) =P(»d). This gives for
G(&u) the following expression:

G((d) = &d~/7I'[CO + (d&(d» —4(d&Q -f (&8)]

= &u,'/m[&u'+((u', )' 4(u', D(0, 0-) —4(u', Q —f((u)],

(27)
with

IV. GREEN'S FUNCTIONS f (~) = (w/(uo) && F(t );F(t ')))„. (28)

((u'+(u, (u, )G((u) =~+&&F,(t);A;(f')))„, (16)

We now come to the evaluation of the Fourier
component of retarded Green's function G(t —t ')
defined in Eq. (5). Differentiating the expression
for G(t —t') with respect to time argument f and
Fourier transforming the result, the equation of
motion of G(&u) is obtained as

Equation (27) can be rewritten

G((u+ se) = (u', /w [»u' —v'((u)+ i I ((u)],

with

(29)

v (&u) = —(sP)'+4&v', D(0, 0)+4u&', Q +n, (~), (30)

&(~) =6'(~/~;)&&F, (t);F,(t'))) „,, (31)

and

where

F, =4(u, A»OQ +2(u,Z+2(uX, (17)

I'((u) = -Im(v/(u', ) «F,(t); F,(t '))) „,. (32)

The self-energy function f (v) defined by Eq. (28)



can be evaluated in successive approximations of
the pe'rturbation. It is determined here to second-
order in the defect and anharmonicity parameters.
In this approximation one can write, from (lV) and
(21),

«F, (f);I",(i ))).
= 4 (~:)'G,(~) + 16(~:)'G,(~)

+ 4((uo)'G, ((u) + 4 ((uo)'G, (&u) + 4 ((u,')'G, ((u)

—4 (u G, ((u) + 4 (u(uo G, ((u) —4u) +o Ga((u),

(33)

where the Green's function G;(f —i '), i = 1, . . . , 8,
are defined by

G,(i f ') = Q—c.(k)n(k')((A„'tA„';A', tA„'.)), (34a)

G.(f-f') = g P'(k)P'(k )«A;A„"'A,";A;A,",tA„', ))

where 0 is the effective temperature-dependent
frequency of the anomalous transverse-optic mode,
and a, and a~ are the annihilation and creation
operators for this soft mode.

V. CURIE TEMPERATURE

Using Eqs. (6) and (29), the temperature de-
pendence of the dielectric constant can be written

The real part of the pole of G(&u+ie) in Eq. (29)
would give the temperature-dependent frequency
Q(T) of the Cochran mode in the presence of
defects as the self-consistent solution of the equa-
tion

(34b)
Q'= -(u&,')'+4+,'D(0, 0)+4aiog+d(Q) . (3V)

G,(i- f') = g g y(k„k„k,)y(k,', k,', k,')

x (&A; A; A;;A;, A; A; )),

G,(t —i ') = Q Q p(k „,k k2, ) (kv,', k k2,')

(34d)

G, (i —i')= Q D(k~, o)D(k~, o)&&A„;A,')),

(34e)

G,(i —t') = Q C(k~, o)C(kI„0)&&8„;B~)),

We will see that &(~) is of second order in the
defect and anharmonicity parameters. Hence
comparing (30) and (37) we can approximate
v(&u) as Q, For cubic ferroelectrics, the micro-
wave frequency v is much smaller than the
Cochran-mode frequency Q, so that &u «v(&u) and

no relaxation effects will be observed as estab-
lished experimentally. Further, the half -width
I'((u)/2v(&u) is such that I'((u) «v'(~). Due to the
anomalously low value of 0, paraelectric mate-
rials have high value of e '(u&) as compared to
alkali halides, so that e '(&u)» I. With these con-
siderations the expression (36) for e'(~) becomes

e '((u) = BwM'„(0)(u', /v'(&u) .

G,(f-f )= g C(k„,O)D(k„o)«a,';A,')),
In the case of pure crystals we have

c,'(~) = BnM'„(0)&u,'/v', (cu), (39)

G,(i-i )= P D(k„O)C(k,,O)«A,', II„")).

(34h)

v', ((u) = -(u)', )'+4u),'q + a,(u&), (40)

In writing these Green's functions we have sup-
pressed the time arguments t and t ' on the right-
hand side of Eqs. (34) for brevity. The Green's
functions appearing on the right-hand side of Eqs.
(34) can be conveniently evaluated via, the zeroth-
order stabilized Hamiltonian given by"

+hQ (ata, + 2),

= 7Ado(P[Gi((d +ie)+4G2(h) +ie )

+ G,(v + ie ) + G, (ru + ie )] .

Here 6' stands for the principal value of the quan-
tity in the brackets. Substituting for the Green's
functions from Eqs. (34a) —(34d) into (41) we obtain
for a, (cu)
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P g 0

+8 P [P"(k)]' [l+(N, )'+2N, N, ]
y, X

5„,y(k„k„k, )y(k,', k,', k,')
k1, 42, k 3

0 a I
MP1+ Ky 2+ Ny 3

-(~«+~«+~«)
2 3

0 a aa1 —Na 2
—a3

(d —((d —(d« —(0«) + +~ ~ (dg +

(5„,+5„,+6„,)p, (k„k„k,)p. (k,', k,', k,')
, A2, 0

0
~ ~

~

~
~
~ ~~

0N'N')
«» ««3 1 &» (d —((d +(0 +CO )

1 "2 "3

J
(42)

where

-«'(5« -«'5« -«'+ 5« -«'5«

N, = coth(kQ/2ks T) and N„= coth(k&u«/2kaT), (43)

and we have used the relations o.(-k) = n(k) a-nd p (-k) =p (k) With the. approximation'g„=&&» &,) =N«,
in the high-temperature classical limit, Eq. (40) can be written in the form

«".(~) = -(~:)'+y, T+y, T', (44)

(45a)

4k«~' p [P«(k)]' (Q+ 2', )'/Q (Q —2(u«)'/Q 2Q
pj
'

» «(~P)' &o' —(Q+2+P)' &u' —(Q —2&@««)' &u' —Q'

y (k„k„k,)y (k,', k,', k,')
123 (do Na 438a1,&2,a3 A1, k2, 03 A1 k2 03

3 . 1 2

)ii (k» k», kz)ii(kz, k», k») (co«i+ co«z +(0«z)
i»3 23« 31«( 0 (g& (g«(g& (~~ + ~«+ (g«)&

1 k2 03

(45b)

Hence at temperatures higher than the Curie
temperature T~, the dielectric constant obeys
the law

c,'((o) = C/(T+ fT' Tc), -

C = 8vMq (0)ro'Jy, ,

C = y./r„
T, = (~l)'/y,

(4Va)

(4 Vb)

(47c)

Equation (46) shows that in pure ferroelectric
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crystals, the Curie-Weiss law e = T/(T T-c) is
strictly obeyed only so long as the parameter f is
small. If this is not the case then deviations from
the Curie-Weiss law may be expected for highly
anharmonic crystals at high temperatures. The
nonlinearity constant ( characterizing the devia-
tion of the temperature dependence of the dielec-
tric constant from Curie-Weiss behavior is re-
lated to the third- and fourth-order anharmonic
coupling coefficients and is unaffected by the pres-
ence of impurities.

For an impure crystal we can write from Eqs.
(28), (30), and (33)

v'((u) = v, '(&u) + b.v',

where

6 v' =4(u', D(0, 0) + (4w/(uo)(P[(~0)'G, (~+ ig)

(48)

QPG6((a& + i& ) + (d(doG7((d + k ) —&d(doGB((d + 1,6 )] .

After substituting 6'G&(&u + is), i = 5, 6, 'I, 8, from
definitions (34) we have

d, v' =4(voD(0, 0) + —,6' Q, „,((v', )'(u,'D'(k ~,0)
&o

+ uAu„"G'(k&, 0)+ ru'&uo[C(kq, 0)D*(k&,0)

+G*(kg, 0)D(kg, 0)]] . (50)

d, T~ = —hv /y, . (52)

The para, meters C and g have the same values as
in a pure crystal, as the influence of defects upon
a,nharmonic coefficients is not considered. The
first term in Eq. (52) in reality does not depend on

~', as follows from Eq. (45a).
We thus see that the influence of defects on the

dielectric constant of a ferroelectric crystal in

the paraeleetric pha. se appea, rs only in the shift of
the Curie temperature, as is found experimentally.
In the first approximation, for the crystal model
considered here, it follows from Eqs. (50) and (52)
that the shift in the Curie temperature caused by
the impurity depends only on the changes in the
harmonic force constants between the impurity
and host lattice ions and can be positive or nega-
tive. It thus explains different signs of AT~. This
a,grees with the calculations of Dvorak and Glogar"

The change in v' due to defects is independent of
temperature and will lead to a, change in the Curie
temperature T~ only. For an anharmonic defect
crystal using Eq. (48) we obtain

e'(~) = C/(T- Tc + gT'},

where T~ = T~+hT~. The change hT~ in the Curie
temperature caused by the defects is given by VI. MIt:ROY(AVE ABSORPTION

For the defect model of a ferroelectric con-
sidered here, the Green's function G(z) is given
by Eq. (29). Using this expression, the loss tan-
gent (7) equals.

tan5(u) ) = I'((u)/[(o' —v'((g )], (53)

which for microwave photons, v «v, becomes

tan5((u) = —I (~)/v'((u) . (54)

As shown earlier, I'(&u}/2v(e) corresponds to the
half-width associated with the damping of the
Cochran soft mode. Hence in conformity with the
suggestion of Silverman, ' the damping of micro-
waves may be understood to arise due to the crea-
tion of a virtual Cochran polarization mode excita-
tion by the transverse electromagnetic radiation
and the subsequent decay into real phonons by
scattering from lattice imperfections and third-
and fourth-orde r anharmonicity. Def ining

in the harmonic approximation. However, to sec-
ond order in defect parameters, AT~ depends on
both C and D which may lead to either cancelling
or reinforcing effects in the shift. Another new
result is that AT~ depends also on the microwave
frequency employed. For the static dielectric
constant, the Curie temperature shift is solely
determined by the parameter D, i.e. , foree-
constant changes.

A word may be said for the dependence of hT~
on the concentration of randomly distributed de-
fects in a, crystal. For changes in the short-
range forces between the ions, Eq. (lib) shows
that D(0, 0) is nonvanishing only for those values
of (sa') which represent the lattice sites in the im-
mediate neighborhood of defect at the site (s'z').
If the concentration of defects is such that the
range of influence of the different defects is small-
er than the average distance between them, we
obtain n equal terms when summed over (sz). In
such a case the shift of Tc mill be proportional to
the concentration of defects (n/N). Similar con-
siderations show that even the second term in the
expression (50), representing the shift of Curie
temperature in the next approximation, is propor-
tional to the concentration of defects. Thus a lin-
ear eoneentration dependence of the Curie -temper-
ature shift can be expected in a broad range of
concentrations of substitutional isovalent defects,
which has experimentally been established. ' How-

ever, for the purpose of a quantitative compa, rison,
there are difficulties in the calculation of the Curie
temperature shift from Eqs. (50) and (52), as it
requires a detailed knowledge of the forces be-
tween the ions in a perfect a,s well as in a, n im-
perfect crystal.
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(56)I"(~)= I',„«(&)+ I'u(&)

with

I' „«((0)= 4w(do[I'i(A) + 41'2((d) + I 3((d) + 1 @((0)],

I', ((u) =-ImG, ((u+ie); i =1, . . . , 8

where the Green's functions G, (&u) are given in
Eels. (34), we can write from Eqs. (32) and (33)

I'u(&) =(4~/~:)[(~:)'I',(&u) —~'I', ((u)

+ (d(d OI 7((d) —(d (do I'8((d )] . (68)

Considering three- and four-phonon energy-con-
serving processes giving rise to damping of micro-
waves, the expressions for I";(co) (i =1, 2, 3, 4),
where ~ is the microwave photon frequency corre-
sponding to which a polarization-mode phonon of
frequency ~ is virtually excited, are obtained as

I",(cu) = —
4

ga'(k)(N »
—N»') 5(&u + ru» —e»'), (69a)

I', ((u) = —Q[ P'(k)] '[1+(N', )' —2N, N„'](5(&u +2(u»' —0) - 5(w —2(u» +II)j, (59b)

I', (~) = g g 5„,y(k„k„k,)y(k,', k,', k,')((1+N„',N,', —N„',N,', —N„', N'„, )
1 /2 03 al jhow A3

x [5((l) —(g» + hl» + (g» ) 5((g + (lp» —+» (lg» )]
- ((1 - N', ,N', , + N,',N,

' —N, ,N', ,)5(ur —e», + e»', —&u,', ))-(&u», —&u„,]),

I', (u&) = g g (5„,+5„,+5„,)p(k„k„k,)p(k,', k,', k,')
4~,42, A A'g, kg, ks

&&(((1+N',,N;, —N', ,N;, —N,',N,', )[5(~—&u»', + a&», +&a'», ) —5(~+~; —~», —~»,)]]

For 1,(&u) to 1,(e) due to impurity scattering, we find correspondingly

I', ((u) =-Q D '(k„0)5(v —(o»' ),1
(60a)

I'6(&o) =—Q C '(k„0)5((u —(u»),
1

I', (a)) =—Q C(k„0)D*(k„0)5(a)—(o»),
1

1,(e) =-—g C*(k„0)D(k„0)5(&o-&u»).

Substituting for v'(&o) from Eq. (48) into Eg. (64) we have

y, (T- Tc+1T')ian5=-I"(&u),

where

eked+'

n

As is evident from (60), I'~(+) is independent of temperature. In the high-temperature limit, I',„«(+) from
Eqs. (6V) and (69) has the form

I',„«(&u) =AT+ BT',

2vksraoo n2(k)A=-
0 5(Q) +(d» —(d») (64a)
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1 ~k k u~ ~k'u k'~y,k„k„k„y,k „k„
(uklCuk (dk3

&& [ 6((d —(d', + (d„+QJ,) —6(& +~g, —&y, —&y, ) —6(& —&6, + &y, —&0,) —5(& —~k, —~a, + +A, )1

, p (k „k„k,)p, (k,', k,', k,')

kit 20k3 kllk2 ~ k3 ('dk, &k2k,

xl(g~-~;, ~;, ; &-a(~+~; -~;,—;,)) I:; —~; )+{ l, -~ill). (64b)

The factors A and B depend linearly on the frequency & and may be related to the parameters P and y of
the dielectric loss equation.

The expression for I'~(&u) from (58) and (60) is given by

I' ((u) =—,Q [(cu') D (k„0)+(u C (k„0)+ &u(u'C(k„0)D*(k„0) + (u(u'C*(k„O)D(k„0) j 6((u —(u') .
O k

Setting

C(k„0)= ((u', &uo)'i'C'(k„0)

(65)

D(k„0) =(u)', (u', ) 'i'
D'( „k)O,

Eq. (65) can be rewritten

I'~(e) = 2m+ —D "(k„0)+ &u'C "(k„0)+ &uC'(k„0)D '*(k„0)+ &uC'*(k„O)D'(k„0) 5(~ —~~) .
1

(d
(66)

The occurrence of the factor 6(&u —&u'„) in Eq.
(66) justifies the physical interpretation of the
mechanism responsible for the attenuation of elec-
tromagnetic waves caused by the presence of de-
fects given by Vinogradov. ' It is suggested that
the polarization-mode wave connected with the
electromganetic wave is scattered from the de-
fects by the creation of phonons with different di-
rections of wave vectors whose frequency is equal
to the electromagnetic wave frequency, i.e. ,
(d~ =~, and these are acoustic phonons. The ex-
cess momentum, for momentum conservation in
the process, is assumed to be supplied by the de-
fects.

Equation (61) expresses the loss tangent of a
ferroelectric crystal with defects. Neglecting the
change in the Curie temperature due to defects,
from Eqs. (56), (63), and (66), the expression for
the loss tangent has the form (1). The parameters
n, I3, and y are given by

As follows from (64) and (67) the parameters P
and y arise due to three- and four-phonon anhar-
monic interaction terms of the lattice. They have
the same values in the pure and doped materials
and very linearly with +. The parameter n de-

pends only on the impurity content of the material
and vanishes for pure single crystals. These pre-
dictions are in agreement with the experimental
observations.

Experiments give a linear & dependence for the
temperature-independent term in the expression
for (T- Tc) tan6. Summing over k in Eq. (66) in
the Debye approximation, this is found to be the
case in our expression for n when the introduction
of impurities results in a force-constant change
only. When mass changes also become appreci-
able, terms with w' and &' dependences would also
occur. The reason why the higher-frequency de-
pendences have not been experimentally observed
is that these experiments were performed on
mixed polycrystalline materials for which the con-
tribution l, , for scattering from lattice imperfec-
tions, namely, grain boundaries and lattice de-
fects within the grains, dominates over the con-
tribution P„ for scattering from foreign defect
atoms. The parameter n is composed of defect
I'~/y„and imperfection I',. /y, pa. rts. We have
calculated only 1-~. We contend that in single
mixed crysta, ls of Ba„Sr, „TiO„where the contri-
bution I',. would vanish, the nonlinear frequency

ImP

terms in F~ could be experimentally detected, pro-
vided they lead to losses appreciable compared to
anharmonic losses. This might be also the case
for the system SrTiO, doped with Fe" or Gd"
ions.
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We have obtained a linear u dependence for the

loss tangent for a three-dimensional crystal when

there is a force-constant change only. As men-
tioned earlier, an extension of the linear-chain
model of Silverman' to a three-dimensional lat-
tice would lead to the loss tangent being propor-
tional to the cube of the frequency, contrary to
experiments. Silverman has argued that frequency
dependences higher than linear were unlikely to
be observed, as in the expression for n each extra
w would come with a factor ~~ in the denominator.
The parameter n is therefore reduced by. the fac-
tor (&u/so}'=10 '. This is not valid here as in

our case the higher cg terms do not occur with u',
in the denominator.

VII. SUMMARY

In the present paper, we have developed a theo-
ry for the influence of isovalent impurities on the
Curie temperature, and the frequency and tem-
perature dependence of microwave loss in ferro-
electrics due to impurity and anharmonic scatter-
ing taking into consideration the detailed charac-
teristic s of the de fec ts. The treatment is based
on the double-time thermal Green's function and
the Kubo formalism for the Silverman and Joseph
Hamiltonian augmented with dominant four-phonon
processes by including both mass and harmonic-

force-constant changes. It is shown that the effect
of defects on the real part of the dielectric con-
stant at low frequencies appears only in shift of
the Curie temperature. In the first-order approx-
imation of defect paramete rs, the defect- induced
Curie-temperature shift depends only on the force-
constant changes and is proportional to the con-
centration of defects, in conformity with the ex-
perimental results. For the crystal model con-

sideredd

he re, the expre ssion for the mic rowave-
loss tangent has the same form as the empirical
result obtained from experiments. A plausible
description of the microwave absorption is obtained
when defects produce appreciable changes in the
harmonic force constants linking their host neigh-
bors. However, detailed quantitative calculations
of the Curie-temperature shift and microwave-
loss tangent are extremely complicated as they
require a knowledge of the lattice dynamics of de-
fect ferroelectrics on some specific model of the
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