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Density of electronic energy levels in disordered systems*
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The behavior of the density of electronic energy levels for a simple model of a disordered system is studied in
the limit of very low energies. By reformulating the problem as one in Brownian motion, it proves possible to
obtain the leading term and the first correction to it, The leading term is just the one already conjectured by
Lifshitz.

I. INTRODUCTION

In recent years there has been considerable in-
terest in the electronic structure of disordered sys-
tems. ' Many interesting questions and conjectures
have been formulated, although very little has ac-
tually been proved. In this paper we shall address
ourselves to one of the simplest of these conjec-
tures. It concerns the distribution of energy levels
for a very idealized model of a disordered system.
The model is the following: An electron is allowed
to interact with fixed "impurities" of which a num-
ber N are distributed "at random" in a volume V.
(The exact meaning of "at random" will be made
clear below. ) The interaction between an "impuri-
ty" located at the point R and the electron at the
point r is represented by a short-range purely re-
pulsive potential v(r —R). In the thermodynamic
limit (N- ~, V- ~, but X/V- p) it is not difficult to
show that the density of energy levels per unit vol-
ume in the neighborhood of the energy e [g(e)j is
well defined and vanishes for a&0. We ask: How

does g(e) behave as e approaches zero from above?
This nontrivial question seems first to have been
asked and answered by Lifshitz, whose intuitively
very appealing argument we give below. The pur-
pose of our paper is to put the Lifshitz argument
on a firmer mathematical basis and to obtain the
first correction to it.

We may summarize Lifshitz's idea as follows:
Electronic energy levels for arbitrarily small en-
ergy can only come from states with wave functions
localized in very large regions which are empty of
impurities. If the electronic wave function over-
laps an impurity appreciably, there will be a finite
potential energy of interaction, while the largeness
of the region is necessary so that the kinetic energy
can be made very small. Now, as is well known,
the probability of a large region of volume Q being
free of impurities in a random system of impurities
is proportional to e ". Since the volume Q is very
large, the low-lying levels for states localized in
it will be insensitive to the exact conditions on the

c,= —,
' 4~(-,'~')"'p . (1.3)

The expressions (1.2) and (1.3) constitute the
Lifshitz conjecture. Although the intuitive reason-
ing involved is very physical and plausible, it has
proven difficult to obtain this result directly from
the Schrodinger equation for the problem.

The method which we shall describe in the follow-
ing sections has the advantage of allowing us to in-
troduce in a natural way an approximation scheme
which corresponds closely to Lifshitz's physical
idea and which yields Lifshitz's conjecture as its
leading term. The method is based on a reformu-
lation of the problem in terms of a problem in
Brownian motion. This is done in Sec. II. For long
times, the solution of this problem is equivalent
to the knowledge of g(e) for small e. A variational
method is then given for solving this problem, and

boundary (BQ) of 0, and we may take the wave
function to be zero on 8Q. Now, clearly the main
contribution to the probability of finding a low-level
e for the system will be proportional to the prob-
ability of finding a region 0 whose losoest level is

The probability of finding a region whose second
level is e will be exponentiaQy smaller because of
the exponential dependence of the probability on Q.
Further, because of this same exponential depen-
dence, the regions whose shape is such that 0 is
smallest for a given lowest level will make the main
contribution. By a well-known "isoperimetric"
inequality, this will mean spherical regions. The
lowest-level e in an empty spherical volume of
radius Bo with the boundary condition that the wave
function vanish on its surface is given by

e = m'/2R, ' or g, = (m'/2e)'" (l. 1)
(units such that m = I= 1, which we use throughout
this paper). The probability of such a region exist-
ing is proportional to exp[- p(4m/3)RO], so that the
density of low-lying levels will be given by

g(e) - exp(- c,/e' ) (e- 0),
where
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the solution is reduced to solving a certain nonlinear
differential equation. In Sec. III, this equation is
solved in the long-time limit and the leading two
terms of g(e) obtained from it. Finally, in Sec.
IV the corrections to this variational method are
estimated and shown to be smaller than the terms
obtained in Sec. III.

II. FORMULATION OF THE PROBLEM

For the system described in the Introduction, the
Hamiltonian is

g(e)e "de=a(t) .
~0

(2. 6)

(2 7)

That is, to findg(e) we need only find e(t) and in-
vert the Laplace transform.

To find z(t) we proceed as follows. Define

t

&Z~({R}))i
0
t

H = o Po + U({R})-=Ho+ U({R}), (2. 1) where Z, is the partition function in the absence of
impurities. Z, may be calculated easily and yields

N

U({R})=g ( -R,),
)=1

where the R& are the positions of the impurities.
To calculate the density of states, we consider
first the "partition function" Z, ({R})defined by

(2. 2)

Z,({R})=Tre 'e, (2 3)

where t is real and positive. Clearly, for a large
system

Z, ({R})= dee "Vg(e, ({R})),
0

(2. 4)

since Vg(e, ({R}))is the density of energy levels for
the system. Now let the probability that 5,, be in
did, , Tto be ind%z, etc. , etc. be d5&/V, dg/V ~ ~ ~

dent„/V. 4 For each arrangement Z, ({R})will have a
certain value, so that it is also a random variable
with a certain probability distribution function.
Now it is not difficult to show that in the thermo-
dynamic limit, as would be expected on physical
grounds, Z,{R}/V is certainly equal to its mean
value e(t) defined by

dent, dR, dR„Z, ({R})

N/V" p

(2. 5)
so that there is a mell-defined density of states per
unit volume, g(e), given by

z', = V/(2vt)"',

I(t)= dr, &r e '
~ro)

V imp

(2. 8)

(2.9)

in the coordinate representation. Now we inter-
change the impurity average and the rp integration.
Since after averaging over the positions of the im-
purities there is no preferred position and
&roIe 'sIro) cannot depend on ro, we may write
(ro now some arbitrary point of V)

1(t)=~Z V&&ro~e '"~ro))im,
t

« ro le-'" Iro)) i
«roIe ' 'Iro)h o

(2. 10)

The right-hand side of (2. 10) may be written as a
Wiener or path integral, according to the well-
known Kac formula. That is

l())= ((exp)-( U(rv)d)') re) )
exp — U r„dt' rp (2. 11)

where the inner angular bracket means the Wiener
average over all paths r, , beginning (t' =0) and end-
ing (t' =t) at ro. For our purposes, we may take
the definition of this average to be

f dr&dro ~ . ~ dr„PoiPio ' ' P o exP( t Zd=s U(rd'))~ ~

~ ~ ~ ~ ~ ~
(2. 12)

where

8«(Fg«P j) /2'

(2o v)'~' (2. 13)

v = t/(n+ 1) . (2. 14)

Making use of (2. 11) enables us to carry out the
impurity average and thermodynamic limit rather
simply

N t
exe —

)) U(r, .)dr =]:I )) exe — v(rr. '—Rr)dr)'
"0 imy g 1



4462 B. FRIEDBERG AND J. M. LUTTINGER

dRexp — v(r, , —R)dt'
i~ -v 0

( t l N

1 —— dRl 1 —expl i v(r, , —R)dt' (2. 15)

For a v(r) which goes to zero sufficiently rapidly as }r~ does to infinity, the integral over 0 converges if
extended over all space. Therefore, in the thermodynamic limit we may write

t N

lim exp — I/(rt, )dt' = lim 1 ——
l dR 1 —exp — v(rt, —Q)dt'

NOF 0
'

imp N-- "0
N/F" V

e-Pw

where g is the functional
t

W=
~

d% 1 —exp — v~(rt, )dt'
0

vI((r) —= v(r —1t), (2. IV)

and the 1t integration is extended over all space.
Putting all these results together, we have

z(t)= 2,t)5/2 (e "lo)t, (2. 18)

1
lim —

5 Inz(t) = —8,]8 0&g &~, 0&@&1,

where we have chosen the origin to be the point r0.
This type of formula seems first to appear in the
work of Edwards and Gulyaev. The difficulty in
using it lies in the fact that except for some very
simple functionals, path integrals are extremely
difficult to evaluate. We shall not be interested,
however, in a general evaluation of 2(t), but only in
its behavior as t approaches infinity. The reason
for this is that from (2. 6) the behavior of 2(t) for
large t is, loosely speaking, determined by the be-
havior of g(e) for small e. More rigorously, such
results may be formulated as Tauberian theorems.
For example, the following theorem will be suffi-
cient to obtain the Lifshitz conjecture.

Suppose

A =pR'- 4 . (2. 23)

The first factor in (2. 22) may be thought of as
giving the contribution to z(t) when the electron is
trapped in the potential Q, while the second factor
represents the "probability" of finding such a po-
tential. We shall determine the "best" Q by the
following argument. Since the second factor is an
average of the functional e ~, we have, by Jensen's
well-known theorem for convex functions,

&e-Alp ~) ~e-&AIo, ) t)t (2. 24)

Therefore,

(2. 16)

I

havior, come from electrons trapped in a potential
well of large radius. Let us be a little more gen-
eral and not specify the shape of the potential well
for the moment but simply call it Q(r) If w. e only
had such a well present, z(t) would be, by the Kac
formula, proportional to (e [0&t, where

4) =
~~ Q(rt, )dt' . (2. 21)

0

Therefore, we write

&en5'lp&
&

-
0

&

( e ~0&t

(e f0&

(2. 22)

where

then

where

(1 P)PO/(&-5)II&/(( 2)

(2. 19)
(e Pw p) ~ (e 5)

lp&
e-&Alo&5&t (2. 25)

We choose (t) such that the right-hand side of (2. 25)
is as large as possible, so that we will have the
strongest possible inequality of this form. That is,
we choose (t) such that

Therefore, if the Lifshitz conjecture is true, we
would expect to find (2. 19) with

&e-o lp &
8-&A lo ~ o &t 0

5«(r)
(2. 26)

P
3 fI 5 (4&4)2/5p2/5 (2. 20)

Now one of the principal advantages of the path-
integral formulation as given by (2. 18) is that it
allows us in a rather natural way to formalize
Lifshitz's argument in the Introduction. That is,
the low-lying states, and therefore the large t be-

where 5j5$(r) is the variational derivative of a
functional of Q with respect to (t) at the point r.

So far all we have from this procedure is an in-
equality; so one may ask if any progress has been
made towards an evaluation. However, (2. 24) is
actually the first term of th(. . xact (assuming con-
vergence) semi-invariant or cumulant expansion,
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(e e )= exp I- (A ) e—((A') —(A)')

——,[(Ae)- 3(A) ((A') —(A')) —(A )'] e ~ .
I

.

(2. 27)
Therefore, if we can show that as t-~ and (t) is
given from (2. 26) (A & increases more rapidly with
t than the other semi-invariants, then (2. 25) will
be an asymptotic evaluation rather than an inequal-
ity. This proves to be the case.

H = —,'P'+ Q(r) .
Then zn terms of the Green's function,

G (r P' (t)) =- (r e '"IF &

(2. 28)

(2. 29)

we have at once, making use of the Kac formula
[(2.10) and (2. 11)],

In order to carry out the procedure described
above, we introduce some notation. Suppose we
have a Hamiltonian Il given by

&e
'

O&, = (2vt)"'G, (O, Oly),

fdft([1 —exp(- f, v"„(&,.)dt')]exp( —f, g(&„)dt')i0),(II'lo &&~= (exp(- Jo (t)(P, , )dt')io&,

=
ll d%[G,(0, 0 (t') —G, (0, 0 P+v"„)]/G,(0, o (t)),

(2. 30)

(2. 31)

(2. 32)

(fo P(r )tdt'e px(- J~'(t)(P„)dt')io&,
(exp(- J,'y(P, , )dt )iO&

8 (
ln expl — p, P(r„)dt' 0

Sp, 0

sGg(0, 0IP, (t))
G (0 pl~)Sp,

Bln(22t) i G,(p, pit], (t))

Sp. -"1

(2. 33)

From these formulas it is not at all difficult to
work out the criterion (2. 26). Since the result is
quite complicated and we are really only interested
in the limit for large t, we shall only give the
asymptotic evaluation for large t here. To do this,
we need the following well-known representation
of the Green's function [which follows at once from
the definition (2. 29)]:

G,(r, r'I(]))) =+e '~&(o)g&(r (t))]C),(r' (t)), (2. 34)

where the tJj&(r i Q) and the E&(Q) are the (real) nor-
malized eigenfunctions and eigenvalues of H, i.e. ,

A ~(r I 4) = E&(4)(~(r
I 4) . (2. 35)

Now we expect from the Lifshitz picture (and will
find) that Q is a large potential well in which the
lower states form a discrete spectrum. There-
fore, for large v we expect the ground state $0, Eo
to dominate (2. 34) with an error which is exponen-
tially small; so we may write

G~«, ol&)=&o(ply)e '""', (2. 36)

G~(0, o I4+~s)= to(OIA+~a)e "0""", (2»)
and

=—('(oil 4)e '"'""
Sp. a=1

t(2(0
I y)e tgo( ])sEIIO-(P0)'

2 fzo(I]l&q -(p
I y)

40( tv 4)
Sp,

(2. 38)

The derivatives in (2. 38) are directly calculable
using perturbation theory (g = 1+ e, e- 0),

draco(r 0) 4(r),
Sp, g=i

(2. 39)

S]co(oiM 0) g U40(rl (t) (t(r)]If(rate)dr)4(pl(t)
g=o Eo(~) E,(e)-

(2. 40)
The leading term of (2. 38) is the first term on the
right-hand side (because of the factor of t). We
shall drop the second term. (After the calculation
is complete, we can go back and evaluate this cor-
rection term with the (t) we have obtained. It is
then found that this correction is smaller than the
terms considered in this paper, though it is not ex-
ponentially small. ) Therefore, we write to the ac-
curacy considered,

sG~(0 pied)
Gs(p, pig) Bt]'

G, (o, pl~a) =-t
II ~e'o(&le) e(&), (2. 41)
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(alp y& =
) ):-pj —

~o(p)~)

x exp i- t)E;)P + x„)—E,()')1))

—t
~

dr Oo(r I e) e(r) . (2. 42)

2 3/2
0-tQ+lsg (0) g)+1m(2rt) (2. 43)

Again, the factor go(0()t)+vs)/)C)o(0($) may be re-
placed by unity in the limit of large t, to the order
which interests us. The reason is essentially that
because of the factor exp{- t[Eo()P+vs) Eo()t))] j,
only large R (of the order of the size of the well )P)
where the wave function is small contributes.
Since v-„=v(r —5) is a short-range potential, this
has little influence on the wave function at the ori-
gin. Thus we may write

(e el-p) e-&~)o, o&,

2

Q =
l~ )I)

—)I)dI'+ — dP{l —exp[ 2-o'at/ ($)]) .
2

(2. 47)
[We now use the simplified notation (o($ [)P) = g(P),
EoH) =E. l

Since Q is a functional of g alone and g is nor-
malized, the condition (2. 45) is equivalent to

Q —X
li )I) (f)dr'I = 0, (2. 48)

il )C) (r)dr= 1 . (2. 50)

Comparing (2.49) with (2. 35) when )Po = )t) and j = 0,
me have"

where X is the Lagrange multiplier for the normal-
ization constraint. This gives at once

—,'pop(r)+ 2map e "'o "g(r) = Q(r), (2. 49)

where

Q =Eo(@)—
l

)C)o(r
l
4') 4'(r)dr

X=E,

P(r)= 2mape

(2. 51)

(2. 52)

+
&

) d5(1 —exp{- t[Eo(P+ va}—Eo(4)]]')p

=
l~ go(rl)t)) op go(r l)t))dr

ln(e lp), e ~"' 'oi~ =tQ . (2. 44')

The stationarity condition (2. 26) becomes

5Q/50(&)= o . (2.45)

To proceed further in a simple manner, we must
make some assumption about the potential vR, so
as to be able to evaluate the energy shift in (2. 44).
The simplest assumption (which we shall make) is
that the range of v(r) is extremely short, shorter
than any other length in the problem. This enables
us to use the Fermi method of pseudopotentials. '
A straightforward application of this method (see
Appendix A) gives the following result: to calculate
Eo(@+v-„)—Eo($), we may replace v(r —Q) by
2ma5(r 5) [wher—e a is the scattering length for the
potential v(r)] and use first-order perturbation
theory. That is,

E.(e"-.) —E.(e)= 2-C'(& le), (2.46)

so that

+ — d&(l —exp{- t[EO()P+ v R) —Eo(e)]]') .
T

(2.44)
We mayneglectthe term Info(0))t)) in the exponent
since it is found from the same type of self-con-
sistency argument as we have been using to be of
order lnt, which again is negligible compared to the
terms we are retaining. Finally then, we may write

Informally, we may regard (2. 52), together with
the Schrodinger equation,

~P')I)(r)+ @(r)q(r) = Eq(r), (2. 53)

as a pair of relations by which the electron and the
impurities influence each other in a "self-consis-
tent" approximation. If the impurities were dis-
tributed uniformly, we might approximate their ef-
fect on the electron by a smoothed-out potential
2wap. But if the electronic state is chosen first,
the impurity density p is multiplied by a Boltzmann
factor exp[—2watg (r)], leading to (2. 52). Putting
(2. 52) and (2. 53) together, we get (2. 49) which de-
scribes the electron moving in the mell from which
impurities have been excluded by their interaction
with that same electron.

It remains only to solve (2. 49) and (2. 50) in the
limit of large t, which will be done in Sec. IG.

III. SOLUTION OF THE SELF-CONSISTENT EQUATION
IN THE LARGE-t LIMIT

po p2+I 2/&2

where

(3.1)

(3.2)

and I. is the square of the orbital-angular-momen-
turn operator with respect to the origin. Clearly,
because of the positivity of L /r, we have

In solving (2. 49) and (2. 50), we first remark that
the solution g which minimizes Q may be taken to
be spherically symmetric about some arbitrary
point (which we choose as origin). In (2. 47) we
may use the mell-known decomposition
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Q —(PsP, /rP) —
jl dP(I —e "' '"') -=Q„. (S.3)

Now the equation for minimizing Q„ is the same as
(2. 49) with P replaced by p„. It involves only
differential operators with respect to ~. As we
shall see below, we obtain a unique solution to this
equation which is therefore a function of r alone.
Clearly, from (S. 3) the minimum of Q is greater
than or equal to the minimum of Q„, but by taking
(j) in (2. 49) to be a function of r only, we attain the
same value for Q as for (Q„) „, and this is there-
fore the best we can do. Putting g = X(r)/5', we ob-
tain

shitz conjecture [compare (2. 20), remembering the
exponent is tQj.

To verify that Q' is negligible compared to the
term we have calculated, we compute it as follows.
Put r = 5()(1 —$), and replace f by (3.11) in the ex-
ponent,

1 ~ 2
Q'= —

~

d](I —g) exp —4vpab5
4mpbp I

sin 5/f,

ss 0 (1-&)

(3.13)
Since bp-~ as t- ~. the integral can easily be cal-
culated by saddle-point methods, the main contri-
bution coming from the neighborhood of $ = 0. This
yields

4v ~~ d5'g'(r) = 1,
0

(3.5)

—222"(r)+ 2«p exp [-2«tp(r)/5"]X(r) = EX(r),

(3 4)

Q
d = 5II() 5 S~m t(2/f) ()

where Xp is the "skin depth" defined by

~.-=(1/4«p)'".

(3.14)

(3.15)

with

X(0)=0. (3.8)

To get an idea of what is involved in the solution
of these equations, let us first take a "trial" wave
function X corresponding to the crudest Lifshitz
picture. That is, take X to correspond to a poten-
tial well which is zero until x= b and then infinite.
The b is then determined by the condition that the
resultant Q be minimized. The normalized wave
function for such a well is

X = sin —r &2mb, (S.7)

and

ssp ('s s / as sin (sr/b))Q=~2+
~

5 t—ex' p]-
5 2

(S.8)
2

m 4'=&2+ 3 b +Q', (3.9)

or

where

drr ssp)
as sin (srlb)) (b ip)

f .() (, kr

First, assume Q' to be negligible (for large f)
Then the best value of 5 (say b()) is determined by

8 w 4'P+3 b =0,

X, (5 )=A sinkr . (3.17)

In region II, we must still satisfy (3.4). How-

ever, since the only region of r where the expo-
nent can be of order unity is a little region of width- Q about 5'= 5, the leading term for the wave func-
tion (y2) in II satisfies

2
——,'y2" +2mapexp —2mat ~ X&= —,'0 y~ . 3.18

b j
Putting

(3.19)

This result suggests the following method of in-
tegrating (3.4) for large t: The potential term of
(S.4) will be negligible till the exponent 2matg (r)/r
is of order unity. Using the approximate trial func-
tion y in P as a first step in an iterative procedure,
we see that this does not happen until x —bp is of
order Q. Further, since X equals zero for r &b(),
the potential quickly approaches 2map. In this po-
tential, the wave function will have an exponential
decrease e '" '()'/X(). Therefore, we divide r into
two ranges I and II. In I, O~r~b —gp, where b

»'gp » Xp, In II b —gp~ x ~ oo ~ The exact value of
the quantity 5 is somewhat arbitrary (as long as it
is within about X() of b()). A very convenient choice
proves to be such that the energy E is given by

E= ,'k, k=v-/5 . (S.16)

In region I, the wave function (y, ) may be taken
(with exponentially small error in f) to be that of
a free partic1. e,

b5= vt/4p .
The leading term of Q(Q()) is then given by

5 m~

Q
2 5 (4 4)2/5 2/5 t-2/50=3 2b~

= e
0

(3.11)

(3.12)

which is already accurante enough to give the Lif-

and

X,= bg(q)/b)'2«t,

Eq. (3. 18) becomes

dg
~ 2+me g= P 8 ~

ag

(S.20)

(3.21)



4466 R. F RIEDBERG AND J. M. LUTTINGE R 12

Since b will turn out to be approximately b p, we
can drop the right-hand side which yields a correc-
tion one order smaller than those considered here,
and obtain for the leading contribution to g the equa-

tionn

WOO

N, = 4(( I d)I g2(t})
2mat -.„
b2 "a( ap) g2

2xat I Idg/dq I

dg 1 a2d, +~e 'g=0. (3.22)
2b2)(

~

a( ap) g2
dg (3.28)

1 -e (3.23)

Continuity of y and X' at r = b —gp gives

Multiplying (3.22) by P(g' and integrating from q to
te, we have at once

Since g(-t}0)» 1, the leading term of (3.28) is

0 g ( 10) 0( 3/b3)
at (3.29)

Thus, neglecting corrections of order smaller than
Q/b, we have

b . m

t g( )io)=-A sin —(b —)io) 1=2m@ b or2 1
& 2mb

(3.30)

or

w
=A sin —

gp =A —gp

b, w m

t g'(-)lp)=A
b

cos —(b -qp)

m 7r g—cos - g =- -A

A moratg(-)Io)=—
b2 no»1 2— (3. 24)

[Actually the )lp term in (3.27) cancels N2 to leading
order, as it must since the result has to be inde-
pendent of )I0. ]

Using (3. 23), (3. 24), and (3.30), (3.25) becomes

1 A ttV 2t(at t(v at
2 2b

blab

or, by (3.15),

b =—=b
mt

4P 0

Atty'2(tat
)io =

b2

The normalization condition (3. 5) becomes
os sp )0 r oo

1=42 l~ dt, x'=4((
I

dt, ~(, 4((l~
0 "0 Jb~p

A.
N(=4m —b —qp+ " =-2mA (b - ak reap)2

(3.25)

(3.26)

(3.27)

(3.31)(4) =K+D,
(1 rb

Z=4sl —
'l ko dso —

ll sods)-=Zo ~ fCo,(2.0 2 -b
(3.32)

which is our previous result. To obtain the first
correction to b by this method, we would have to
carry the expansion of r around b (in the equation
for g) one step further. This is not necessary,
however, as is seen from the method which follows.
Now let us compute Q,

iO

dry (1 —e 2ratX /r )+ I~ Chr(l—e '2rat2 . /r
) I =D(+D2,

«p
gp )

1+ 2 p (3. 33)

2 2 2 2 2 sin2ktlp ((Xo=2sl dsdk books=skd b —olo- =, 2 — 202(o+))S. o
0 2k 2b

)"S(«k Pp) b2 "&(-Op&

dg [g'(n)] =„ I

d (1 —e ' )'"
b2 I&I («2 f)p) b2 b

atop
g(-n )-'~ d [1-(1-e ')'"] = g(-n )-

"0 at+ at+
where

(3.34)

(3.35)

dg[1 —(1 —e 32)'~']= 0. 628,
"0 (3. 36)

[The limit may be extended to ~, since g(—qp)»1 and the integral converges exponenbally. ] Using (3. 24)
and b =b p, we see that the terms linear in t)0 in K' cancel (as they must), and
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1v bc
2 b at'Ao

'

Similarly, with an exponentially small error,

4o'p (» "o
o 4))'p(b -)(o) 4op(b» —Sbo)(o)D)=

t
—

~

drr =

(3. 3V)

(3.38)

4' "", p, 4wpb
~

"""o' dg
t ~ t -i (dg/dq (n-& g )

Tjo
"0

4g(1-c ' )'"=- [r(-)(o)-c].
t p

(3. 39)

4mpb 4o'p XP oc 4vpb» b oc

3t t St at+ ' (3.. 40)

Again, the )(o term in (3.38) cancels with the g(-)(o)
term in (3.39); so we obtain

I

inequality may be replaced by an equality to the or-
der in question, we can calculate the corresponding
density of states per unit volume from (2. 6) by in-
verting the Laplace transform and doing a straight-
forward saddle-point calculation. The result may
be written (as e approaches zero)

and

1 ))o 4wpb» 2boc

2 b 3t at))o
(S.41)

1%'(~)= —(c»/& +c»/e+ ' ' ')
~

where

(S.4V)

(3.42)
1 —12c

Although it is not necessary for our calculation,
b may be obtained by finding the minimum of
(3.41). This yields

4cb= bo+
5

~o (3.43)

which can also be obtained by a more careful inte-
gration of the equation for g, retaining first. cor-
rections to the approximation x= b.

Comparing (3.42) with (3. 12) and (3.14), we
see that the leading terms agree. All the more
correct solution does is to replace the numerical
coefficient Sv ))/5= 1.06 of the correction term Q/b,
by 12c/5= 1.51, which lowers Q as it must. There-
fore to the order we are working, we find for large

Apart from the last terms (which are small correc-
tions), (3.41) and (3.9) are the same, and there-
fore, b =bo plus a small correction, as we expected.
If we write b = bo+b1, then b1 does not actually con-
tribute to (3.41) to the first order since the first
two terms have their minimum value at b = bo and
the last term is small. That is,

4mpb o 2b oc
2 bo St atop

J

c,'= —))'c/ay .
(3.48)

(3.49)

The first term of (3.4V) is exactly Lifshitz's
conjecture, and the second term is the first cor-
rection to it.

IV. ESTIMATE OF CONTRIBUTION OF HIGHER-ORDER
SEMI-IN VARIANTS

We introduce the function F(x) defined by

t
( -o(0)

ge&x) (e-a4 ~0 y) ( ( )0 (4 2)

so that

Vfe have dropped the higher semi-invariant terms
from (2. 27), fixing the potential Q by the condition
that this approximation be as close as possible to
the correct s(t). We shall now show that with this
choice of P, all the higher semi-invariants are of
smaller order than t ~o [compare (3.44)], which
suggests that for large t the inequality in (S.44) may
be replaced by an equality.

To calculate the higher-order semi-invariants,
we proceed in the following way. %hat is needed
is [see (2. 2V)]

(0&&
t

s (t)~ exp —(d»t ~ +d~t ~'+ ~ ~ ~ ),
d -=+(4))' ) p

d~»= —2(m/4p) c 1/ag .

(3 44)

(S.45)

(3.46)

Assuming, as we shall show in Sec. IV, that the

where

( )g ) d F(x)
dx"

(4 3)
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It is easily seen that the E„are precisely the de-
sired semi-invariants. For if A, is replaced by
xA in (2. 2V), we obtain, using (4. 2),

F(x)=x(A ) —(x'/2! ) ((A') —(A )')+ ~ ~ ~ . (4. 5)

To evaluate the E„, we treat separately the two

appearances of x in (4. 2), as coefficient of W and

of C. Thus we define S(p, , c() by

tl

=(-) '(n, —,— &(» ~)

Then it follows immediately that

p=l, a=0 ~

E& = PS&+ —So
]p,=g p

8 8
+2= P S2+2P —Si+ a So

p, -g

e '»~~'=(e ~~e»o!0) /(e !0)
and expand S in powers of 0.'for fixed p, ,

(4. 6)

S(u, u)=Z (-)" 'S„(u)~" s! .
0

C learly, if we take p, = 1-x, n = px, we have

Z(x) = S(1—x, px),

(4 V) Our next step is to express the S& in terms of
Green's functions. From (4. 6), we obtain

S(p, , p)= —ln .o 0
—ln(e» 0, p((!))~ . (4. 9)(e " !0), »o

e- Io,

and

E'(x) = p ———S(p, a),8 8

8 8p,

d "F(x) ( 8 s
=ipse sp,

S("

( )n & s"&(x)
?l 8 ff

The expansion of the second term in powers of p
is formally identical to (4. 5), so that on comparison
with (4. V) we have

S()=+ ln (e i 0)q /(e i 0), ,

Si= (~10 V4'&s (4. 10)

From (2. 2V), (4. 3), and (4. V) we have

S()= ln G(p )/G(1),

s (»)=(W 0, »(), do(1 — " ")
0 ~) (!)!)i0 ~)q d~d~I(G(! p+vz+v&) G(p, /+vs)G(p, p+v"„.)3P = yP t yP t=

G(u4) G'(u 4 )

( G(! 4)

(G(p, p+vit+va. ) G(p(t)+vti)G(p, p+va. ) G(p, p+v-„-)
G(~ 0) G'(p 4) G(~4)

G (OQ+ v R) G (I'Q + v R n) G (u Q + v Re i)
G'(p 4) (4. 11)

Here

G(V)-=G, (0, 0i V) . (4. 12)
So(u) = j d&idWe '""'""""""'Dio(V)

Evaluating these expressions for large t by
(2. 36), and remembering (that to the order of in-
terest here) we can replace expressions like

So(p)= l~ d7t|dltzdRoe " »'"i'~»' ~o»'""'I) (p)

(4. 13)

go(0!p, Q+vR)
(F)o(0!p P)

$0(0 1 p P+v R+ v Rr)
Po(0!p4)

by unity, we find

So(v ) = —&[&o(P0) —Eo(e)l

S (p) j~ dg(1 e fo»(R))

etc. , where

= e-«~ &R~ ~i
tb, ~ (Rg Rao 3j

123

+ (e '~»(&'"o)+ cyclic) —2,
etc. , and the 6„'s are given by

&,(&)=&o(V4+vR) —&o(p 4),

(4. 14)

(4. 15)

(4. 16)
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~n(» &') = EO(»1 tj')+ V tt+ V-„,)

E-o(»1 4) &„(&)- &„8'),
~„(%,O', Tv') = zo(»»4+vIi+ vs + v R-)

(4. 17)

fg' -O(ah /bo), tA„'-O(()»t/1ob )o), etc. ,

(4. 20)
where

~ Tt„) . (4. 21)

Since»tg/bao«1, we may keep only its lowest power
in (4. 14), (4. 15), etc. Thus we have

Di2=- —t&~ y (4. 22)

D,aa= —tdF„'+ f (a'„an + cyclic), etc. (4. 23)

We are now in a position to estimate the magni-
tude of I'2, j'„etc. From the foregoing arguments,
it follows that the m-fold integrals in (4. 13) for m
~ 2 really cover only a volume of O(j»obo), and that
the integrand in S is O((al»o/bo)" '), so that S„it-
self is comParable to Qbo(aj»o)" or to j»obo/P
Differentiation by p, does not change this estimate,
and hence, p"S contributes a quantity O(pgbo)
to each E„with n~m. The same reasoning applies
to the second term of S1 in (4. 13) and to all deriva-
tives of SD The first term of pSq is obviously
larger, approximately 3mpbo, but it is p, indepen-
dent and therefore contributes only to F, [cf. the
second term of (3.9)].

It follows that the F„(n~ 2) all contain leading
terms comparable to pgbo, which is just the order
of the correction we have obtained to the Lifshitz
conjecture. But if these terms are calculated in
the pseudopotential approximation, we find that

-Eo(»t»j))- [A, (5,, 5')+ A„(R', k')
+ 4„(%",5')]- [a„(%)+a„(R')+ a„(%")],

(4. 18)
~ ~, 5'"')= EO(»1»I)+ V-„+Va»n))"EO—(»1 '))

—(all lower-order 6„'s) .
(4. 19)

Now the D's in the integrands of (4. 13) can be
expanded in products of 6„'s. For the exponential
factor, e tan'"») is practically zero unless )» I

~bo —Q; that is because dropping even a single
impurity into theintexior of the well will raise Eo
drastically. So the integrals in (4. 13) can just as
well be restricted to the region where all the

~ » [

bo Q. But—if any ~%»I ho+a, all the 6„'s con-
nected with it will vanish since the wave function
is already excluded from that region. Therefore
we need only evaluate the A„'s in (4. 14), (4. 15),
etc. , for positions R„R»..., onthe "skin" of the
well, l%'I =boa Xo. This problem is treated in Ap-
pendix 8, with the result that

Ala' ~ n (2 )nK12' ~ n

where

~$2 ~ ~ 0
yg

5"Eo(»» 0)
5[»14(»)]5[»»4(&2)] "5[VI(%))

(4. 25)

(4. 26)

(4. 27)
To calculate the derivatives of the S„'s (which are
needed to calculate the F„'s), we use (4. 26) and
(4. 27), obtaining

l g2 ~ on 5
(2»t+)n Kla 'n

Bp. Bp,

= (tera)"
I da„.~

~ da„.z

g )~$2% % ng

5[» 4(jIt..t)1" 5[pl(&t..)]
x0(&..) "4(f~ ..)

'(2 )"" d%„~ ~ ~ dR„K

&&e anat(K1 + n Kt )dn (4. 28)

In the last line of (4. 28), we have substituted for
the Q's from (2. 52), thus using the fact that Q has
been chosen to minimize Fj. Note that K'„, with
a single superscript, is just tj)o(») on account of
(4. 27).

Now consider I'2. Using the formulas we have
just developed, we find

S2—- 2@ay d g d (4. 29)

BS, i2
Bp,

= —2»ta yp d» d%2A12K

2
BSO 2 &2

Bp,
2

= 2»tayp d»d%2A12K

where

(4. 30)

(4. 31)

,they cancel among themselves for each n. We shall
exhibit this cancellation for n = 2 and n= 3 and leave
the proof for general n~ 2 to an appendix.

In the pseudopotential approximation, it is quite
straightforward to work out the a„'s (see Appendix
A). The result may be stated very simply: The
leading term is just what one would get from the
first nonvanishing contribution of perturbation
[the vft's in (4. 19) being treated by perturbation
theory], with vie then replaced by 2»t»t 5(r -R).
That is

—v($1 —»)dr, = (2»ta)K, , (4. 24)
5&o(»» 4 )
by, r1

&12 ~ 5~So(»» tj')

5[»t 4(rt)] 5[»t 4(ra)]

&&v(r, —»)v(rr-%2)drtdra= (2»ta) K
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y = —2mat,

y(K +E"+ "'+E'")' r'
&a".n= e

(4. 32)

(4. 33)

pseudopotential approximation we may make the
replacement

Using (4. 6) we see at once that Fz= 0.
Again, direct calculation gives

Sp= —(2pa) y J d%&d%pdRpA)p3(K + 3yK' K '),
(4. 34)

u (r ') go(r ')-2' Q B) 5 (P' —Tt)),

where

(A6)

(AV)

= (2') yp df~d%pdR, A~zo(K' '+ 2yK' K ),ep
(4. 35)

8S.'= —(»a)'vn'( d&A&2~p3+123
81IL

X (Klpo+ K1PKPP)

'=+(»~)'vp'[d&A&2~p3+123R'") .
ep.

(4. 36)

(4. 37)
Using (4. 6) again, we find Fp= 0.

It is not difficult to extend this proof to any n» 2.
This will be done in Appendix C. We conclude that
our main result (3.47)-(3.49) gives the first two
terms of g(e) correctly, provided the semi-invari-
ant expansion converges in a suitably uniform man-
ner.

Therefore,

n

(o(r) =(o(r)+ (2«) + 8(&, &g ~Eo)Bg .
)-"1

Clearly, when'f- lt~, we must have

(AS)

8rr, &» Eo) = —
2„(- y )

+ 8« ~ (AQ)

where 8„ is a well-defined function of 5, and Ep.
This follows from the fact that go(r) has to be pro-
portional to 1 —a/(f —5&) for r-%, , from scatter-
ing theory [W.e may also verify (A9) directly,
since when f' is very close to r', (A5) is dominated
by the very highly excited states (plane waves), and
IEp- Ep I is negligible. ] Therefore, for F near g

we may write

APPENDIX A: PSEUDOPOTENTIAL APPROXIMATION

We want to compute the "energy shifts" 6
in the approximation where the range of u(r) is
much smaller than any length in Q(f') (pseudopoten-
tial approximation). For this we need the ground-
state energy in the potential P+u where

a
gp(F)=$) —, g, B)+2m~ 8uB),

&) g1

where

4~ = (oP4),
8;q=8(%; Ttl Ep) (i Sj) .

(Al0)

(All�

)

(A12)

n

u-=
)=1

(Al )

Calculating B, from (AV) we see that the second
term on the right-hand side contributes nothing,
and

Writing H =P /2+ Q, H = H+ u, we want the ground
state g of H, i. e. ,

B) = g)+ 2pa Z 8)gB~, (A13)

Htj'o=Eotj'o . (A2) or

Equation (A2) is equivalent to the integral equation

(o(r) = go(r)+ dr' 8(r, 'P
~Ep) u(P') go(l"), (A3)

B~=g, +2ma~8~&g&+(2') ~ 8,&8&&. tII&, y ~ ~ ~ .
)pF

(A14)
Using (A6), (A14) becomes

and

Eo- Eo= (4o, ufo) (A4)
Ep —Ep ——2' Z g~B~

where E„P, (l =0, 1, ...) are the eigenvalues and
eigenfunctions of II, and

= 2pa Z g&+ (2pa) Z g&8&&. g&, + (2')

(A5)

[Equation (A3) may be verified at once by operating
on both sides with H Ep (A4) by taking the scalar
produce of (A2) with gp. This is just the Brillouin-
Wigner form of perturbation theory ].

Now according to Blatt and Weisskopf, in the

x ~ $~8~~, 8~,)„g~„+~ ~ ~ . (A15)

This is an implicit equation for Eo, since 8&& de-
pends on Eo.

Before we discuss the general case, we consider
some low orders. For n=1 we have, writing Eo
= Eo(1)
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6 = 2((apl . (A17)

Ep-Ep= A(%1)= 6
= (2((a) pl+ (2(((() 81(1)pi+ (2((a) (811( )) (1+ ~ - ~

= 2((apl[1+ 2((a81(1)+ (2((a81(1)) + ~ ~ ~ ], (A16)

where 8((/) is 8(& for Ep(1). Now 8» is a function of

Ep, independent of the scattering potential v and
with the dimensions of an inverse length. Similarly,
(J)1 is independent of the scattering potential and has
the dimensions of an inverse length cubed, and Ep
is independent of v and has the dimensions of an in-
verse length squared. Therefore, since by defini-
tion a «any length in the unperturbed problem,
2)(apl «E„and E,(1)=Ep+ small correction.

the answer will be the same as the leading term of
the pseudopotential approximation. To see this,
write (A23) at the point r=%(,

4A) = 4(+~ "r' 8%,"I E.)()&(&')(C)p(r')

P

=(C(+)~ dr'8(%„I."jEp) (((s')kp(s')

~g
~

dr'8(R(, r' Ep)v/(r')gp(s') . (A24)
gg1

"

Ultimately, we will put ()/= 2)((25(r —5/). This gives
no trouble in the last term of (A24) if we do it now,
or in the gp(s') of the second term, butitisnotper-
missible in 8(%(, P ~Ep) since this diverges when
r'= R(. Therefore, we may write (A24) as

For n = 2 we have, in an obvious notation,

E()(12)—Ep= 2'(tI)1+)I)2+ 2((a(811 '$1

+ 822 42+ 2812 4142)

+ ( (( ) [(811 (I)1+ (822 ) 42+ ]+ ]'

g( = g(+ 2' y; (Ep) g; + 2(((( P 8;&g/,

where

y((E'p) = dr'8(%(, r') v((r') .

(A25)

(A26)

Since

g(%1, Its) = A = E()(12)—E()—A —dP,,

(A16)
Similarly, (A4) becomes

&"= (»(()'2814'(42

where

8(/= 8(%(, 5/~Ep) (2 ((j) .

(A21)

(A22)

It is not difficult to continue this process and obtain
an explicit formula for 4 "". However, for our
purposes it is convenient to express the result in a
different form. We notice first that in (A17) and

(A21) the diagonal elements 8;; do not contribute in
the leading term. It is elementary (but a little tedi-
ous) to show by induction that this is also true for

Now consider for a moment the case
where () is a weak potential. Equation (A3) becomes

gp(P) = (F)p(r)+Z
j~

d$ 8(r, r' ~Ep) v/(I') gp(r') . (A23)

We want to calculate the first nonvanishing term of
6, "'"in perturbation theory. We assert that if
this is done and then ()& is replaced by 2)(a5(r —%&),

(A19)

we find, using (A16),

A12 (2~ )2 [(8(12) 81 ) (2 (8(12) 82 ) y2

+ 28i2"ki 42]+ ~ (A20)

Now recalling that 8» is a smooth function of Ep,
we have ill = 811(Ep(12)) 811= 811(Ep(1)). Hence
811"—811' is small if E,(12) —Ep(1) = &"+ () ' is
small. But from (A20) and (A17) we see that b.' is
second order (by order we mean power of a divided

by a characteristic length of Q), (),
' is of first or-

der, and therefore, 8,",2' —(),(1) is first order The.
leading term of g is thus

E p Ep = 2((a Z P& g/ . (A27)

Now (A25) and (A27) only differ from (A13) and
(A15) in that g& [which is eliminated in the second
line of (A15)] replaced B/ and y((Ep) replaces 8«.
But in the leading contribution to 6' '"", we saw
that the diagonal element 8«does not contribute.
Therefore, this difference does not contribute to
the leading term, and we have proven our asser-
tion.

(B2)

((). t-1 in the skin depth as we had before). Next
we estimate A in the skin depth. From (A21) this

APPENDIX B: ESTIMATES OF THE 6'2- " AND RELATED
QUANTITIES

The estimates which we need all refer to the
6' " "when the R&, . ..,R„are all in the skin
depth, i.e. , within about )(p of bp. We estimate
these as follows: Take for the potential Q, instead
of the actual one we obtain, a potential well which
is zero until bp, then infinite. If we then write
IR( I = bp 5( (h( &0),-and put g(-))(), we should have
reliable estimates, since all that the real potential
(t) does is smooth the transition (but still it is spread
over a distance of the order of )(p). Clearly, from
(3.7) we have in the skin depth

(g sin()(//f)p)B, ((g,
q 2((f) s/2 I) 2/2

Therefore, from (A17) and (3. 11),
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= 2(2tla) e(R1, Ra IEo) 41())2 ~ (B3)
(l~' )tnninnl (2++ ) 41elae23 ' ' en-l, n(l)n

We can estimate 8 by replacing it by its angular
average &e) over the directions of R, and Ra. Then
only the S waves survive in (A5), and the calcula-
tion becomes a completely elementary one for the
infinite well of radius bp. We find

& e(R„R,iz, ) &

1
k(R2 slllkR1 coskR2+ Rl slnkR2 coskR1)

2m 08182

(B9)

By means of these estimates, we can estimate
the p "S„(n~ 2), using (4. 23), (4. 24), (4. 25),
etc. Since the integrands of these quantities only
differ appreciably from zero when we are in the
skin depth, we can replace each R; integration by
a factor X()b() and tb, "by(Rap/b())" . Thus

PS2 P 2 ~ 0 P O~

slnkR1 coskR2, Rl &Ra
slllk~2 cost'~1

y +1 &~2

where k =- t)'/b(). Putting R, = b() —$1, Ra= b() —$2 we
find, for $1 ~2 bo

p'S, -p' ~ (&P'o)'- pqb'o,
0

n-1

P"S„P"-, (&()5o) P Lob o ~

0

(B10)

&e(R„Rais,))=- ax
1

0 4p 2~ 1

Therefore, we have the estimates in the skin depth,

~e(R1, Ra Ea) ~-—2 (B6)
0

and

~~ia~ s(. 4 )' 4

(B8)

These same estimates apply to all the terms of
F„as they must, since cancellation takes place
among them eventually.

Finally, we mention that the terms we have
dropped in writing (4. 24), (4. 25), etc. , are easily
seen from these same estimates to be of lower or-
der in 0 p since they involve extra factors of
(n ~ 2) or the replacement of lower order a's by
higher-order ones without extra integrations.

APPENDIX C

From (4. 8) and (4. 13), we can write E„for n ~ 2
in the form

Similarly, we may estimate the higher order b,'s.
A typical term of b,

' "'"
[one which comes from

ignoring the "energy shift" E0
—E in the 8's in

(A15)] is

Ff)f dR] dR ]2 ~ one (Cl)

fi ~ -=( p)ni- H+ +( 0) +('ig ns- ~~e )1 1 2

P n

+''' +( P) ~ Pl' ' 4l 5 . . . 5 ~D3«1' 'n ) e +''' +Pl'''An 5w, 5w ( @())

Here 5/5(t) t means 5/5$(Rt), and Z2 means that we
sum over all permutations by which the subset
(I ~ ~ ~ Ij is transformed into other subsets of (1 ~ n).
This summation replaces the factor (,") in (4. 8).
The parameter p need no longer appear, since all
derivatives are shown explicitly. Our purpose is
to show that the integrand fl. ..„vanishes when we

(i) keep only terms that will contribute to E„ in
O(PX()5()); (ii) use the pseudopotential approximation
for the b,'s; and (iii) require that Q satisfy (2. 52) so
that F1 is minimized.

We begin with a diagrammatic representation of
each term in (—p) D, ... II le ' . I,et us represent

each factor —pe '~ by a square and each factor
—tZ'1'2 "'~ by a circle connected to each of the
squares numbered i1, i2, ... , i,. Thus we obtain a
graph in which circles are connected only to squares
and squares only to circles.

Moreover, only connected graphs contribute to
D, ...;; terms corresponding to disconnected
graphs drop out in the expansion of (4. 14), (4. 15),
etc. The proof of this is the same as that of the
statement that only connected graphs contribute to
the logarithm of the grand-partition function in the
Ursell-Mayer expansion for gases.

Again, by the arguments of Appendix B, we may
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neglect any graphs that are overconnected (i.e. ,
not simply connected). For (89) shows that each
circle brings in a factor X~/b2 for all but one of the
lines connected to it. Thus the number of factors
X»»a/b»» in the whole graph is the number of lines
minus the number of circles. In a simply connected
graph, the number of lines is just one less than the
total number of squares and circles, so that the
graph carries a factor (»»2a/b3) ', if there are m

squares. Thus the simply connected graphs for 9
are all comparable to one another, but the over-
connected graphs have additional lines, hence extra
factors»»»»a/b»», and they are therefore neglected.

The simply connected graphs with which we now

have to deal are of the kind elsewhere called "dual
trees. " They are equivalent to Husimi or "star
trees"-the circles correspond to stars and the
squares to points —but we find that the dual form
facilitates manipulation.

The diagrammatic representation of
—p e "~ '~ '~ 'D,23 is shown in Fig. 1 [cf. (4. 23)j.

We now wish to extend the dual-tree representa-
tion to the quantities

m

Qq ~ ~ ~ Q~ p exp —tZ 6» D»q »...
J'g 1»

appearing in (C2). When we differentiate a term in
e '

«D&,...&, we obtain a sum of terms, each
arising from the differentiation of one of the fac-
tors. Consider a term in D&,...&

containing a fac-
tor 6»&», where fi) is some subset of fi» ~ ~ ~ i )
This factor is represented by a circle in the cor-
responding dual tree. When we replace the factor
Z», » by rf&& bh»&»/5$&, we obtain an expression which

we may represent by a new dual tree, obtained from
the old by inserting a new line in the circle for A~&~

and connecting it with a new square bearing the in-
dex j. We may then associate the factor Q& wfth the

new square and —f 56«» /5$& with the circle bearing
the extra insertion. However, we must also mask
the new square in some special way so as to dis-
tinguish the new dual tree from an ordinary one in

—t 623

2 t 8
3

1

FIG. 2. Diagrammatic representation of one p term
in Eq. (C2) for n=3. Value of marked square is Pg.
Other values as in Fig. l.

which the square would represent pe '~& and the
circle —tA&, &».

We must also provide for differentiating the fac-
tors e '~&. Since

the effect of the operator Q& 5/5$& applied to a
square is to leave the factor —pe '~~ belonging to
that square unchanged, and add two new factors P~
and —f 56&/»»$&. We represent this by connecting
the square to anew circle and connecting the new

circle to a new marked square.
In Fig. 2 we show how this construction repre-

sents the quantity

(-th e " 2' 3')1 by
23e

which contributes to f3 through the second term in
(C2).

Now suppose we wish to differentiate a second
time. Clearly the same rule applies: To any cir-
cle we may attach a new marked square, or to any
unmarked square we may attach a new circle and
marked square in tandem. But we make no new
attachments to marked squares since they repre-
sent the factors Q& which are explicitly outside the
derivatives in (4. 18). In Fig. 3 we show the con-
struction for

—t(6+6 +8, )-p e 1 2 3 D
123

Q2
4, 42 2

FIG. 1. Diagrammatic representation of p term in
Eq. (C2) for n=3. Values of circles are shovrn; value

of ith square is —p e ~a.

1, s
Sg

FIG. 3. Diagrammatic representation of one p term
in Eq. (C2) for n= 3. Values as in Figs. 1 and 2.
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To summarize our rules: (i) Each unmarked
square (index i) carries a factor —pe»~». (ii) Each
marked square (index i) carries a factor P». (iii)
Each circle, connected to unmarked squares z& ~ i~
and marked squares J& ~ ~ J, , carries a factor
—&(5'/5P~, ~ ~ ~ 5Pz )6», ...» . (iv) All marked squares
must be end squares; that is, a marked square
must be connected to just one circle. (v) Every
circle is connected to at least two squares. (vi)
For n~ 2, f,...„ is given by the sum of all dual trees
with n squares satisfying Rules iv and v each tree
being evaluated according to Rules i-iii.

We note that Rule iii does not cover the case P
= 0, in which a circle is connected only to marked
squares. By Rule iv, this can happen only in a
diagram containing only one circle. To handle this
diagram, we supplement Rule iii as follows: (iii a)
Each circle connected only to marked squares
Z~ ~ ~ ~ J, carries a factor —t(5'/5$t» 5QJ' )Eo.

The one-circle diagram with n marked squares
then accounts for the last term of (C2).

We are now ready to make the pseudopotential
approximation. First we apply (4. 24) and (4. 25),
etc. , so as to express all 4's as functional deriva-
tives of Eo. Rules iii and iii a then simplify to the
following: (iii') Each circle connected to squares
i& ~ ~ ~ i, (marked or unmarked) carries a factor
(2')~5'Eo/5P», ~ ~ 5P», , where P is the number of
unmarked squares.

To eliminate all asymmetry, let us replace (2»»a)~

by (2»»»»)' and compensate by attaching a new factor
1/2' to each marked square T. hen the rule for
circles loses all reference to marked or unmarked:
(iii") Each circle connected to squares i, ~ ~ ~ i,
carries a factor (2')*O'Eo/5$», ~ ~ ~ 5P», .

Now the only effect of marking a square is on the
factor directly associated with it, —pe '~& if un-
marked, P»/2' if marked. So we can dispense
with marking and simply attach the sum of these
factors to each end square: (i") Each interior square
(connected to ~ 2 circles) carries a factor —pe»~».
(ii") Each end square (connected to l circle) car-
ries a factor —pe»~»+ Q»/2'.

But according to (2. 52), the factor described in
Rule ii" vanishes. Since there are no end circles
by Rule v, every dual tree has at least one end
square. Therefore, f, ...„vanishes under the stated
approximations.
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