
P HYSICAL REVIEW B VOLUME 12, NUM BE R 10 15 NOVE MBER 1975
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The applicability of the effective-mass method and of the concept of the position-dependent band parameters
to the description of the motion of carriers in graded mixed semiconductors (i.e., quasiheterojunctions) is

examined. Within the framework of the virtual-crystal approximation the effective-mass Hamiltonian is found

and discussed for graded mixed crystals whose components have a degenerate band with several nonspherical
extrema. The case in which the locations of the band extrema within the Brillouin zone are different in the
single-component crystals is considered. It is shown that in the case of low lattice symmetry the knowledge of
the effective-mass tensor and of the energy of the band edge for homogeneous mixed crystals is insufficient to
describe the dynamics of carriers in graded mixed semiconductors.

I. INTRODUCTION

Properties of graded mixed semiconductors
(quasiheterojunctions) have aroused substantial
theoretical and experimental interest in recent
years. ' " Several particularly interesting phe-
nomena have been observed, e.g. , strong modifica-
tion of photovoltaic' ' and photoelectr omagnetic'
effects and an anti-Stokes effect of the electric
field dependence of luminescent spectra of elec-
tron-hole recombinations. ' '" Some nonlinear
electric and optical effects in graded mixed crys-
tals have recently been proposed and calculated. " "
For theoretical interpretation of the properties
of mixed crystals with slowly varying composi-
tion, knowledge of the laws of motion of charge
carriers is necessary.

The principal tool for solving the problem of
the motion of carriers in pure crystals is the well-
known effective-mass method, which also applies
in the virtual-crystal approximation to the treat-
ment of homogeneous alloys (e.g. , of A, „B„and
A, „B,C types). The essence of the virtual-crys-
tal approximation lies in replacing the correct one-
electron potential of the actual configuration of
atoms of the alloy by its average over all possible
random configurations. " For homogeneous alloys
the virtual-crystal potential is equal to the

weighted average of the components potentials;
therefore, it is periodic. The basic characteris-
tic feature of graded mixed semiconductors is the

lack of spatial periodicity of the one-electron po-
tential (even in the virtual-crystal approximation).

The first attempts to describe the dynamics of
carriers in crystals with slowly varying composi-
tion were based on the phenomenological assump-
tions of a position-dependent energy gap" and of
a position-dependent effective mass. " From the

first assumption it follows that a carrier moves
in a quasielectric force field the strength of which

depends on the band it occupies. " The assump-
tion of a position-dependent effective mass gives
rise to an additional force proportional to the
gradient of the carrier's effective mass. " In ad-
dition, a kind of quasimagnetic field appears when
it is assumed that inhomogeneity resulting from
the change of crystal composition produces a shift
of the location of the band extremum within the
Brillouin zone, and that a standard effective-mass
equation also holds for this case." The quantum
effective-mass equations were formulated by I ax"
for carriers in graded mixed crystals in the two-
band model and in the presence of an external mag-
netic field. However, the effective-mass Hamilto-
nians given in this paper are not Hermitian.

Gora and Williams" "generalized the concept
of virtual crystal to the case of graded mixed
semiconductors and derived an effective-mass
equation using the Wannier representation. Their
calculations were restricted to the case of graded
mixed crystals whose components have a nonde-
generate spherical band with an extremum at the
1 point. However, in this derivation the reduction
of the set of coupled equations to one effective-
mass equation was achieved by omitting the inter-
band matrix elements of S(r) = V~(r) —V„(r) (V„
and V~ are the one-electron potentials of compo-
nents A and B, respectively). The omission of
these elements leads to an incomplete expression
for the change of the effective mass with composi-
tion (see discussion in Sec. III).

In general, in experimentally available graded
mixed semiconductors the components do not have
a simple band with an extremum at the 1 point.
Therefore, the problem arises of finding the equa-
tion of motion of carriers for a more realistic
band structure of the components. The purpose of
the present paper is to examine the applicability
of the effective-mass theory and to derive the ef-
fective-mass equation for carriers in graded
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mixed semiconductors whose components have
degenerate nonspherical bands with several ex-
trema. We also consider the case when the loca-
tions of band extrema within the Brillouin zone
are different in single-component crystals A. and
B (e.g., Ge and Si). The Wannier method used
in Refs. 1'7 and j.8 is not convenient to use in this
case. We use the Kohn-Luttinger representation,
which enables us to treat the degenerate and multi-
valley bands. In Sec. II, starting from the one-
electron virtual-crystal Hamiltonian, we derive
an effective-mass equation for graded mixed crys-
tals with arbitrary lattice symmetry. In Sec. III,
this equation and its classical counterpart are dis-
cussed. We also consider the case of low lattice
symmetry, which is of theoretical interest be-
cause in such a case the knowledge of the effec-
tive-mass tensor for a homogeneous alloy is in-
sufficient to describe the dynamics of carriers
in crystals with varying composition.

II. EFFECTIVE-MASS EQUATION

We consider a two-component graded mixed
semiconductor and assume that both components
A. and B have identical crystal structure and lat-
tice constants. Let f(r) denote the composition
of the crystal in the neighborhood of point r, i.e.,
the ratio of the number of atoms of component A
to the number of atoms of component B equals
(1-f)/f. We assume that the composition f(r)
varies slowly, i.e., the fractional change of f
over a unit cell is small [see discussion following
Eq. (16)] and that f may be treated as a smooth
function of r. The atoms of the crystal are sup-
posed to lie on periodic lattice sites. (Lattice
symmetry is arbitrary )The g.eneralization of
the concept of virtual-crystal approximation to
the case of the crystal under consideration gives
the one-electron Hamiltonian"

H= —(5'/2m)&+[1 —f(r)] V„(r)

+f(r) V,(r)+ U(r),

where m is the free-electron mass and U(r) de-
notes the potential energy of the electron in an
external field. As usual in the effective-mass
theory, we assume that U is a slowly varying
"gentle" potential (see, e.g. , Ref. 20). The one-
electron Hamiltonian [Eq. (1)] can be written in
the form

proximation,

H~ = —(5 /2m) 4 + (1 —f0) V„(r) +fOVs( r) .

We are attempting to find the solution of the
Schrodinger equation

~C(r, t
(4)

(n k in
' k ') =- J" y*„T, y„,I, d 'r = 6„„,6g g, ,

0
(6)

where k=K-K, and 0 denotes the finite crystal
volume (periodic conditions are imposed).

We express the wave function 4(r, t) by a linear
combination of Kohn-Luttinger functions yg,

0'(r, t) =Q Q A„.(k', t) y„,g.(r).
n'

kr

Inserting Eq. (7) into Eq. (4), multiplying both
sides of Eq. (4) by y„*g, and integrating over the
crystal volume, we obtain

(7)

assuming the band structure of the homogeneous
mixed crystal described by the eigenvalues
E„(K,f,) and eigenfunctions (Bloch functions)
g„g of the unperturbed Hamiltonian HI, to be known
(n labels the band and K is the wave vector). Equa-
tion (4) cannot be solved with the help of the usual
effective-mass theory since the perturbation po-
tential L8+ U is not a slowly varying function of
r. However, it is possible to modify the effective-
mass method and to apply it to the present prob-
lem making use of the spatial periodocity of S(r).

We consider the case of mixed crystals with a
degenerate band with several extrema located at
K,"(f,) (r =1, . . . , r'; where r' is the number of ex-
trema). K,' may depend on the composition of the
crystal, f„when the locations of extrema within
the Brillouin zone are different in the single-com-
ponent crystals A and B (e.g., Ge, „Si crystals).
For brevity K",(f,) will be denoted by K„but it
should be remembered that K, is a function of f,
and denotes a specified (rth) extremum

We call g„K the Bloch functions at point K, .
When functions labeled by n and n' belong to the
same degenerate band this is briefly denoted by
n =n' and when they belong to different bands by
ncn'. We define the complete orthonormal set of
Kohn-Luttinger functions,

g-x/2 eITc ~ r
~ (5)

(2)H=H, +I(r)S(r)+ U(r),

where S( r) = Vs( r) —Vz( r) and I ( r) =f( r) -f, .
L(r) characterizes the inhomogeneity of the crys-
tal Hfp

de note s the one -ele ctr on Hami 1toaian of a
homogeneous mixed crystal with arbitrary chosen
composition f„written in the virtual-crystal ap-

g g (nkiH~ +LS+ Uin'k')A„, (k', t)
n'

.~ &A„(k, t)
~t

(8)
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where Eq. (6) has been used to obtain the right-
hand side of Eq. (8) and (nki 0 in'k') denotes the
matrix elements of operator O.

We make the Ansatz so that the wave packet 4
describing the electron state in the crystal may
be constructed with the help of only those Kohn-
Luttinger functions that are characterized by
wave vectors K' lying near the band extremum
Kp When K, is locate d in the inte rior of the
Brillouin zone, the points in K space that lie near
K, are described by the condition ik'i =

i
K' —KJ

«G (me 0), where G - are reciprocal-lattice
vectors. When K, is located on the boundary of
the Brillouin zone the same condition describes
the points lying near K, only if we choose as the
region of K space over which the summation in
Eqs. (5) and (8) is carried, not the Brillouin zone,
but a region in whose interior K, lies (such a re-
gion can always be chosen because of the period-
icity of the reciprocal lattice). Thus our Ansatz
means that the only important terms in expansion
[Eq. (5)] are those with k' much smaller than the
reciprocal-lattice vector G y (for any m e0). This
assumption must always be verified after solving
the Schrodinger equation by the effective-mass
method.

Making use of Eq. (6) we obtain the matrix ele-
ments of the Hz appearing in Eq. (8),

(n k i Hz, in'k') = [(E„+5'k'/2m) 5„„

+ak p„„,/m]bg g, , (9)

where E„=8„(K„f,) and

(nkILSln'lT')= —Jd'we '& ')'LSI„K4 g„

=0 Q b"" g(k —k'+ G ),
m

(14)

where

Z(q) = — I d'r L(r) e '" ' '
0 (15)

is the Fourier transform of L(r). The function

S+K („,K, which has the lattice periodicity, has
been expanded in the Fourier series

Sggog„'K ——0 g b~ e ' (16)

We assume that the fractional change of L(r)
=f(r) —f, over a unit cell is small. Then, the
main contribution to the sum (14) is due to terms
with ) k —k'+G- [«i G-, ) (m'o 0). Since we have
assumed that important k and k' are small com-
pared with any Gm with m w 0, the contribution of
terms containing higher Fourier components to
the sum (14) is much smaller than that of a term
with m=0. Therefore, we assume that in expan-
sion (14) all terms' with me 0 can be neglected.
[This is precisely what we mean when we assume
that the composition f(r) varies slowly in the
crystal. ] Thus,

(nk MLS in'k') —= Qb"," g(k —k') =S„„,g(k —k'),

p„„,= &
d 'r gg, p4„%, . (10) where S„„ is given by

p= —iS& is the momentum operator. It should be
noted that

1
~an =~&p" = =0 ~g

d'r Sgg, q„K, (18)

pf)l 0

for j and j' belonging to the same degenerate band.
From the assumption that U is a slowly varying
potential, i.e., that the fractional change of U

over a unit cell is small, and from the Ansatz
that important k and k' are much smaller than
any G with m 0, it follows that"

From Eqs. (9), (12), and (1'l) it follows that Eq.
(8) can be written

x(nkiH +He+He+U+He +He in'k'),

(nkiU [n'k') —= 5„„,'lt(k -k'),

where

&(q) = — d'r e "'' U(r)0

(12)
where

(nk[H0[n'k') =E„5„„5g k

(nki HD in'k') = (b'b'/2m) 5„„,5 g,g

(19)

(20)

(21)

denotes the Fourier transform of U( r).
The matrix elements of L8 are given by

(nkIH in'k') =
S„„g(k-k') for n=n'

(22)
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I
0 for n=n'

(nkla In 'k )'=
IS ~(k k, )

(23)
part Hq of the Hamiltonian H, i.e.,

[a„r,j=-a,"' . (31)

0 for n =n'
(nk IH~ In'k') =

Sk p„„i 5$ T, for n4n'
m

(24)

B,(k, t)= g g (jk~e ~n'k')A„(k', t),
(25)

in the form

ik ' ' = Q P (jk(a„,~n'k')B„(k', t),sB,(k, t)

ll k I

where

(26)

H, ff =e He

=a+[a, T]+(1/2!)[[H, T] r]+ ~ ~ ~ .

Our transformation T contains three parts,

T Ty+T2+T3

(27)

(28)

The first term T, removes the nondiagonal part
H~ of the Hamiltonian H, i.e.,

[H„T,] = -Hs

where T, is assumed to be small,

~
k k p, ,/m(E; —E, )~«1 (i wj), (30)

for k important in Eq. (19). (This assumption
must be verified after the solution of the effective-
mass equation is found. )

The second term T, removes the nondiagonal

It should be remembered that n=n' means that
functions labeled by n and n' belong to the same
degenerate band. The subscripts B and S denote,
respectively, Bloch terms and terms resulting
from the gradient of the composition; the super-
scripts D and ND label diagonal and nondiagonal
terms, respectively.

Equation (19) is coupled not only by the usual
terms involving p„„, (part Hs of the Hamiltonian),
but also by terms which are specific for crystals
with varying composition and which contain inter-
band matrix elements S„„(part H~ of the Ham-
iltonian). We construct a canonical transforma-
tion operator e in order to remove the nondia-
gonal terms. We label by j = 1, 2, . . . , s the func-
tions of the specific s-fold degenerate band oc-
cupied by the charge carriers (e.g. , the valence
band for holes). Application of the canonical trans-
formation gives the set of equations for

Moreover, T, is assumed to be small and this
gives the condition for L(r),

I
&(k-k')S /(E& -Eg)l «1 (i~i) (32)

x B~,(k', t), (34)

where from Eqs. (27)-(29), (31), and (33) it follows
that

(jkla.« lj k )

=—(gk~ Ho+Hs+H~ +U+ g[as, T]

+ —,', [[H, T,]T,]+—'[[H, T,]r, ] ~ j k') . (35)

In writing Eq. (35) we have neglected the term
[U, T]. In fact, for slowly varying potentials for
which the effective-mass theory is applicable (see

In particular, if the crystal is homogeneous, i.e.,
the composition f=f0+ L does not depend on r, the
Fourier transform of L is Z(k —k') = L6k f, and
the condition (32) means that L must be small
enough to satisfy LS;&/~E; —E&~ «1. For a crystal
with a linearly varying composition, the quantity
I. in the last inequality must be replaced by the
change of the crystal composition over a charac-
teristic length (e.g. , the extent of an impurity
state for impurities in graded mixed semiconduc-
tors and the electron wavelength in the case of
electron transport). Hence, in the case of graded
mixed crystals the change of crystal composition
over the characteristic length must be sufficiently
small to satisfy Eq. (32).

By applying T, and T, one obtains nem nondiago-
nal terms of the order

k p~g&(k-k')S; g /I (E& —Eg)(E( -Ey )I

(i~j, i'vj').
In order to cancel them we introduce T„ i.e.,

[H, T, ] = —'[H, T ]—— [H, T—,j —[H T, ] .

(33)

Therefore, our canonical transformation elim-
inates interband elements first order in k (P,&)

and/or 2 (S,,). When the inequalities (30) and (32)
are satisfied the interband terms of order k',
k'g, g and higher as mell as the intraband terms
of order k', O'Z, g' and higher can be neglected
in Eq. (26). Thus, Eq. (26) for the band under
consideration decouples and is of the form

S

N ' ' =—Q Q (jk~a, f~(j'k')
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Ref. 20), and for an I. function fulfilling the con-
dition (32), it can be verified that the contribution
of [U, T] to H,« is negligible.

Making use of definitions (29), (31), and (33),

and calculating the matrix elements in Eq. (35),
we obtain the set of equations for B«(k, t)
(j=1, . . . , s):

Q Q(E,6;«~&%,g~ + aft'D««~(fo)k~k86g ki+ 2h [(P««)*k„'ka+P««««ik ka+ 2R««i k„ks]Z(k —k')
k'

+ h[J««k + (J«".«)*k' ]g(k —k') + S,«g(k —k')+ (k —k')6««i)B«i(k', t) =ift (36)

(The summation convention over repeated Greek
indices is used. } In Eq. (36) we use the following
notation:

1 Pjf $f'Pf 'j go
ctg 8

m2 E —E, Ej -E Rj,

which plays as usual in degenerate-band theory the
role of the reciprocal effective-mass tensor of
nondegenerate-ba. nd theory. The matrix D««a(fo)
characterizes the dynamics of carriers in the
virtual crystal with composition fo. The matrices
Pjjsi andRjje and the vector Jjjt are defined

1 (P««pg&'+P««Pi&')S«'«'

m', , (E, E,)(E, —-E, )

(4o)
& asj

(P««a)* and (Rp«8)* are matrices complex conjugate
to Pjjs and Rjjs respectively.

Equation (36) is the set of effective-mass-like
equations in K space. To accomplish the trans-
formation of this set to r space we define the
envelope functions

E«(r, t) =0 '«' g B«(k, t) exp[i(k r+E«t/ft}],

(41)

1 (P«, P» ~ +P««P««)S '«

(36)

multiply both sides of Eq. (36) by
0 "'exp[i(k ~ r+E, t/tf)], and su. m over all k. We
obtain the set of equations for the envelope func-
tions E~(r, t),

S

g (- ak'[D««8(fo)a „8&+P «9 g ««L(r) + (P«".«)*L(r)a „88+R««B~L(r)s 8 +(R«".«)*8 &L(r)a ]
j'=1

+ (k/i) [J,"& 9 „L(r)+ (J««)*L(r)8 „]+ S» L(r) + U(r) 5««)E«(r, t) = ift (42)

In order to obtain Eq. (42) we have used the fact
that the function

4,(r, t) -=Q E«(r, t)(«K (r) .

g(~r r&) — ~ ei q(r r )

q

may be treated as a delta function 5(r —r'} (see,
e.g. , Ref. 20), i.e., for slowly varying functions
of position g(r),

d'r' b, (r —r')g(r') —=g(r) .

Equation (42) is set of effective-mass equations
for the xth extremum of the band under considera-
tion. If we investigate the motion of charge car-
riers in this band (e.g. , electrons in the conduc-
tion band) we get from Fq. (7) the leading term in
the wave function

The subscript r means that 4„ is a particular
wave packet corresponding to the yth extremum.
The solutions of Eq. (42) corresponding to differ-
ent extrema give —with the help of Eq. (43)—in-
dependent solutions 4„(r=1, 2, . . . , r') of the equa-
tion of motion. For general U(r) and f (r) the solu-
tions of Eq. (42) corresponding to different extrema
are different. The general electronic wave function
is a linear combination of 4„(r, t).

III. DISCUSSION

The set of effective-mass equations (42) is not
in a convenient form since it contains matrices
Pjj and R»i and a vector Jjj, which do not seem
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to be directly measurable and cannot be evaluated
unless the matrix elements of the momentum and
of S(r) are known. Thus, one asks whether Eq.
(42) can be transformed into a form in which only
the local values of some simple band parameters
appear such as the effective-mass tensor (the D, ,
matrix), the energy, and the location of a band
extremum. By local values, i.e. , by values at
point r„we mean the values of band parameters
of the homogeneous crystal with the constant com-
position f (ro). In order to answer this question we
must know the way in which the band parameters
change with composition (for homogeneous mixed
crystals).

Let us consider a homogeneous mixed crystal
with composition f =f, +I., where L= conste0 does
not depend on r, and let us put U =0. In this case
the crystal potential (in the virtual-crystal approxi-
mation) is periodic, and the standard set of effec-
tive-mass equations obtained with the use of Kohn-

Luttinger functions corresponding to the virtual
crystal of composition f is

E(k', K,(f),f)B,'(k')

S

= Q B,'(k')[ 28'D
~ (f)k„'ks'+Eq(0, Ko(f) f) 6q~i],

y1-j

(44)

where k' is defined as k' =K —K0(f), and

&,(O, K,(f),f) and D», (f), respectively, denote
the energy of the band extremum located at K,(f),
and the D, , , matrix [see Eq. (37)] for a virtual
crystal with composition f. On the other hand,
when we do not look for the electric wave function
in this natural representation, but expand 4, as
in Eq. (7), in Kohn-Luttinger functions correspond-
ing to the virtual crystal with composition f„we
obtain (for L small) a set of equations of the form

E( k, K~(f0),f) B,(k) = .Q B~.( k) [2k' 1')~i(f0) k„kg + 2 k [p;, ~i+ (I'~ Pj)*

+R)8+(R, P))*] L. k~ka+k[J)), +(j,,y)*]Lk„+S),. L+E,(0, Ko(fo), f.o) 5)j,), (45)

D,
" (f)=D," (f.)

+ L[I,",', + (I,"8,)*+R,",'., +(R,"P,. )*], .

[Z,", , +(Z,",,)*]L=~D,",~,(f)«„
(46)

(47)

&;(0,K.(f),f)=&,(0, Ko(f.),f.)+Spy L

b, K=K,(f) —K,(f,) denotes the shift of the loca-
tion of the band extremum within the Brillouin
zone. In Eq. (48) we have used the fact [result-
ing from the symmetry of S(r)] that for the de-
generate band (unless there is no accidental de-
generacy)

(48)

5. -i —S)) 5JJi.

(S» are the same for each j.) Equations (46)-(48)
give the relations between simple band parameters

where k =K —K,(f,). This set can be also obtained
from Eq. (36) by putting L = const. and U =0. Com-
paring Eqs. (44) and (45) gives

and the combination of matrices P&,. i and&&. .. the
vector J&& i, and their complex conjugates.

Therefore, in the following discussion of the ef-
fective-mass equation for graded mixed crystals
two cases must be considered, the high-symmetry
case in which the matrices are real, and the low-
symmetry case in which they are complex.

A. High-symmetry case

We deal first with the case in which the symme-
try of the homogeneous crystal (of composition f,)
is sufficiently high to enable us to choose the eigen-
functions g„g in such a way that all matrix elements
of the momentum p and of S(r) are real. Then, the
matrices P»i and R» and the vector J» are real.
An example of such a situation is the case when
the inversion belongs to the wave-vector group

Making use of relations (46)-(48) we can trans-
form Eq. (42) into the form

S

g [--,'5's & sD&&8( f(r)) —,O'D&&8( f(r))s„s 8+-,'—{(0/i)s [D~~ (f(r)) A~8]+(I/i)[D~&8(f(r)) S~&]s„].
=1

+S»6,, , + U6,.~, + ~h (R)~, +R)~ ~ )(s~s ~L)]F~t(r, i) =ih
Bt (49)
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Equations (49) are the set of effective-mass
equations for carriers occupying the degenerate
band, when the locations of the band extrema with-
in the Brillouin zone shift with composition. This
set resembles that describing the motion of car-
riers in pure crystals in the presence of a weak
magnetic field. However, there is one principal
difference, the D&&. matrix is position dependent.
The role of the vector potential is played by the
vector

C,(r) = (ck/e)LK,

= -(ch/e) [K,(f(r) ) —K,(f,)]. (50)

H* = 4[P„PsmP„&'(f(r))+m)„~'(f (r))P~P6]

-e/2c)[p mp„8'(f (r))4, 8(r)

+m,"„8'(f(r))4,e(r)p~]+U(r) + a, (r) (51)

In Eq. (51) we use the definition of reciprocal ef-
fective-mass tensor,

From Eq. (47), it turns out that the vector poten-
tial does not vanish unless J;,'+J;.; is equal to
zero (e.g. , as a result of the crystal symmetry).
Thus, when a change in crystal composition pro-
duces a shift in the l.ocation of the band extremum
within the Brillouin zone (J» +J, &

e 0), a quasi-
magnetic field of strength

-(ck/e) rotK, (f(r))

acts on the carrier. This quasimagnetic field acts
differently on carriers occupying different band
extrema. In the case of the nondegenerate band
this field is the same as that introduced by means
of the phenomenological assumption by Kroemer. "

Therefore, from the above consideration, it fol-
lows that the kinetic part of Eqs. (49) is deter-
mined only if the matrix D,~ and the location of
the band extrema within the Brillouin zone are
known for a homogeneous crystal. However, the
potential energy [the last three terms in the left-
hand side of Eq. (49)] is not solely determined by
the change in the energy of the band extremum
with composition [given by Eq. (48)] and by the
potential energy of the external. field because of
the term +tf'(R» +R» )(&„&BL). This term, to-
gether with the term L(r)S;&&»., may be inter-
preted as resulting from a quasielectric field act-
ing on the carrier apart from the external field.

When we consider the carriers occupying the
nondegenerate band j we obtain the effective-mass
Hamiltonian

In the case considered by Qora and Williams, ""
i.e., that of al.loys with an isotropic, nondegener-
ate band with extremum at the I' point, our for-
mulas give the Hamiltonian

(54)

where

1 1 2
mii'(r) mii'{f,) m'

PJ ~P'~ 'Si~
(E . E,)(E E,, )

piÃii
2;», (E, -Ei)' '

The form of Eq. (54) is very similar to that ob-
tained in Refs. 1'I and 18. However, formula (55)
for the position dependence of the effective mass
is different from that obtained by Gora andWil-
liams, who neglected some interband matrix ele-
rnents of S. Namely, in their expansion the sec-
ond and the fourth terms on the right-hand side
of Eq. (55) do not appear. Another difference is
that e&(r) is not equal to E&(f(r)) -E&(fo), i.e., to
the change in the energy of the band extremum,
because of the term 2It'R, &(V'L)

It should be pointed out that the method of ca-
nonical transformation used in this paper enables
one to derive the effective Hamiltonian with ac-
curacy to arbitrary powers of L(r). In particular,
the canonical transformation (28) gives the effec-
tive Hamiltonian, and therefore the effective mass
and other band parameters, accurate to terms lin-
ear in I (all such terms are taken into account).

It should also be noted that the symmetrization
of the kinetic term in the effective-mass Hamil-
tonian (54) is unique [the obtained Hamiltonian (42)
is, of course, Hermitian], whereas in Ref. 18 it
was obtained by an arbitrary procedure.

It is interesting to investigate the classical coun-
terpart of the equation of motion of carriers in a
graded mixed crystal. From the fact that the so-
lution F,(r, t) of the effective-mass equation de-
scribes the physical situation only if it is a slow-
ly varying function of r and from Eq. (43) it can be
shown that

my '(f) =D"'(f)

and we introduce

~~(r) = S»L(r) + ,'ti'R", , [s„s8L(r)—]

(52)

(58)

and

(p(t)) -=JI dsr% pqi—= JI d'rF; pFi.
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This means that the average values of position
and momentum of the charge carrier described
by the wave function 4'(r, t) are equal to and vary
in the same way as the mean values for a parti-
cle described by the effective-mass Hamiltonian
H* [given by Eq. (51)]. Therefore, in order to
find the classical counterpart of the quantum equa-
tion of motion of the charge carrier we can inves-
tigate the particle described by H and find the
classical limit of its motion. Using the Ehrenfest
theorem and replacing the mean values (r) and (p)
by r and p which describe the position and momen-
tum of the classical particle, we obtain

the group of the wave vector G[, are not real and0
P.. . R,,i, and J,z are complex (e.g. , in trigonal
Te and Se crystals). For simplicity we consider
the case of a nondegenerate band with an extre-
mum which does not shift within the Brillouin zone.
From Eq. (42) we obtain

4[m,*s'(f(r))p ps+p psmp s'(f(r))]

+ 2[p„Cs~(r)+ 4, (r)p„)+U(r) + s&(r)) F&(r, f)

where

df" =m,*s'(f(r))[ps —(e/c)@,s(r)], (56)
4m=@Im(Pgs R7—j~ )(asL). (59)

2ps p-) a-„m,*q)l(f(r) ) a„e,-(r)

-a„U(r)+ (e/c)psa„(m, *,,'C») (57)

The first relation, which connects the velocity of
the particle with its canonical momentum, shows
that the momentum of the quasimagnetic field is
(e/c)C, (r) =hEko(r). In Eq. (56) the position-de-
pendent effective-mass tensor plays the role of
the free mass in the ordinary relation between
momentum and velocity. Equation (57) is analo-
gous to Newton's law. It shows that apart from
the usual force due to the external field U(t)three'
additional forces, resulting from the position de-
pendence of the composition of the crystal. , act
on a carrier. The first is proportional to the gra-
dient of the effective mass tensor. The second
can be interpreted as a force due to a quasielec-
tric field. [e,(r) is the potential energy of the car-
rier in this field. ] The third is the force acting on
a particle moving in a weak magnetic field charac-
terized by the vector potential C, (r). All these
forces depend on the band the carrier occupies.

B. Low-symmetry case

We now deal with the case in which the crystal
symmetry is low, so that the representations of

Hence, in the low-symmetry case a new term
—,(pC, +4',p) appears in the effective-mass Hamil-
tonian. This term resembles the part of Hamil-
tonian characteristic of the motion of a particle
in a weak magnetic field. C,(r) may be interpreted
as a vector proportional to the vector potential of
the "quasimagnetic field. " It should be pointed out
that the origin and the nature of this field are com-
pletely different from those of the field introduced
in the high-symmetry case, 4,(r) The lo. w-sym-
metry case is interesting, as can be seen from
Eqs. (58) and (59), because the knowledge of the
effective-mass tensor for a homogeneous crystal
is insufficient to describe the dynamics of the car-
rier in a, graded mixed crystal. For homogeneous
crystals another band parameter, namely, the ma-
trix h Im(P~~~ -R",, ) must be known.
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