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We analyze photoemission spectra for Ge obtained for photon energies 6.5 ( hv &25 eV and determine the
position of energy bands at symmetry points for both filled and empty bands within 1 Ry of the gap. This
experimental band structure is obtained using a recently developed anisotropic direct-transition model of
photoemission applicable to cleaved single-crystal semiconductors. For the band-structure determination we
also employ a direct transition analysis of optical spectra obtained by others. We fit nonlocal-pseudopotential
calculations to the experimentally-determined band positions, and thereby determine the importance of both
energy and t = 2, angular momentum nonlocality in the pseudopotential. Our results for the position of high-

lying conduction-band states suggest 0 to +10% self-energy (exchange-correlation) corrections to the energy
of electrons excited into the conduction bands. Energy bands which provide a good fit to the experimental
band positions are used, along with pseudo-wave-function matrix elements, to calculate various physical
properties (photoemission spectra, optical-response functions, and one-electron state densities), and the results
of these calculations are compared with experiment. The quality of the fits obtained indicates that the
electronic excited-state (and ground-state) properties of Ge for excitations far from the gap are described well

by a one-electron model.

I. INTRODUCI'ION

The electronic band structure of germanium and
other covalently bonded semiconductors has been
studied extensively for almost two decades using
a large variety of experimental tools and theoreti-
cal models. Reviews of this work include articles
by Phillips, ~ Herman, Cardona, and Cohen and
Heine, 4 among others. These reviews and the ref-
erences therein provide a comprehensive account
of the use primarily of optical spectroscopy (in-
cluding modulation spectroscopy) to determine
energy-band separations at various optical critical
points in k space, as well as indirect fundamental
gaps.

Photoemission spectroscopy provides additional
information of two types. First, its ability to de-
termine the initial energy of a transition in addi-
tion to a valence-band-conduction-band separation
provides information about the absolute location
of energy bands at different values of k relative
to the valence-band edge. Second, owing to the
different nature5 of final-state broadening for
photoemission compared with optical spectros-
copy, and because of its ability to separate the
many transitions which occur simultaneously at
large h. v, photoemission can give new information
concerning high-photon-energy transitions be-
tween valence- and conduction-band states which
are not evident in conventional optical spectros-
copy. s

Previous applications of photoemission to the
determination of semiconductor electronic struc-
ture are of two types. Fix;st, there have been
relatively low photon-energy [hv & 6 eV (quartz

optics) or hv & 11.6 eV (LiF window cutoff)] mea-
surements of quantum yields and electron energy
distributions (for the case of Ge, Refs. 9-11
present representative studies). Second, there
have been recent measurements of one-electron
density-of-states features of semiconductor va-
lence bands at large values of hv using synchotron-
radiation light sources, '~ '4 He-discharge-lamp
radiation 5'6 (hv= 21.2 or 40. 8 eV), and high-
resolution x-ray photoemission spectroscopy' '

(xps).
The present paper presents new information on

the energy bands of Ge by using photoemission
energy distributions obtained over a wider range
(hv~25 eV) than in previous studies, and by inter-
preting these data using a recently developed
anisotropic direct-transition model of photoemis-
sion applicable to cleaved semiconductors. Ad-
ditional experimental data in the form of valence-
band overviews, empty-state photoemission
spectroscopy, "and optical data; and additional
theoretical tools including nonlocal-pseudopoten-
tial band calculations coupled with a precise
k-space integration technique have enabled us to
perform a comprehensive analysis of the energy-
band structure of Ge over an energy range of 2

Ry centered on the gap. The resulting experimen-
tally determined band positions are used to study
the nature of nonlocal and energy-dependent ex-
change and correlation effects on the excited elec-
tron states, while energy bands which fit well the
experimental eigenvalues are used to produce the-
oretical one-electron state densities, optical
response functions, and photoemission spectra,
all of which are then compared with experiment.
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Previous brief reports of some of this work have
appeared in Refs. 19-21.

Section VI, which discusses several physical
implications of our analysis, can profitably be
read before Secs. II-V, which provide the details
of the experimental analysis. Section II describes
the experiment, including the different photoemis-
sion techniques by which data were obtained, and
the manner in which the nature of the information
obtained changes depending on the photoemission
regime in which the data are taken. Section III
discusses the theoretical models employed —the
nonlocal-pseudopotential formalism for producing
energy bands, and the various k-space integration
formulas relating energy bands, wave functions,
and matrix elements to observed quantities. In
Sec. IV, overviews of one-electron density-of-
states features for both filled and empty states
including core levels, valence and conduction
bands, and occupied and unoccupied surface states
are used to determine different one-electron en-
ergy levels, including bulk band positions. Then,
in Sec. V, we consider the regime in which photo-
emission spectra give direct-transition informa-
tion at general points of the Brillouin zone (BZ).
In that section a direct-transition analysis of such
spectra is performed in order to identify additional
band positions not obtained by density-of-states
overviews. Section V also employs a direct-tran-
sition analysis of optical spectra obtained by
others in order to identify additional band posi-
tions. Finally, Sec. VI provides a discussion of
the physical significance of the comparison be-
tween theory and experiment analyzed in Secs. III-
V. The Appendix gives additional details on var-
ious aspects of the anisotropic direct-transition
model of photoemission not contained in our pre-
vious briefer publications. ' ' This section in-
cludes a more detailed comparison of experiment
with this model and with the more usual isotropic
direct-transition models of photoemission,
as well as a treatment of light polarization and
angle-of-collection effects.

trons emitted from the sample was measured us-
ing a double-pass, electrostatic-deflection cylin-
drical mirror analyzer. In such an analyzer, one
can select emitted electrons of kinetic energy be-
tween E* and E*+hE* (E*=0 corresponds to the
vacuum level), where the bandpass 4E* is adjust-
able and is typically -0.1-0.25 eV. Using this
apparatus, electron counting techniques are then
employed to measure the total flux E(E*,hv)
x AE*hhv. Depending on which of the two variables
of the experiment are fixed, one can obtain infor-
mation of two different types.
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A. Types of measurements

A Photoemission energy distribution (PED) re-
sults from variation of E* for fixed hv, 4E*, and
4h. v. This is the most commonly employed mea-
suring technique. The processes contributing in
this case are illustrated schematically in Fig. 1.
The number of electrons emitted at energy E*
is the sum of a primary distribution and a second-
ary electron distribution (Fig. 1). The former
distribution consists of those electrons which are
excited from an initial state of energy E; (where
E, =0 is defined to be E„, the valence-band edge,
E„=E~for Ge), and escape from the solid at en-
ergy E* =E, +lzv —P, where P is the work function.
Such primary electrons have lost no energy after
being photoexcited. The secondary electrons are
those which have suffered at least one inelastic
collision before leaving the solid, together with
hot electrons excited in the solid by such colli-
sions. As sketched in Fig. 1, the total distribu-
tion is cut off near E*=0 by a surface transmis-

II. PHOTOEMISSION DATA FOR Ge OBTAINED IN
DIFFERENT REGIMES

SURFACE
STATES VACUUM

LEVEL
MEASURE

Photoemission data for typical semiconductors
can be obtained for any photon energy h. v $' 100 eV
using the apparatus employed in the present study. ~v

In this apparatus, ultrahigh-vacuum (UHV) cleaved
semiconductors are exposed to synchrotron radia-
tion monochromated by either a Seya-type or a
specially designed grazing-incidence monochro-
mator. (The latter employs a fixed exit slit and
movable entrance slit. ) The photon energy band-
pass of the monochromators, 4Av, is adjusted by
selecting various slit widths. " As described in
Ref. 28, the energy distribution of the photoelec-

SECONDARY~
ELECTRONS

RY
ONS

KINETIC ENERGY

FIG. 1. Schematic illustration of the relation of a
photoemission energy distribution (PED) to the occupied
density of states. Electrons from occupied states
(shaded) are excited upwards by hv. The fraction escsp-
ing without energy loss represents the primary electron
distribution, while those created by inelastic scattering
are secondary electrons.
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excitation of core electrons into the empty states,
the rate of creation of such holes depending in
part on the number of empty states available. In
the second, and independent process, some of
these holes decay by creating Auger electrons. A
fraction of these escape at the chosen kinetic en-
ergy E«„,~, and others inelastically scatter down
to E«„,~ (which is the dominant process). The re-
sult is the production of low-energy electrons
[shaded area in Fig. 2(b)] in addition to those in
the photoemitted distribution due to valence-band
photoexcitation. The rate of production of slow
electrons versus hv then contains spectral fea-
tures dominated by those contained in the density
of empty states.

B. Experimental regimes for measurement of PED's

The measurement of photoemission energy dis-
tributions can be described in terms of physical

FIG. 2. (a) For hv& &~ —&&, 3d core holes are created
(process 1) at a rate depending on &,(&), the empty-
(surface and conduction band) state density. Such core
holes may decay by an Auger process 2, creating elec-
trons at energy &ffxed. (b) Measurement of intensity at
&&&,& vs hv t, denoted by Y&(hv)], or measurement of the
total yield, then reflects features in the density of empty
states.

(b)
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sion function. In this case it is usually the pri-
mary electron distribution in which one is inter-
ested. Depending on the photoemission regime in
which one is working (discussed below), this dis-
tribution can contain either both valence- and
conduction-band information, or predominately
one-electron density-of-states information for
the occupied states. In the latter case, one sees
prominent features in the occupied bulk and/or
surface state (intrinsic or extrinsic) density,
modulated by transition probabilities.

In favorable situations one can also obtain infor-
mation about the unoccupied density of states of the
conduction bands or surface states by measuring
the partial yield"'30 Y~(hv, E* =const). In such a
measurement the kinetic energy E* is fixed, and
is chosen to lie below the energy range in Fig. 1
where valence-band primary electrons are emitted.
Y~ is then measured as h, v is swept through the
threshold energy kv, for optical excitation of core
electrons (e. g. , the Sd electrons of Ge) into the
empty surface and conduction-band states. Y~(hv,

E«„,~) for hv in the vicinity of hv, then contains
spectral features (peaks, shoulders, and edges)
which reflect one-electron density-of-states fea-
tures in the empty sta,tes.

Figure 2 schematically illustrates the manner
in which these results are achieved. Spectral
structure of interest in F~ depends on the succes-
sive occurrence of two processes numbered 1 and
2 in Fig. 2. First core holes are created by the
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FIG. 3. Valence-band emission intensity vs initial-
state energy (PKD's) for 6. 5 —hv —23 eV. Peaks whose
initial energy varies as @v changes (for hv& 15 eV) occur
in the "band-structure regime" and contain information
about conduction-band dispersion. As kv increases
above -20 eV, one-electron density-of-states 5 (&)]
features dominate (see Fig. 8).
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regimes' determined by the values of h, v or E*
selected. This is especially important in the case
of the present type of study since the wide range
of hv available spans different regimes. More
specifically, when kv is large (& 25 eV for Ge),
one is in the x-ray photoemission spectroscopy
(XPS) regime, where one sees features in the one-
electron state density of the occupied surface
states or of the bulk valence bands IN(E;) for
E; ~0]. For kv &'20-25 eV in the case of Ge,
direct-transition selection rules (crystal mo-
mentum k conserved in the excitation process)
become important, and one sees spectral features
whose initial energy E; changes as hv varies,
reflecting information about the joint density of
empty and filled bands (see Sec. III).

The transition between these regimes is illus-
trated in Figs. 3 and 4, which present angle-aver-
aged PED's obtained on two different cleaved sam-
ples in the range 6. 5 —kv~25 eV. (The reasons
for intensity variation of certain spectral features
for different samples are discussed in the Appen-
dix C. ) As kv increases above 20 eV, promi-
nent valence-band features with fixed binding
energy (such as the sharp edge at E, = —4. 5 eV, or

I

the peak at E, = —7.7 eV) dominate the spectra.
On the other hand, spectra in Fig. 3 for hv & 15
eV are dominated by peaks whose initial energy
values change rapidly as hv varies. Finally, the
region between approximately hv =15 eV and Av
= 20-25 eV is a transition region in which the
changing binding-energy (direct-transition) fea-
tures are becoming weak compared to the one-
electron state density features. In this transition
region there is a gradual change from behavior
typical of the high A, v "XPS regime" to that typical
of the low h. v "band-structure regime. "' Analysis
of bulk occuped (and unoccupied) electronic den-
sity-of-states features obtained in the XPS regime
(as well as by partial-yield spectroscopy) will
form a large part of Sec. IV, while an analysis of
the direct-transition information dominating the
band-structure regime is given in Sec. V.

Reference 5 describes these regimes in detail,
basing the description on a "Fermi golden rule"
formula for photoemission. Such a description is
valid for angle-integrated photoemission, in which
all emitted electrons are collected. This formula,
relevant for the independent-particle description
of a solid, gives the current at a detector as

8'Z(R, E„kv) =2e
2 ~ 2, ~

' g 6(E& -E,) d'xp&*(r, Jt, E;+kv)2mc (2' I, m p, occuyied

xe(~)y, (~) ' . (2. I)

Here J is the current from states of initial. energy
E,. to a detector at position R (with R=O on the
sample surface), g~ is any occupied bulk or sur-
face state with energy E~, 6 is the dipole opera-
tor —,'(A p+p A), and P&*is the solution to the
one-electron Hamiltonian which consists of an
incomirg plane wave along direction -A =——R/I R I

at infinite distance from the surface outside of
the solid. That is, P&* is the usual low-energy-
electron-diffraction (LEED) wave function (of en-
ergy E, +kv —P outside the solid) composed of an
incoming plane wave along -B, matched at the
surface to damped Bloch waves inside the solid,
and outgoing plane waves (the LEED beams) out-
side of the solid.

The band-structure regime is obtained if'
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l (E) =—kp' & 5kb~d, , (2.2)

where 6k„~ is a typical k-space separation (in
the direction perpendicular to the surface) between
final-state bands of energy E& +hv. Inside the
crystal, k,' ' is the imaginary part of the Bloch
wave propagation vector component perpendicular
to the surface. When (2. 2) is satisfied, the damp-

FIG. 4. PED's for hv&17. 5 eV, mostly in the XPS
regime, in which &( &) features dominate. Direct-
transitions (moving peak) features are still seen weakly.
These spectra are from a different sample than in Fig.
3 and show slightly different intensities for some fea-
tures due either to sample preparation differences (i. e. ,
cleavage step density) or a different crystal orientation
with respect to light polarization (see Appendix, subsec-
tion A). Dashed curve is from the sample of Fig. 3.
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l '(E) = k,'"» &k, (2. 3)

then the inelastic damping in the solid makes k
more uncertain than the final-state band spacing
in momentum space, and the k-conservation re-
quirement in the matrix element in Eq. (2. 1) does
not result in any strong final-state effects. In
this XPS regime, most initial states find it possi-
ble to make transitions to some final state, and
one tends to see predominately one-electron den-
sity-of-states features in the primary spectra,
although features are still modulated in intensity
by transition probabilities. ' Figures 3 and 4
illustrate that the transition between the band
structure and XPS regimes for Ge occurs over a
&adage of electron energies, roughly E, +@v=15-
20 eV above E„.

Finally, we will relate the regimes just dis-
cussed to the actual values of ~k„~~ and k,' ' for
Ge. Few measurements of l(E) for semiconduc-
tors have been made, and most of the values
quoted are rather unreliable. We have sketched
kI '= I '(E) vs E -Ez in Fig. 5, making it a wide
band to account for an estimated range of uncer-
tainty in k+I. The lowest energy values (for
E E~,& 11.5 e-V) were obtained using Donovan's
results" for amorphous Ge, which were fit to the
total measured yield in the hv & 11.5 eV energy
range. In this region we also used values for Si
obtained in Refs. 32 and 33. For 30 +E-E~
&160 eV we used results obtained from LEED
measurements~3 on Si(100). Above 160 eV, we
smoothly joined to the asymptotic behavior for
large E, l(E)-E given by Powell. ~4

A lower-bound approximation to 5kb d, (E) is
given by 3'

5kb~d, & k~s/n(E), (2.4)

where k» is a typical Brillouin-zone radius and

n(E) is the number of bands at energy E. Using a

ing of P&* into the crystal is sufficiently small that
wave vector k is conserved in the optical transi-
tion matrix in Eq. (2.1) to better than the separa-
tion of the final bands in R space. In this case,
Ref. 5 demonstrates that direct-transition effects
are seen in that portion of Z(R, E&, kv) coming
from initial states I! which are bulk states (Bloch
states matching through the surface to decaying
vacuum states).

In addition, there is also a contribution in Eq.
(2. 1) from initial states g„which are surface
states. In Fig. 3, for example, one sees quite
clearly for kv + 9 eV a shoulder at E; = —0.7 eV
which is due to surface states, as well as many
direct-transition features at lower values of E, .

When the inequality in Eq. (2.2) is reversed,
i.e. , when

spherical-zone empty-lattice model for a fcc
Bravais lattice with lattice constant a, we obtain

(2II') 3
& E-'

2ma~ 3g (2. 5)

k » djgg and l(E) ~& dg» (2.5)

correspond to a surface domin-ated portion of the
XPS energy regime. In this region, the ratio of
surface-state to bulk emission is enhanced. Also,
in this case the momentum uncertainty is compa-
rable to the BZ radius, and k is not a good quan-
tum number. Nevertheless, the one-electron den-
sity of states of the bulk may still be seen. Equa-
tion (2. 1) indicates that if Q&* penetrates at all
into the bulk (even for a distance less than d»I),
then it couples to g„, which are bulk Bloch states,
since such states have finite amplitude at the
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FIG. 5. Imaginary part of the final-state wave vector
(k~ ) and lower bound on the spacing between final-state
bands in momentum space (6k& d,) vs final-state energy
E

Plotting the right-hand side of Eq. (2. 5). in Fig. 5,
we see that the experimental transition region lies
in an energy range near the intersection of the
curves for k~ ' and the lower bound on Dk~~~. The
position of the transition region is consistent with
the fact that the actual value of &k„~ lies some-
what above the lower bound in Eq. (2.5).

We may also use Fig. 5 to illustrate the relative
importance of surface effects in the spectra. In
Fig. 5 we have indicated the wave vector dj,'z as-
sociated with the (ill)-direction diamond-struc-
ture interlayer separation for Ge (d,» =a& 3) In
effect, the line at d„, in Fig. 5 separates two
further regimes (again as a rather ill-defined
boundary). The case where
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surface. As these states are distributed in energy
according to the one-electron density of states,
one may see one-electron density-of-states fea-
tures of the bulk. One requirement is that the
coherence length of the hole state (of the g„) be
large compared with d„&. However, there are
cases where, in this surface-dominated regime,
the bulk density of states may be severely dis-
torted. For k~ '«dz», one is in a bulk-domi-
nated portion of the XPS regime, where k is de-
fined to much better than ksz (i. e. , direct tran-
sitions occur), but direct-transition effects are
not evident since k~ '» ~k„~. Referring to Fig.
5, we see that this is the case, for example, in
EPS measurements at 1486.6 eV which use the
Al En emission line as a light source.

Finally, we note that if Eq. (2. 2) holds so that
the band-structure regime is achieved, then no
over-all surface domination can occur. This is
so because Eq. (2. 2) automatically implies that

Also, Ref. 5 demonstrates that in this
case the photoemission current can be written in
terms of a direct-transition, "three-step model"
of photoemission. Such a model of photoemission,
due to many authors (see Ref. 20 in Ref. 5), has
been widely used since the work of Berglund and
Spicer ~ appea, red.

III. THEORETICAL MODELS

The determination of the electronic structure of
Ge will proceed in the following sections by inter-
preting data through the use of several theoretical
models which are described in the present sec-
tion. These models include a bulk energy-band
calculation technique as well as formulas by which
photoemission and optical properties can be re-
lated to the band structure.

A. Nonlocal-pseudopotential model

The pseudopotential technique4 has been widely
used to determine semiconductor electronic struc-
ture from optical' and photoemission ' experi-
ments. We use such a technique here, and in pa, r-
ticular we incorporate two types of nonlocality in
the pseudopotential. Angular momentum non-
locality, in the form of an I =2 repulsive potential,
is needed to obtain the proper band topology. ' ' 7

Physically, it arises from the proximity (in ener-
gy) of the Ge M core levels (see Sec. IV) to the
valence and conduction bands. '8 Energy nonlocality
may aid in obtaining conduction and valence band-
widths in better agreement with experiment.
Such nonlocality can become important for describ-
ing data relating to optical transitions over a wide
energy range, since the energy dependence of the
electron self-energy operator becomes significant,
as has been shown to be the case for Cu. " Such
an energy dependence can arise„ for example,

v Qr = g V(G) e' ', (3 2)

and we keep only V(G) for I Gl' =3, 8, or 11 in
units of (2v/a)2, where a is the lattice constant40
of 5.66 A. These three Fourier coefficients are
then denoted V(3), V(8), and V(11), respectively.

Following Refs. 37 and 38, we use an angular-
momentum-dependent ' potential of the form

va =Aqf (r)P, I, (3 3)

where P, 2 is an l = 2 projection operator, A, is the
strength (in By) of the repulsive square well, and

(3.4)

where R2 is the well radius in A and r =0 is an
ionic position in the crystal. A slightly different
form for v2, using a Gaussian potential, has also
been utilized recently 42 in the analysis of optical
data. The eigenvalues in (3.1) are found by
diagonalizing a matrix consisting of plane-wave
matrix elements of the Hamiltonian H. Such ma-
trix elements for v, in Eqs. (3.3) and (3.4) are
given explicitly in Ref. 37.

In order to find the eigenstates in Eq. (3.1), it
is useful to remove the eigenvalue dependence of
H. We have done this by using the fact that we
will always use o. «1. In this case the Schrodinger
equation can be written

(1+o.') (T+v~+v, ) y„,g =Z„,gq„,-„, «& 1. (3.5)

While Eq. (3. 5) can be interpreted as a pseudopo-
tential problem with an "effective mass" m* =mo

from the dependence of the correlation energy"
of optically produced quasiparticles on their en-
ergy separation from the Fermi energy Ez. (Such
energy dependence is also contained in the pseudo-
potential itself. 4)

From these considerations we arrive at the
following form for the pseudopotential equation
used to determine Bloch eigenvalues E„(k) [where
n is a band index and % is a wave vector in the
first Brillouin zone (BZ)]:

Hg„t,(r) = [T +vz +v2 + o.E„(k)]%'„-„(r),

=Z„(k)g„;(r), (3.1)

where g„g is the pseudo-wave-function. Here T
and v~ are the usual kinetic-energy operator and
local pseudopotential, v~ is an angular-momentum-
dependent (l =2) potential in the form of a repulsive
square well, 37'8 and o' (&0) is the coefficient of
the linear energy-dependent correction to the elec-
tron self-energy.

As usual, ' vt, is defined in terms of a recipro-
cal-lattice-vector Fourier expansion by
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x(1+n) ', we prefer to view it simply as a trans-
formed version of (3.1) which is computationally
more convenient. Indeed, addition of an effective
mass in the local-pseudopotential problem has
been previously used as a device to change band-
widths in a manner in which the local yseudopoten-
tial alone cannot. ~'"'4' Equation (3.1) represents
this effect in a form which is more transparently
due to the energy dependence of the electron self-
energy or of the pseudopotential itself.

8. Calculation of experimental properties

Once energy eigenvalues and wave functions are
obtained on a mesh of R points in the BZ [by
diagonalizing (3.6)], we can determine the optical
constants, one-electron density of states, and
photoemission spectra by appropriate numerical
%-space integration. Many of the details of this
procedure are given in Ref. 24 (and in Refs. 29
and 30 therein). Here we will only give the basic
formulas which relate the energy-band structure
to experimental quantities of interest to us.

The most significant difference between Ref. 24
and the present work is in the algorithm for cal-
culating photoemission energy distributions (PED's)
below the x-ray limit. In the small-hv range, we
have shown'~'~0 that for cleaved (111) single-crys-
tal Ge, the anisotropy of transport and escape must
must be incorporated into the photoemission model
to produce theoretical spectra which reproduce the
major features of the experimentally observed
spectra. The modified formulas for low-hv PHD's
will be summarized here, and are described in
more detail in the Appendix.

In the following formulas, the band index n will
refer to an occupied state [E„(k)~ Ev], while n'

will be an unoccupied (conduction) band index.
The optical constants are obtained by first cal-

culating the imaginary part of the dielectric func-
tion at photon energy hv:

fg(hv}= g g ~ Q J d h
64m~

tf, tf

x
I
p .(k) I'6(E„,(h) -E„(h) -hv), (3.6)

where k is in units of 2w/a, and the band energies,
photon energy, and I P„„.l2 (the optical matrix ele-
ment squared) are in Ry. In this, and in following
formulas, we have averaged over all lightpolariza-
tion directions. c&(hv) is then obtained by Kra-
mers-Kronig analysis and can be used in conjunc-
tion with cz(hv) to obtain other optical properties.

The one-electron density of states N(E} is ob-
tained from

N(E) =
4 g i

d'h 6(E —E„(k)) (3.7)

(in states/Ry atom, both spins), where again E is

in Ry and k is in units of 2w/a. The factor of —,
'

(rather than —,
' as in Ref. 24) reflects the fact that

there are two atoms per unit cell.
The 6 functions in (3.6) and (3.7) confine the

integrals to surfaces in k space, and the resulting
surface integrals are done on a uniform cubical
mesh of -1500 points in the ~~ of the BZ defined
by k„~k, ~k, ~ 0. This conversion to surface
integrals, as well as the integration method, are
described in Refs. 23-25.

For calculating the PHD's, two direct-transi-
tion models are used. One, called the "isotropic"
model, is the usual "three-step model, " in
which the photoemission process is described as
the successive application of formulas describing
the probability of (i) optical excitation (ii) prop-
agation of the excited electron to the surface,
and (iii) transmission of the excited electron
through the surface.

This model was modified by Janak et al. ~"4 to
describe electron transport [step (ii)] and the pro-
duction of inelastically scattered electrons more
completely. We have used Janak's computer codes
for this model, as well as for the calculation of
N(E) and t 2(

hv)'

We have found that certain approximations in
this isotropic model are too severe for the case
of cleaved, single-crystal Ge, in which the angle-
integrated photoemission distribution of electrons
from a single (111}face is measured. In the iso-
tropic model, one essentially averages emission
through all possible orientations of the sample
surface with respect to the BZ (or crystal) axes.
In the case of polycrystalline Cu, for example,
for which this model has been used, ~'3~ the sam-
yle may consist of yolycrystallites which are
oriented with many different crystal faces exposed
so that the type of averaging imylicit in the iso-
troyic model is approximated in the experiment.
(Smith has also extensively studied evaporated
transition metals and has used similar formulas. '6)

For single-crystal Ge we have found that an
"anisotropic" model for the primary emission, in
which steps (ii) and (iii} describe transport to, and

escape through, a yarticular crystal face, gives
low-photon-energy PHD's which agree much better
with experiment than do those predicted by the
isotropic model. ' '20 This model is described '

briefly here and in more detail in the Appendix.
The primary (unscattered) electron distribution

originating at energy E„excited by photons of
energy hv, and escaping through a crystal face
with unit normal vector n is given by

N~(E„h v, n) = ~(hv)[q(h v)] '

x g d'h[~p„„.(k}~'6(E„(h)-E,.)
nn'
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r 0

7i(h v) =— dE& Po(E&, kv), (s. 8)

x 5(E„,(k) -E, -hv)] D„.(k, n)T„.(k, n),
(s. 8)

where the three main factors in the integrand (the
term in square brackets, D„,, and T„,) correspond
to the three steps described above (optical excita-
tion, transport to the surface, and transmission
through the surface).

Equation (3.8) gives the distribution of emitted
primary photoelectrons per absorbed photon
[o.(hv) is the absorption coefficient] if q(hv) is
defined

0

for E .(k) —Vo — " &0

. (3.14)

Finally we obtain

(s. is)

where we have summed probabilities (and not am-
plitudes) in (3.15) since separate beams leaving
the sample do not overlap at the detector.

The final result for the total distribution of pri-
mary plus secondary electrons

N(E„hv, 8) =N~(E„hv, fi) +N, (E„hv) (s. is)

x 5(E„,—E,. —hv). (3.10)

~(E. (k))~;E„(k) ~
D„. k, n =

1+a7y„-E„,(k) ~ &
(3.11)

when the photon intensity varies as ue "' (o.' is
the optical absorption coefficient and A ~ r &0 for
r within the solid, and r =0 at the surface). The
final-state electron lifetime 7' is determined by
the inelastic electron-electron scattering rate ob-
tained from the Kane random-k model44 as de-
scribed in Ref. 24. For this model, v'=v(E„.).

The surface transmission probability T„,(k, n)
in Eq. (3.8) is obtained by using the formula for
classical transmission through a specular surface
with a barrier of height Vo which is only a function
of the coordinate perpendicular to the surface,

0, n ~ r«0
V,„„(r)= V,„„(n r) =

V, n r»0 (s. i2)

(see Appendix). The final-state wave function is
then decomposed into plane waves:

„(r) g gn' i(k+G) r

G

(s. is)

The individual plane-wave components in (3.13)
are tested for their ability to traverse the surface
barrier in Eq. (3.12) (which conserves k+G paral-
el to the surface). The classical transmission
probability of a given plane wave in Eq. (3.13) is
(see the Appendix)

Here I', is the distribution of optically excited
electrons and is used to determine the secondary
electron distribution N, (E,, hv) via the Kane ran-
dom-k mode14' as described in Ref. 24.

The effective escape depth for electrons in final-
state (n', k) is given by

is then normalized to the total yield at one value
of hv in order to determine the inelastic scatter-
ing matrix element. ' As described in Ref. 24,
the k-space integrals in Eqs. (S.8) and (3.10) are
done by a modification of the Gilat-Raubenheimer
method. 4'

The resulting direct-transition model for photo-
emission differs in some details from previous
models which have been applied to semiconduc-
tors. ' The most significant difference is our
anisotropic treatment of photoexcited electron
transport and escape. This causes certain spec-
tral features is P,(E„hv) [Eq. (3.10)] to be
severely attenuated if they correspond to optical
transitions into final Bloch states which cannot
match to a significant propagating current out-
side of the cleaved surface. Properly emphasiz-
ing peaks in I'o according t'o the experimental
conditions will be one of the important factors
enabling us to understand in Sec. V the k-space
origin of peaks in the PED's in Fig. 3.

IV. ONE-ELECTRON DENSITY-OF-STATES
OVERVIEWS

In this section we present measurements of one-
electron density-of-states N(E) features for the
core levels, valence bands (E =E, ~0; E =0 =E„,
valence-band edge), and filled intrinsic surface
states (occupied states); and for the unoccupied
intrinsic surface and conduction-band states
(E &0). These measurements, besides supplying
a graphic overview of features such as the spec-
tral density of core levels and surface states,
will also provide several energy-band critical-
point values to be used in later sections for pro-
ducing a model of the valence- and conduction-
band structure of Ge.

A. Occupied-state overview

Figure 6 presents the basic data to be used for
obtaining a photoemission density of states (PDS)
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to the spectral distribution of occupied surface
states previously determined for Ge, 4~ normalized
by assuming thatall of the emissionfor 0.5 eV5 E;
+E„ is surface-state emission. Failure to per-
form such a surface-state subtraction in a previous
paper (Ref. 28) led to an incorrect assignment of
the position of the critical point I, . The separate
PDS's for occupied bulk and surface states are
then displayed in Fig. 8.

I 0
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FIG. 6. (a) PED is the experimental hv =25 eV spec-
trum. Subtraction of an estimated secondary electron
distribution (dashed) and a surface distribution (dashed;
from Ref. 47) results in a photoemission density of
states (PDS; see Ref. 13), which represents features in
the bulk density of states. (b) Emission spectrum from
the spin-orbit-split 3d level (6=0.55 eV). Binding ener-
gy is referred to zero at E„.

B. Unoccupied-state overview

Features in the unoccupied surface and conduc-
tion-band density of states are determined (as
described in Sec. II) by measuring the partial
yield F~(hv, Ef,„,~) for both a clean, vacuum-
cleaved sample, and for a sample which was
purposefully contaminated with about a monolayer
of Sb (to remove the surface states). Figure 7

gives Y'~ for a clean surface (solid line) for E*
=4 eV and for 28 5 hv & 38 eV, a region in which
emission corresponding to the empty surface states
and low-lying conduction bands is seen. For an
Sb-contaminated surface the low-hv edge changes
(dashed line), corresponding to the removal of
the empty surface states. (The dashed line for
Sb-contaminated Ge is not continued to larger
values of kv as the spectrum contains Sb-associated
emission at larger hv. ) The difference between
these two curves, which corresponds essentially
to the empty-surface-state distribution, is also
shown. It appears as a doublet since Y~ contains
contributions from transitions for both components
of the 3d doublet. The emission corresponding to

for occupied electronic levels. In Fig. 6(b) we
give the Ge 3d-core-level emission spectrum
(hv = 40 eV) versus electron binding energy (the nega-
tive of the initial energy E,). In Fig. 6(a) we show
an emission spectrum for the valence-band region,
obtained at kv =25 eV (in the XPS regime) which
represents features in N(E, ).

Figure 6(b) shows the Ge Sd level as a spin-or-
bit-split doublet, with the 4,&~ level lying higher
than the d, &~ level, a spin-orbit splitting b„
=0.58+0.05 eV, and a linewidth [full width at
half-maximum (FWHM)] of 2I' =0.4+O. I eV (cor-
rected for the 0.25-eV experimental resolution'8).
The d5» binding energy is 29.1+0.1 eV.

In order to obtain a valence-band photoemission
density of states (PDS), we perform two subtrac-
tions on the hv =25 eV spectrum for —13 eV
&E, & E„=O. As described previously" we sub-
tract a smooth, structureless background from the
total emission spectrum, corresponding to the
secondary (inelastically scattered) electron dis-
tribution, which is shown in Fig. 6(a). Also, in
Fig. 6(a) we subtract a distribution corresponding

I
I

I

GERMAN I UM

0

CQ

Cl

UJ

I-

28 50 52 54
he(eV)

56 38

FIG. 7. (a) Partial yield Y&(hv) from a cleaved Ge
(111) surface. (b) F& for an Sb-coated surface (-1
monolayer of Sb), with surface states removed. (c) Dif-
ference curve (&& 2) representing surface-state partial
yield. This difference curve shows both 3d5~2 and Bdsy2
transitions (from Ref. 29).
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the conduction bands alone (dashed line in Fig. 7
for hv& 31-32 eV, solid line at larger Itv) shows
three conduction-band features, which are broad-
ened owing to transitions from both the d, &, and the

d, &~ level to the conduction band. These contribu-
tions result in a broadening in the conduction-band
density-of-states features in Fig. V. To obtain
the final photoemission density-of-states overview
for Qe for the empty states, the separate d, &~ and

d, &~ contribution to F~ in Fig. 7 are separated
(assuming a 2: 3 intensity ratio) and the resulting
empty-state density overviews are summarized in
Fig. 8.

C. Comparison of state density overviews with theory

We now compare a theoretical N(E) for bulk Ge
with the overviews in Fig. 8 in order to obtain

I

14 12 10 8 6 4 2 0 Ev 0 Ev 2 4 6 8
INITIAL ENERGY (eV) [hv-Es(deqe)] (eV)

FIG. 8. (a) Experimental valence-band PDS (solid)
and surface-state distribution, representing bulk and
surface one-electron density-of-states ~"(E) overviews.
Theoretical &'(E) from bands obtained from potential
I of Table I is dashed. (b) Conduction-band and surface-
state PDS (solid) from Ref. 29 are compared with the
theoretical conduction-band state density ~"(E) from po-
tential I of Table I.

certain energy-band positions using the procedure
discussed in Ref. 28. The unoccupied-state spec-
tra in Fig. 8 are plotted versus E =hv —Es(d, ~a),
where Es(d, &,) is the 3d, &s binding energy mea-
sured with respect to E„, and the experimental
spectra have been deconvolved and only the d, &,
component plotted. We note that the apparent
overlap of the empty-surface-state distribution
with the valence-band edge is an artifact which is
due to a total instrumental broadening plus core-
hole lifetime broadening of -0.7 eV in the partial-
yield measurement.

Figure 8 shows (dashed) a bulk one-electron den-
sity of states N(E) (broadened) for the valence and
conduction bands determined by the Hamiltonian
described by Etls. (3.1)-(3.5), using pseudopoten-
tial I of Table I. This theoretical calculation will
be discussed in more detail in Sec. VI. It repre-
sents our final "best" fit (in a certain sense) to
all the data which will be presented in this paper,
and typically represents a fit to better than -0.3
eV to 16 energy-band positions and optical transi-
tions over a 26-eV range centered on the gap.
The energy bands from this calculation are shown
in Fig. 9. The broadening of N(E) simulates that
in the experiment, as discussed in Ref. 28, and
was done using a Lorentzian function of full width
at half-maximum 27=0. 25 eV at E„, with the
broadening increasing linearly into the valence
or conduction bands to a value of 2I'=0. 75 eV for
energies 12 eV away from E„.

The relation of certain energy-band-calculation
critical-point energies to spectral features in
N(E) is determined from Fig. 9. Experimental
values for these critical points for both valence-
and conduction-band states are determined by
comparing corresponding experimental and cal-

TABLE I. Parameters for crystal Hamiltonian. Local pseudopotential [V(&)], l =2 nonlocal strength
A& and well radius R2, and energy-nonlocal coefficient & [see Eqs. (3.1)-(3.5)] used in various calcula-
tions reported in this paper. A11 energies are in Ry, while R& is in A. In a11 cases we used a lattice con-
stant a=5. 66 A.

V(G) (local potential) l =2 nonlocal Energy nonlocat,

Calculation

I. Energy and l =2
nonlocal

G2/(2((/a) = 8 A2

—0. 2288 0. 0289 0. 0554 1, 89 0. 983 0. 0258

II. l =2 nonlocal fit only
to some ban. ds

—0. 2300 0. 0303 0. 0550 0. 742 l. 173

III. Pand ey-Philips~
Cohen-Bergstresser"

—0. 223
—0, 23

0. 029
0, 01

0. 0500 0. 582 1, 225
0, 0600 0 0

A. Local

B. Energy nonlocal

C. l =2 non. local

—0. 2439 0. 0235 0. 0453 0

—0. 2338 0. 0238 0. 0442 0

—0. 2304 0. 0303 0, 0569 0, 799 1, 172

0. 0848

aReference 37. "Reference 40.
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FIG. 9. Theoretical energy bands 1„(k) for valence
and conduction. bands of Ge from potential I of Table I.
Experimental band positions obtained in Secs. IV and V
are denoted by arrows. & represents states near those
for the optical critical point contributing to peaked in
Figs. 13 and 15.

First there is the rather straightforward uncer-
tainty in the energy scale and peak positions in
Fig. 8(b) introduced by the combination of core-
level binding-energy (with respect to E„) uncer-
tainty and the errors introduced by deconvolution
and the finite width of the core hole. Also, how-
ever, there may be excitonlike enhancements of
edges since the fundamental process giving the
experimental data in Fig. 8(b) is a core-to-con-
duction-state transition. Indeed, the distortion
of the conduction-band edge in Fig. 8(b) (com-
paring experiment with theory) is reminiscent of
the conduction-band edge enhancement seen in Si
in absorption measurements of the core to con-
duction-band transition. 49

We note that the ability to determine certain
band positions by both the occupied density-of-
states overviews in the XPS regime (present
section), and by a direct-transition analysis in
the "band-structure regime" (Sec. V), provides
an internal consistency check on the methods
described in this paper.

We now turn, in Sec. V to an analysis of data
obtained in the direct-transition-dominated,
band-structure regime.

culated spectral features and then referring these
calculated features to calculated energy-band
locations, as discussed in Ref. 28.

The resulting experimental band positions de-
termined from these N(E) overviews are listed in
Table II. These values are the same as those re-
ported in Ref. 28 with three exceptions. The posi-
tion of L,„ is at E, = —V. 'I+0. 2 eV (present paper,
Refs. 19, 20, and 48) and not —7.4 eV as erro-
neously reported in Table I of Ref. 28 because of
a typographical error. The value of L,.„deter-
mined here from valence-band overviews (see
Table II) is consistent within experimental error
with the value determined from direct transition
analyses (see Sec. V, Table II of the present
paper, and Ref. 20). The value of —1.1 eV re-
ported in Refs. 28 and 48 is incorrect owing to
our failure to subtract surface-state emission in
obtaining the experimental N(E) overview Finally, .
the position of L„ is determined in this section
for the first time from conduction-band overviews
(see Table II). It was previously also determined
from a direct-transition analysis (see Ref. 20,
and Sec. V and Table II of the present paper).

We see that the value of L„(4.1 + 0. 5 eV) deter-
mined by this empty-state spectroscopy technique
is lower than the more reliable value (4. 3 +0. 2 eV)
obtained in Sec. V by a direct-transition analysis.
We also note that the conduction-band edge is
enhanced in the empty-state overview. These
shifts or enhancements can have two origins.

V. DIRECT-TRANSITION ANALYSIS OF
ENERGY-BAND STRUCTURE

The aim of this section is to obtain valence- and
conduction-band positions from an analysis of
photoemission data in the "band-structure regime"
(hv & 15-20 eV) and from optical data. The mo-
tion of dominant emission peaks (whose initial en-
ergy F.; is a function of hv in the photoemission
data) will be reproduced in calculations based on
theoretical band structures and an "anisotropic"
direct-transition model of the photoemission pro-
cess (Sec. III, Appendix A) in order to make the
correspondence between experimental peaks and
particular transitions in the BZ. Several previous
studies have utilized various direct-transition
analyses. ~6 Most notable is the work of Spicer
and co-workers (Refs. 31, 50, 51), who used
data for hv & 11.6 eV (the LiF window cutoff) and
attempted to determine which transitions corre-
sponded to various emission peaks by referring to
model energy bands plotted along symmetry lines.
As Table II shows, certain valence- and conduction-
band positions obtained by this method are in rea-
sonable agreement with our assignments (e. g. ,
I.~.„,X~„) while others (e. g. , X~,) disagree. The
limitations to this and other previous work 6 were
twofold: The small range of hv experimentally
available did not provide valence-band overviews,
which are important in providing a good zeroth-
order energy-band calculation for which the va-
lence bandwidths are essentially correct(e. g. , see
the discussion of CdTe in Ref. 28). Second, a,
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FIG. 10. Experimental imaginary part of the dielec-
tric function, &2(hv), from Ref. 53 (dashed), and theo-
retical &2(hv) (solid), from bands shown in Fig. 9.
Pseudo-wave-function matrix elements were used and
&~ (theoretical) was broadened by a Lorentzian of full
width 2I'=0. 2 eV.

photoemission model which is based on an analysis
of transitions at general points in the BZ, away
from symmetry lines, is a great aid in confirming
the identification of certain photoemission features
with particular energy-band locations. Previous

work along these lines4~ suffered from a lack of
data over a wide energy range, incorrect valence
bandwidths due to the lack of valence-band over-
views, and oversimplified models of the photo-
emission process.

The energy-band locations determined in this
section will be based on an analysis of optical and
photoemission spectra from several pseudopoten-
tial calculations. The pseudopotentials for these
calculations are labeled I, II, and III in Table I.

We will discuss these three potentials in more
detail in Sec. VI of this paper, but here given an
outline of their similarities and differences. Po-
tential III is the l =2 nonlocal pseudopotential of
Pandey and Phillips, 37 and formed the basis for
our preliminary analysis of Ge energy-band posi-
tions in two previous papers. "' Potential I
represents a pseudopotential which was adjusted
to fit the experimental energy positions obtained
in Refs. 19 and 20, and contains both an l = 2 and
energy-nonlocal term [see Eqs. (3.1)-(3.5)].
Potential II was fit to fewer levels and contains no
energy-nonlocal term. It is described further in
Sec. VI.

The l =2 and energy-nonlocal potential repre-
sented by pseudopotential I (Table I}will be the
principal one used in conjunction with the algorithms
described in Sec. III and the Appendix to calculate
optical and photoemission spectra in the present
paper, and potentials II and III will be used to
determine the extent to which results thus calcu-
lated are general and not an artifact of one partic-

TABLE III. Optical spectral features and k-space location.

Eo

Experimental~
positiqn, hv (eV)

0. 99"

2O 32
2.31'
2. 34

3, 20
3.5~

3.23e

4. 49'
4. 5'
4. 50'

5 77
5.75

Theoretical
position, hv (eV)

0.97'

2. 28~

2. 39"

3.25'
3.34"

4. 50~
4.40"

5. 78g
79h

Separation of bands
at associated symmetry

point (eV)

0.97
(I'2"- I'2v.)

2. 37
(Lg, -L3 )

3.34

4.42
(X~c -X4v)

5. 82
(Lsc-&s")

0-space location
(units of 2~/a)

(0, 0, 0)

Bands 4.-5, wide
region. along A, centered

on(g, 4, g)

Large volume centered
on (0.33,0.24, 0.14)

Bands 4 5, small
region near

(0.77, 0.29, 0.16)

Near L face, centered
on 1, bands 3, 4 —5, 6

and 7 (mostly 4 6)

~Average of spin-orbit-split components.
"Reference 37, Table I.
'Reference 54; hv-modulated R(hv).
Reference 53; &2 peak.

'Reference 61; low-field electroreflectance.

Reference 53; R(hv) peak.
Reference 42; d&ldh&.

+2 feature from Fig. 9 bands.
For Fig. 9 bands, potential I of Table I,
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taken from Ref. 53, while the theoretical spectrum
is from the energy-nonlocal band calculation (po-
tential I in Table I), using the algorithms described
in Sec. III. To determine L&„we consider the
E, peak in c,(hv) (Fig. 10), occurring at 2.39
~ 0.03 eV in the theory and experimentally at
2. 32+0.02 eV (Table III; three sets of data). Our
analysis confirms that this feature is at the energy
of the L, „-L„separation, but is due to transi-
tions which occur over a large region of k space
along A, centered near ( —,', —,', —,') 2w/a=k. The
theoretical value for L„—I s.„ is 2. 36 eV, equal
to the theoretical E, peak position within our com-
putational error. Thus the experimental E, posi-
tion gives I j, -L,.,=2. 3 eV and, together with
L,.„(1.5+0.2 eV) determined below, gives'L„
=0.8 ~0. 2 eV. The absorption measurements in
jRef. 55 give directly -0.84 eV for the indirect
gap in Ge at T =0 K and -0.76 eV at 300 K (cor-
recting the quoted values for the spin-orbit split-
ting at I"~5 ), in excellent agreement with our
analysis. (Our theoretical position for L„ is
0.85 eV. )

Next we turn our attention to the band positions
L3.„and L„which are related to the optical E,' peak

-
I 2—

CESIATED

GERMANIUM

(a) THEORY

he=

8.6eV

(b) EXPERIMENT

(MATSUZAKI

8 SPICER}

U, K

FIG. 11. Ge band structure near L for the same po-
tential as in Fig. 9. Theoretical positions of the peak in
&(E) at 4 eV, transitions contributing to the E& peak in
&&(h, v), and transitions corresponding to the onset of
emission from I ~„(denoted E; see Figs. 13 and 15) are
shown. .

O
C)
CL

CO

I—

ular type of pseudopotential. We note that the
one-electron density of states for pseudopotential
I has already been displayed in Fig. 8 and used in
Sec. IV. The energy bands for this potential are
displayed in Fig. 9, which also defines the energy-
band notation used in this paper. This calculation
will now be used to perform a direct-transition
analysis of the experimental energy-band ladders
at L, X, and I'. As our calculations ignore spin-
orbit splitting of degenerate bands (&0.3 eV),
energy-band positions will always refer to the
center of gravity of spin-orbit-split bands.

A. Energy bands at L

We start with a determination of L„using e(hv)
shown in Fig. 10. The experimental spectrum is

6-
5-
4-
3-
2&

0 I I I I I I I

-8 -6 -4 -2 O=E -8 -6 -4 -2 O=E
V V

INITIAL ENERGY (eV)

FIG. 12. (a) Theoretical and (b) experimen. tal PED's
for cesiated Ge. (a) was obtained using the anisotropic
direct-transition model while (b) was taken from Ref.
51. Much of the fine structure in the theoretical and ex-
perimental curves agrees to better than 0. 5 eV.
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strong theoretical N(E) peak at E =4.0 eV (in
Fig. 8, theoretical) is seen to come from states
away from L on the L face (see Fig. 11), at points
surrounding L where the bands have dipped down

by 0.3 eV below L3, giving large regions of flat
bands which contribute to the large N(E) peak.

Finally, we note that the partial-yield peak in
Fig. 8 (experimental) is -0.25 eV below the
theoretical peak, even though the cesiated data
agree with the theory as far as this peak location
is concerned. As noted in Sec. IV, the partial-
yield peaks are subject to errors due to a variety
of factors, and may not represent a reliable deter-
mination of N(E) features on the scale of a few
tenths of an eV. For this reason we consider the
value for L„(4.3 +0.2 eV) determined in the
present analysis to represent the correct one.
Also, note that the Sec. IV value for L,.„. ( —1.4
+ 0.3 eV}, based on occupied density-of-states
overviews, agrees with the present value within
experimental error.

We now turn to a determintaion of the high-lying
conduction-band levels Ls, , and I,"""(see Fig. 9),
the latter being defined as the center of gravity of

FIG. 14. (a) Ratio of experimental primary/secondary
emission intensity from E&=7.7 eV vs kv ffrom Fig. I3
(a)]. (b) Same ratio (theoretical) as for (a), using Fig.
13(b). (c) Theoretical density of states near the L face
(see text) Kg fgpe (E) vs final-state energy &, plotted vs

E- (ER,(J = hv.

a set of levels lying -1 Ry above the gap which
are degenerate in the empty-lattice scheme and
only slightly split (total splitting -0.65 eV) by the
crystal potential. These levels are determined by
considering the intensity of emission from states
near L,„as hv increases. In Fig. 8 we see a strong
peak in the photoemission spectrum at E, = —7.6
eV and also in N(E) (theoretical) at the same posi-
tion, corresponding to states on and near the L
face associated with L,„. Figures 9 and 11 empha-
size that while the states associated with this peak
are strongly localized on the L face, they are
spread over a large region of the face. As hv in-
creases, the direct-transition model predicts few
final states available for emission from E, = —7.7
eV until hv =15.7 eV, at which point a final-state
band dips down at L (La.„Fig. 11). This predic-
tion is verified both experimentally and theoreti-
cally. Figure 13(a) shows experimental PED's
for 6. 5~hv~23 eV, while 13(b) gives the calcu-
lated spectra for the same values of hv. The line
denoted E-E' on this figure shows the emission
peak from initial states near L&„, a peak which is
weak or absent in the hv —15 eV spectra but of
significant strength at hv =16 eV. The onset of
the transitions corresponding to this peak is in-
dicated by E in Fig. 11. In Figs 14(a.) and 14(b)
we plot the experimental peak intensity at E,
=-7.7 eV, normalized to the inelastic electron
background, for both the experimental and theo-
retical spectra of Fig. 13. We also plot, in Fig.
14(c), the density of final states in the region of
k space near the L face where the band associated
with L,„ is flat. In all three curves we see an
abrupt intensity increase between 15.5 and 16.0
eV, and thereby determine that L, , (experimental)
lies 15.5+0.6 eV above Lj„. giving L~.,=7.8+0.6
eV above E„. Since the onset is so well defined
in the data, it should in the future be possible to
refine the position of L2., by studying the constant
initial-state spectrum" N(E, = —7. 7 eV, lt v) where
E, is fixed and hv varies continuously. This will
yield a more refined line shape than we have ob-
tained in Fig. 14(a), where we used only experi-
mental spectra separated by 1-eV steps in hv.

The determination of L,"""from Fig. 14 is
more uncertain, for several difficulties arise in
such a determination. First one must decide
whether direct transitions to sharp final-state
bands occur, in which case Fig. 14(b) properly
represents the experimental variation of emission
from E; = —7.7 eV as hv varies through the value
corresponding to transitions near L«„-L,"'~'.
Alternatively, we could argue by referring to
Fig. 5 that at these final-state electron energies
the momentum broadening of the final-state bands
is large in the direction perpendicular to the sur-
face, in which case the density of final states more
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correctly describes the variation of the intensity
of emission from E, = -7.7 eV vs hv. In that
case the density of final states near the L face
[Fig. 14(c)] is the appropriate theoretical quantity
to compare with experiment. Reference to Fig. 14
clearly shows that it is this latter quantity [de-
noted Nz, ,~,(E)] which more nearly corresponds
to the experimental intensity for emission from
L&„vs hv. The position of L,"""is then marked
by a dip in Nz, ,(E), corresponding to the open-
ing of the gap at I,""".We show a smoothed ver-
sion of Nz, ~,(E) in Fig. 14(c) and compare this
curve with the experimental one. While the ex-
perimental curve [Fig. 14(a)] is similar to the
smoothed version of Nz, ,(E) [Fig. 14(c)], it has
a rising background not present in the theoretical
curve (T.his is probably an artifact of our arbi-
trary procedure of normalizing to the inelastic
background. ) Considering this, we identify i.",""
(experimental) with the position of greatest curva-
ture in N(E, = —V. 7 eV, hv), since this is the feature
which is least sensitive to the errors introduced
by our normalization procedure. L",""—Lj„ is
thus determined to be 20. 3 +1.0 eV, giving L,"""
=12.6+1.0 eV, which agrees better with the
theoretical value obtained using potential I than
potential II in Table II. That is, explicitly includ-
ing a "self-energy" correction improves agree-
ment, although the large experimental error must
be considered in assessing the strength of this
conclusion. We note that constant initial-state
spectroscopy, ' in which a continuous spectrum
versus hv is obtained, might help to refine the
value of L,,"""and strengthen this conclusion.

B. Energy bands at I
We start with a determination of X4„and X,"""

(Fig. 9) by analyzing a peak which first appears'7
at E, = —0.7 eV for hv =8.2 eV and then moves
further below E„as hv increases. This peak is
the most intense feature in low-hv spectra. It is
labeled A -A' in Fig. 13, and as we shall see is
associated with transitions between I" and the X
face of the BZ, and thus contains information about
states near X. In Fig. 15 we have plotted the peak
positions of Fig. 13 as loci of points placed at
the (E;, hv) positions of these peaks. Such a
"structure plot" is a plot of what Kane" calls
"E;- A, v images" of photoemission critical points.
Such a plot is an excellent way to compare direct-
transition features in theoretical and experimen-
tal spectra. Also, as Kane has shown, these
E, —hv images can be used to identify various types
of critical points. We note that an intense low-
hv peak propagates along the lines A -A' on the
structure plot as hv increases, reaches a mini-
mum E; value at @v=17 eV for the experimental
spectra, and then propagates toward E„as hv

24-
&22-
0)
&-20-
(3 ~t

& 18- +
LLI ~+

~ 16-
g 14- "'"-"+.. y- D0
o12
cL 10-
~ 8 $=485eV

SURFACE- '

X~v
— 'C

-6 -5 -4 -5 -2
E j INITIAL ENERGY (QV)

FIG. 15. Position of theoretical (dotted) and experi-
mental (dashed) (E;,hv) images of peaks from Fig. 13.
Transitions below the line labeled /=4. 85 eV are inac-
cessible for clean, cleaved. (11) Ge. Diamond marks
the (E;,kv) position of transitions from X4„to X

"~"for
the theoretical energy bands.

increases further (A' -A"). Another set of tran-
sitions contribute along a line labeled A'-A"' in
Fig. 15, which joins A -A'-A" closeto thepoint
(E;, hv) = ( —3.2, 17 eV), at which position the line
A -A' -A" has reached its maximum extent be-
low E„. Also, Fig. 13(a) shows other direct-tran-
sition peaks at @v~17 eV which appear to converge
on the point E; = —3.2 eV, hv=17 eV. Kane shows
that such a junction of several E,- -hv images is a
sign that the junction occurs at a value of E,. for
which N(E, ) has a critical point [i.e. , at which the
energy band E„(k) is such that V1E„(k)=0] and,
simnltaneously, at which V;E„,(k) —V-„E„(k)=0.
The latter condition, for initial and final bands
parallel, defines an optical critical point. As
Kane points out, such a conjunction of N(E, ) and
optical critical points usually occurs only at points
of high symmetry in the BZ. Reference to Fig. 9
then strongly suggests that the hv =17 eV transi-
tion occurring at E, = —3.2 eV originates at X in
the BZ, and a direct-transition analysis confirms
this interpretation. In Fig. 15 we show the E,
-hv image A -A'-A" for the theory, and note
that its behavior is identical to that of the experi-
mental one. Further, by analyzing the contribu-
tions to A -A' -A" we determine that as this line
approaches its minimum E, value at @v=16.5 eV,
the transitions contributing to it approach X. (The
theoretical E,. —hv position of transitions from
X4„ to X",""is indicated in Fig. 15.) Note that
A -A'-A" (theoretical) does not intersect the E,
position corresponding to X4„, but does reach its
minimum E; value at the theoretical value of hv
corresponding to X",""-X4„. Such behavior is
probably due to the V-„E„.(k) factor in Eq. (3.11).
In the direct-transition model, in which k is rigor-
ously conserved, the final-state group velocity is
zero at a critical point and one does not obtain a
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contribution from the critical point itself. However,
spectra computed using energy bands obtained
from pseudopotentials II and III in Table I gave a
line A -A' -A."which did reach its maximum ex-
cursion exact1y~~ at the (E;, hv) position corre-
sponding to(X4„, X,"""-X4„). One reason this can
occur in our k-conserving direct-transition model
is that we have made a piecewise-linear approxi-
mation to the energy bands, so the group velocity
can be nonzero and fairly large near such sym-
metry points. In the experimental situation, the
spectral features contributing near A. ' in Fig. 16
arise in the region of final-state energy in which
the direct-transition features in the spectra
weaken as k~ ' increases, so that emission even
at X is possible.

This discussion leads us to conclude that E&
= —3.2+0. 2 eV is the experimental value of X4„,
and that X,"""lies about 17 eV above X4„, at
13.8+0.6 eV. This X4„value is in excellent
agreement with the value of —3.15+0.2 eV ob-
tained in Sec. IV from the experimental Z,

position, using an indirect method. X,"""is much
more uncertain, and appears to lie above the
pseudopotential-I theoretical value (Table II) by
about 0.6 eV, although the error bound on X,"'"'
is so large that caution is required regarding this
conclusion. For pseudopotential II, with no energy
nonlocality, the disagreement is greater.

Finally, we determine X&, from the value for
X4„plus the measured value for the E~ structure in
optical data, in conjunction with the theoretical
optical spectra. We first note that three recent
papers have performed an analysis of the X&,
-X~„separation based on optical data. Phillips
and Pandey ' initially reported a value of 4. 1 eV
=X„-X4„(atlow temperatures below -80 'K),
but corrected this value to 4. 5 eV after" analyzing
electroreflectance data. These authors also re-
port values for X4, and X~, separately which im-
ply that X„-X4„=4.16 eV. These results are not
consistent, and we concur with the X„-X4„value
of 4. 5 eV, but not the separate X„and X4„values.
Chelikowsky and Cohen find that they can fit the
experimental logarithmic derivative of the reflec-
tivity R(hv) quite well using an I =2 nonlocal-
pseudopotential calculation, and obtain a zero in
dR/R near 4. 5 eV (which is the experimental posi-
tion at 0 K) with energy bands for which'9 X„-X4„
=4.45 eV. We verify, using energy bands ob-
tained from potentials I-III in Table I, as well as
one' with no E = 2 nonlocality, that in all cages the
E2 peak in e2(hv) [and in R(hv)], and Z;, -X4„ lie
within 0.1 eV of each other. Reference 54 gives
-4.45 eV as the position of the zero of (1/R) (dR/
tv) at 300 K, and we assign X„-X~„=4. 5 +.0. 15
eV. Using our previous value of —3.2+0. 2 eV
for X4„, we obtain X„=1.3 + 0. 2 eV. Finally, we
note that the Ez peak position of 4. 3 eV for &3(hv)
reported in Ref. 53 (see I'ig. 10) is possibly
wrong by 0.15-0.2 eV. It agrees neither with the
ref lectivity peak position in the same reference,
nor with the Ref. 54 value; our analysis, based on
several different band structures, suggests that
these values should agree to better than 0.1 eV.
Our analysis also suggests that the reason for this
discrepancy is that the measured R(hv) in Ref. 53
is systematically too low at hv greater than 6 or
7 eV, leading to a shift of the &2(h v) peak at Ez
obtained from a Kramers-Kronig analysis. e

Table III gives experimental and theoretical values
for the E, structure for several experiments and
pseudopotentials, and shows that the transitions
contributing to the E, peak occur near ( —„—,', —,'),
in agreement with the analysis of Chelikowsky and
Cohen 4~

FIG. 16. Experimental band energy positions for Ge
{Table II, Fig. 9) are dashed. Theoretical positions are
given (solid, horizontal lines) for potentials A, B, C,
and I of Table I.

C. Energy bands at I

We obtain F~., from the experimental value for
the E, critic~i point (Table III) as 1.0+0.1 ev,



12 PHOTOE MISSION S PE C THOS COP Y USING. . . II. . . 4423

We will describe here the physical implications
of the work presented in Secs. I-V, which did not
discuss the physics of the electronic structure in
a broad way but rather presented the framework
for, and the details of the determination of, the
valence- and conduction-band structure of Ge.

A. Crystal potential

A study of the nature of nonlocality in the pseudo-
potential was performed by attempting to find a
"best" fit to the energy-band positions we have
determined in the preceding sections (Table II).
We studied the ability of local, energy-nonlocal,
and angular-momentum-nonlocal (I =2) terms in
Eqs. (3.1)-(3.5) to fit the Table II experimental
positions. This study employed a function of the
form

+IV,. [E,(expt) —E,(theor) j, (6.1)

which was minimized with respect to variation of
different pseudopotential models. In (6. 1) the E,
are the symmetry-point energies listed in Table
II (excluding Z&;,), as well as certain optical
transition energies, while the weights W, were
chosen to approximate the inverse square of the
experimental uncertainty in the different levels.
The function in Eq. (6.1) consists of a total of 16
terms.

Figure 16 graphically presents the result of our
study. We first set n and A, in Eqs. (3.1)-(3.5)
equal to zero, yielding a purely local pseudopoten-
tial, and then varied the V(G) (three parameters)
for the best over-all fit. Figure 16 demonstrates
that the resulting best local pseudopotential
(potential A in Table I) yields valence and conduc-
tion bandwidths which are systematically too nar-
row, and places L2., nmch too high. We have pre-
viously 8' noted this effect for the valence bands

using the Ref. 61 experimental value and verifying
from our direct-transition analysis the rather
obvious fact that this critical point is completely
due to transitions near 1'. The 0.1-eV error
bound reflects the fact that our non-spin-orbit-
split bands cannot represent the true situation in
Ge, with an -0.3-eV splitting, by better than one
or two tenths of an electron volt. (The splitting
is not in 1"~... but in I'».„=E„.the valence-band
edge, which is the reference energy. )

Finally, I"», is determined from the Ref. 61
ED average value of 3.23 eV and our analysis,
which shows that the Eo critical point, which oc-
curs due to transitions over a large region of k
space away from I', nevertheless corresponds to
the energy separation I'».„-I'&5, to better than
0.05 eV (see Table III).

VI. DISCUSSION

when comparing photoemission density-of-states
overviews for a wide variety of semiconductors
with theoretical N(E)'s for bands fit to optical
spectra using only a local pseudopotential. Figure
16 illustrates that this narrowing of the valence
bands using only a local potential is a feature
common to the upper conduction bands also.

Several authors have attempted to correct this
effect with an "effective-mass" approximation,
equivalent to our "energy-nonlocal" pseudopotential
[n nonzero, but Az =0 in Eq. (3.5)]. Herman~
used such an approximation to fit a pseudopotential
interpolation scheme to a first-principles orthog-
onalized-plane-wave (OPW) calculation, while
in Ref. 43 and in a previous work of ours' such
calculations were performed in order to fit both
optical data and photoemission valence-band N(E)
overviews simultaneously.

We varied V(G) and n (four parameters), while
keeping A.2=0 to get the best energy-nonlocal
pseudopotential (potential B in Table I), which re-
sulted in the energy-band positions shown in Fig.
16. There are two major defects in the resulting
energy levels: (i) In broadening the conduction
bands for a better fit than achieved by the local
potential, the valence bands are broadened too
far; (ii) I2., is still fit very poorly, lying -1.5 eV
too high. In addition, X„and I"2,, are ordered
improperly. These observations are in agree-
ment with the arguments of Pandey and Phillips'
that the energy-nonlocal term alone cannot pro-
duce a correct energy spectrum.

That one can do better is obvious from the third
column in Fig. 16, where we show the results for
the best I =2 nonlocal pseudopotential (potential C
in Table I). In obtaining this fit we set the energy-
nonlocal term equal to zero (o.'=0) and varied V(G)
and the I =2 radius and strength R, and A, (five
parameters total). Except for I,,"""and X",""
the fit is excellent —better than a few percent over
the entire range of -20 eV from - —12 to -+8 eV.

Comparing the local and l =2 potentials, and
temporarily ignoring L",'"' and X,"'~', it is ob-
vious that the l =2 potential properly corrects
the valence bandwidth and the position of L2., while
maintaining the correct energy-band positions
near the gap, the latter providing a good fit to
optical properties. These results thus strongly
support the view that l =2 nonlocality is the form
of nonlocality which best models the physics of
the actual crystal potential in Ge. This view was
recently discussed in Ref. 37 and was shown to
give energy-band separations near the gap whose
topology (i. e. , critical-point structure) was in
accord with electroreflectance measurements.
We verify that the topology of the upper conduc-
tion bands, namely, the position of bands near
L2,, with respect to other bands in the vicinity, is
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properly fit only by an / =2 component to the
pseudopotential, which can change the position of
L, , relative to other states. Reference 19 also
demonstrated this fact.

Further support for these views comes from a
recent calculation of Chelikowsky and Cohen, '
who show that an / =2 nonlocal pseudopotential
produces a much more reasonable bond charge
distribution than does a local one, while also
correctly predicting the temperature dependence
of certain x-ray reflection intensities for both Si
and Ge. We note that the present best-fit l =2
pseudopotential (potential C in Table I) is quite
similar to that in Ref. 37 in the magnitude of the
I =2 term (A~) as well as the radius of the inter-
action (R,).

Finally, we allowed & 10 in addition to varying
V(G), A„and R2 (six parameters total) to obtain
an "energy and l =2 nonlocal" potential (potential
I in Table I) which produced the energy levels in
column four in Fig. 16. The energy-nonlocal
parameter improved the fit slightly, but not in a
qualitatively significant manner. As expected, the
fits to L,"""and X",""became somewhat better.
The 7 =2 nonlocal strength, given by A, R~3 (see
Table I) is about 60% larger than for fits obtained
using purely E =2 nonlocal potentials, with A.2 larg-
er and R2 about 20/o smaller. Further, the
photoemission spectra calculated with this model
are not in as good agreement with experiment as
are those calculated using potential III of Table I
(compare Fig. 13 of the present paper with Fig.
2 of Ref. 20), although the position of direct-
transition features is in excellent agreement with
experiment as shown, e. g. , by Figs. 9, 10, 15,
and 17 of the present paper. While potential I in
Table I, containing both I =2 and energy nonlocality
( 22/o), was used to perform the analyses in this
paper, it appears that a better way to incorporate
self-energy effects might first be to perform a

7—~
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FIG. 17. Theoretical energy-loss function Im(-1/&)
(solid), obtained using the theoretical &2(hv) shown in
Fig. 10 and a Kramers-Kronig analysis, is compared
with the experimental electron energy-loss function
(dashed) obtained in Ref. 66.

fit to all states except L,"""and X,""",and then
to study self-energy effects as a correction to the
eigensolutions of this problem. We discuss self-
energy corrections below, and suggest as starting
potentials for future calculations pure l =2 non-
local potentials II and III in Table I, representing
fits by ourselves and Pandey and Phillips, re-
spectively to photoemission and optical data. Qur
potential II was obtained by fitting to all energy
positions in Fig. 17 excluding L,"""and X,"'"',
as well as to the E, and E2 optical gaps.

B. Energy nonlocality in germanium

There are at least two sources of energy nonlo-
cality in simple semiconductors. Qne is the energy
and angular momentum nonlocality introduced dur-
ing the transformation from a crystal potential to
a pseudopotential, and the other is that due to the
energy dependence of the exchange and correlation
correction to the particle energy. We first con-
sider the extent to which the data suggest signifi-
cant self-energy corrections, and briefly discuss
the incorporation of these effects into calculations.

Qne piece of evidence for the presence of self-
energy corrections is the inability of an l= 2 non-
local potential to fit X",""and L","". The theoret-
ical value for X,"""in the fourth column in Fig. 16
is 0. 9 eV too low while in Refs. 19 and 20 we
showed that an I = 2 potential (with n = 0) placed
L",'" and X,"""too low theoretically. However
there is additional evidence which does not depend
on these high-lying levels, whose experimental
position is rather poorly determined. This addi-
tional evidence is obtained by using theoretical
photoemission spectra from the energy and l = 2
nonlocal calculation (potential I of Table I) which
were compared to the experimental ones. Fea-
ture D D' (Figs. 13 a-nd 15) is a direct-transition
peak which is quite distinct and easily identified in
both the theory and the experiment. Its hv-E,.
trace in Fig. 15 occurs -0. 6 eV later in photon
energy for the experiment. Similarly, the domi-
nant experimental and theoretical low-energy peak
A-A in Fig. 14 is seen in Fig. 16 to lie at larger
hv experimentally than theoretically by -0.5-1.0
eV as hv increases from - 8 to -15 eV. Since the
initial bands for these transitions are bands 3 and
4 in the vicinity of the symmetry line b, and since
X4„(theory) —X,„(expt) = 0. 15 eV, this difference is
not an initial-state effect at the large photon ener-
gies, but is rather a final-state effect —the final-
state bands lying -2—10%%uz higher experimentally
than the theoretical ones (in a calculation which
already incorporates an - 2-,'1o energy-nonlocal cor-
rection). For potential III of Table I, which is a
purely l= 2 nonlocal one, a structure plot similar
to Fig. 15 shows these effects even more dramat-
ically (Fig. 4 of Ref. 19). Similarly C-C' in Fig.
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15, which is due to transitions near Z and 4, oc-
curs later in hv experimentally as hv increases.
The feature B-B' also behaves similarly. Thus
the hv-E, images of transitions which disperse
(change their E, with kv) rapidly indicate that tran-
sitions from a given initial energy occur at larger
hv experimentally as hv increases. This behavior
is seen even more strongly in spectra obtained
from potentials II and III of Table I (see Fig. 4 of
Ref. 19), which do not contain the 2—,'% energy-non-
local correction of potential I.

A final piece of evidence for a larger experimen-
tal initial-final-state separation than is found the-
oretically is given by the optical transition labeled
A in Figs. 9 and 15, which is seen in Fig. 13 as a
strong peak which appears at E; = -0. '75 eV at hv
= 8. 5 eV. From Ref. 31 we find that the experi-
mental photon energy for the onset of this transi-
tion is-8. 2 eV (Fig. II-5 of Ref. 81), while theo-
retically the threshold is - V. 85 eV, i. e. , -4% too
low, even with the 2—,'%%uo energy-nonlocal term in
pseudoyotential I.

In summary, for a wide variety of transitions we
see that final states are typically ~5%%uo higher ex-
perimentally than given by potential I of Table I,
and for potentials II and III the difference is even
greater. Since these differences are occurring due
to transitions between bands at general points in
the BZ and not simply at BZ boundary gaps, modi-
fications of the pseudoyotential alone are probably
not adequate to resolve the discrepancy. The con-
clusion is then that there is probably a genuine 5-
10%%uo self-energy correction for the position of high-
lying conduction-band states. That such an effect
exists is not surprising when a body of optical and
photoemission data spanning an energy range of- 2 Ry is being described. Previously, in a direct-
transition analysis of Cu data obtained over a wide
energy range, an energy-dependent correction to
the energy-band positions of - V% was needed to fit
excited-state properties.

Finally, we reemphasize the fact that a self-en-
ergy term linear in E does not appear adequate to
fit the upper levels in Qe. This occurs because the
self-energy correction depends not only on the en-
ergy of an excitation, but also on the charge den-
sity in the vicinity of the excitation. Hole states
in the valence bands have wave functions localized
near the covalent bonding charge in covalent semi-
conductors, while electrons in conduction states
are rather delocalized throughout the Wigner-Seitz
cell. It is possibly this effect which would re-
quire a proper description of self-energy effects in
semiconductors to proceed by first ignoring self-
energy effects and producing a relatively good set
of energy bands and wave functions (such as the
I= 2 nonlocal potentials II or III represent). Ex-
change and correlation corrections could then be

calculated in a reasonable way based on the orig-
inal wave functions and used to correct the ener-
gies. An ad hoc linear approximation, such as
we have attempted, has left most high-energy
thresholds too low, for n could not be made very
large without destroying the good fit already ob-
tained with an l = 2 nonlocal potential alone.

Finally, we emphasize that more precise deter-
minations of the positions of high-lying conduction-
band features such as L",""and X~"' should be
made, perhaps for a variety of semiconductors,
before the magnitude of self-energy effects such as
we have described can be accurately established.

Other attempts to add nonlocality to the pseudo-
potential using different models than the ones we
present here also improved the agreement with ex-
periment. Brust's model (see Table II) gave good
agreement with the energy levels for which he gave
results, while Kane's models ' have improved
agreement in the case of Si.

C. Optica1 properties

In addition to ez(he), which was displayed in Sec.
V, we have calculated the energy-loss function
lim(-1/&)] for Ge. We now discuss the agreement
of these optical properties with experiment in a
more detailed way. This comparison of theory with
experiment will have implications for the f-sum
rule and the nature of local-field effects. Figure
10 presents &z(hv) calculated using energy bands
and pseudo-wave -function matrix elements obtained
using potential I of Table I. By performing a
Kramers-Kronig transformation on &&, we have ob-
tained the real part of the dielectric function e~(hv),
and then the energy-loss function Im(- I/e), where
E = &&+i&q. In Fig. 17 we show the resulting
Im(- 1/e) and compare it with the same quantity
measured by Zeppenfeld and Raether using high-
energy inelastic electron scattering. The agree-
ment with experiment is good for the optical inter-
band structure for hv 10 eV, except for the the-
oretical peak near 8 eV and the over-all magnitude
in this region, which is approximately a factor of
2 too low in the theory. The optical structure near
8 eV is associated with a critical point which
causes the appearance of the strong peak in photo-
emission at E; = —7. 5 eV at &v=8. 2 eV. This peak
(Feature A in Figs. 9, 14, and 16) is seen in the
experimental photoemission data of Ref. 31 also
and yrovides experimental evidence that the optical
structure near hv= 8 eV predicted by our model
should in fa,ct be present in experimental optical
spectra. The fact that it does not appear either in
the optical spectra of Phillip and Ehrenreich~~ (Fig.
10) nor in the energy-loss datas6 plotted in Fig. 18
is probably an indication either of experimental
resolution, sensitivity, or sample preparation
problems or of a large lifetime broadening for the
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Turning to the plasmon loss peak in Fig. IV, we

note first that the experiment and theory agree very
well in both the position and lifetime (energy width)
of the plasma. That a one-electron model works
so well for the plasmon is not surprising, for the
fact that at q= 0 the transverse (optical) and longi-
tudinal (electron-energy loss) dielectric function
are the same~'6 implies a, strong connection be-
tween optical and energy-loss measurements. ~

The agreement between the magnitude of Im(-1/
e) in the theory and experiment, and the disagree-
ment in the case of ez(hv} is of some significance
for the f-sum rule and the effective number of elec-
electrons contributing to c(hv} for hv& 30 eV (the
onset of 3d-core-to-conduction-band transitions),
as well as the nature of local field effects in Ge.
In order to understand this significance, we first
briefly review the f-sum rule and the degree to
which our theory satisfies it. The pseudopotential
model is a strictly one-electron representation of
a system with 4 valence electrons/atom and should
rigorously yield n,«(hv-~)-4, where

=2mn,'„(hv) =-&~ ez(hv) dv
Ne

(6. 2)

or

2m " /- 1.
n,',r(hv) = ~ Im( dv .

Ne
(6.3)

Here n,'«and n,'«represent the effective number
of electrons contributing to the transverse or lon-
gitudinal dielectric properties up to frequency
hv. In Eqs. (6. 2} and (6. 3), m is the electron
mass and N is the atom density in the solid. Our
result for n~, (hv-~) is 3.64 (91/o of 4), while for
n,',r(hv- ~) we obtain 3. 58 electrons/atom. These
values are a test of various approximations made

I I I I I I

IO I.08 I.I6 1.24 I.32
(El-Vo)/Vp

FIG. 18. (a) Ideal surface barrier (solid} and sche-
matic actual one (dashed). (b) Transmissio~ function
for (1) the step barrier of (a), using quantum-mechanical
formulas; (2) the actual barrier of (a) schematically il-
lustrated for the quantum-mechanical case; (3) the clas-
sical transmission function for both barriers of (a).

in obtaining && from the pseudopotential. Especial-
ly tested are (i) the extent to which truncation of
the wave functions due to solution of Eq. (3.5}us-
ing the Lowdin scheme decreases the pseudo-
wave-function matrix element from the exact one-
electron solution to Eq. (3. 5) and (ii) the degree
to which the Gilat-Raubenheimer integration
scheme ' used for performing the integral in Eq.
(3.6) represents the actual value of the integral;
and (iii) the Kramers-Kronig analysis used to ob-
tain &g from Ez is tested by the agreement between
n' and n'. f The energy bands are known over a
wide enough energy range (see Fig. 9) that trun-
cation of the hv integrals in Eqs. (6. 2) and (6.3)
probably is not significant in reducing n,«below
4 by the amount indicated here. ] Our values for
n' and n' agree to about 2%, which verifies that the
Kramers-Kronig analysis was properly performed.
The reduction of n,«by - 10% below 4 electrons/
atom for our model probably represents the trun-
cation of the wave function in the Lowdin scheme
used for diagonalizing Eq. (3.5). A loss of -2-,'/o
of the part of the wave function contributing to
(~)~ I Pl g„.-„) causes the matrix element to be re-
duced by - 5/o and the sum rule by - 10%. For this
reason the 10% reduction of n,« for our model is
surprising good, since the Lowdin scheme was
truncated when the Hamiltonian matrix was large
enough to give eigenvalue convergence, but the
wave functions have probably not yet converged,
owing to the variational theorem.

Returning to Fig. IV, we see that the area under
the experimental curve is very nearly equal to that
under the theoretical curve, which would give an
experimental n,'«which is between 3. 5 and 4 elec-
trons/atom. Such an n,« is also consistent with
the measured plasma frequency Aced~(expt) = 16.2

+0. 1 eV. The reason for this is that the valence-
electron contribution to ez(hv) is concentrated near
the Penn gap value" of hv= 4. 3 eV= tfro, (see Fig.
10), which yields a plasmon at'

(o~= (h)~) + (dz, (6.4)

where w~ is the plasma frequency of free electrons.
For the Ge atom density and 4 electrons/atom one
obtains N~~= 15.59 eV, which results in 5&~= 16. IV
eV, in excellent agreement with experiment. The
model leading to Eq. (6.4) then also predicts
e~(0) = 14. 14. A more realistic model, which takes
e~(hv) to have the spectral shape predicted by us,
but with its amplitude enhanced to give an n, fg of
4, results in e~(0) = 12.96. The experimental value
for cr(0) is 16.0, which includes the contribution
just calculated plus the 3d-core polarizability con-
tribution (which is probably less than 1). We thus
see that an n„~ of 4 electrons/atom for Ge leads to
the correct ~~ and close to the observed plasma
peak intensity shown in Fig. IV, but then does not
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provide a large enough e,(0). Phillip and Ehren-
reich obtained n,«(hv) for several semiconductors
from optical constants based on normal-incidence
reflectance data and obtained an n,«(hv) which does
not reach an asymptotic value as hv increases but
rather rises through 4 electrons/atom at 9. 5 eV,
5 electrons/atom at 18 eV, and continues to rise
for larger hv. Indeed, the Phillip-Ehrenreich
curve for e~(hv) is greater than ours over much of
the photon energy range, especially between 2 and
4 eV (see Fig. 10), giving rise to a larger n« than
we obtain.

The true value for n,« for Ge (due solely to va-
lence excitations) is probably greater than 4, in
order to produce the proper value of e~(0), but may
not be as large as that measured by Phillip and
Ehrenreich.

The contradictory results for n,«are discussed
in a paper by Feuerbacher et a/. , who conclude
that better optical data are needed to resolve the
issue. The significance of the question is that the
amount by which n,«e xeced s4 electrons/atom
will experimentally determine the size of the cor-
rection to yseudo-wave-function matrix elements
caused by orthogonalizing them to the Sd-core
states. ' Such orthogonalization increases the
theoretical e~(hv) [and Im(- I/e)] above the values
shown in Fig. 10 (and in Fig. 17) and would im-
prove agreement with experiment. It is important
to know if it is simply this correction to the
pseudo-wave-functions which is needed in Fig. 10,
or whether a more significant physical effect is
occurring, such as local-field corrections. The
nature of such corrections is at present poorly un-
derstood, ' and knowing whether such effects occur
in Ge would contribute imyortant information to the
solution of this fundamental problem (also, see
Ref. 60).

We note at this point that the experimental E&

peak in em(hv) in Fig. 10 occurs at -4. 3 eV, 0. 2

eV lower than we have placed it. However, as dis-
cussed in Sec. V, the &z exyerimental yeak is de-
rived from a Kramers-Kronig analysis of reflec-
tivity data, which is a procedure which subjects Ez

to errors arising from some uncertainties in the
absolute value of R(hv), the ref lectivity. We have
obtained a theoretical R(hv) corresponding to the
theoretical em(hv) from Fig. 10 and find that its E~
peak agrees with that of Phillips and Ehrenreich'3
to better than 0. 1 eV. Our R(hv) above 10 eV is
greater than that in Ref. 53 by more than a factor
of 2 over a wide energy range, ' and leads us to be-
lieve that the experimental E& peak position in &&

may be - 0. 2 eV in error. This view is substan-
tiated by the fact that at least three separate au-
thors, ~' ' ' interpreting more direct electrore-
flectance and wavelength-modulated R(hv) data,
have concluded that the E~ transition occurs at

4.4-4. 5 eV.
Finall, we remark that for a wide variety of

nonlocal as well as local potentials which we have
used, E& peak positions tend to coincide to better
than typically 0. 2 eV with symmetry-point band
separations (Table III) even though the actual tran-
sitions giving the large contribution tend to be over
regions of k space removed from symmetry points.
Previous authors~ have noted this effect for local-
pseudopotential calculations, but we have shown
that this is a more general effect, even though non-
locality can change some features of band-struc-
ture topology.

We conclude that the theoretical model not only
provides a good description of photoemission over-
view and direct-transition data (see Figs. 8, 13,
and 15 and the Appendix), but also provides an ex-
cellent description of optical and energy-loss data
for Ge (see Figs. 10 and 17 and Ref. 42) over a
wide energy range. We have also seen that better
experimental data, as well as a better understand-
ing of core-orthogonalization and/or local field ef-
fects would be useful for a deeper understanding of
optical properties.

D. Conclusions

The present paper has shown that one-electron
theory and the idea of direct, k-conserving optical
transitions are useful for describing many features
in photoemission and optical data over a wide elec-
tron band energy range (- 26 eV), centered about
the gap. In addition, the success of an anisotropic
model of transport and escape in improving the
agreement of theoretical photoemission spectra
with experiment is another' demonstration that for
cleaved semiconductors some momentum informa-
tion survives the photoemission process.

We have presented a detailed study of the position
of the energy levels at I., F, and X and have used
the experimental values to study the nature of the
pseudoyotential in Ge, confirming the need for a
large l = 2 angular momentum nonlocal component
in order to properly describe energy bands over a
wide range.

We have identified several areas where further
calculations and data will lead to new results. The
existence of self-energy corrections to excitation
energies, varying nonlinearly with energy, are sug-
gested by this work to be of the order of 5-10/o of
the one-electron energy for the high-lying conduc-
tion bands. However, this possibility needs to be
confirmed by new data, which could be of several
types. Constant initial-state spectroscopy, 6 in
which the photoemission intensity from a fixed ini-
tial energy E, is measured as hv increases, could
be used to determine X",""and I",""with more
precision, increasing the extent of which self-en-
ergy effects are understood. Similarly, more pre-
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xPf, ((k+C). n), (Al)

where

f, =
~
&„„(k)~ &(E„(k)-E;)&(E„(k)-E; —/z)/),

(A2)

cise high-lying conduction-band information could
be obtained using electroreflectance to study core-
level —to-conduction-band transitions, as Aspnes
and Qlson have recently demonstrated. '~~

Improved optical data obtained over a wide range
of photon energies using synchrotron radiation and
ultra-high-vacuum-cleaved samples should improve
the precision with which we know the absolute value
of optical constants: such data will lead to a better
understanding of core-orthogonalization and local
field effects in semiconductors.

Finally, the techniques we have applied in this
paper or identified for future study could be ex-
tended to a wide variety of semiconductors. Such
efforts might lead to a better understanding of the
role of ionicity in determining the range of validity
of the independent-particle model in these materi-
als, and will lead to a deeper understanding of
chemical trends and physical properties of semi-
conductors.

ACKNOWLEDGMENTS

We wish to thank M. Erbudak, who participated
in the data collection process.

We acknowledge useful conversations with D.
Aspnes, J. Chelikowski, Marvin L. Cohen, T.
Donovan, J. Janak, E. Q. Kane, V. Moruzzi, J.
C. Phillips, W. L. Schaich, J. Shaw, %. E.
Spicer, F. Stern, J. Van Vechten, and A. Williams.

APPENDIX: DETAILS OF ANISOTROPIC DIRECT-
TRANSITION MODEL AND COMPARISON OF ITS

PREDICTIONS WITH EXPERIMENT

This appendix presents a more detailed descrip-
tion of certain aspects of the direct-transition
model for photoemission described by Eqs. (3.8)-
(3. 16). These include a description of the way in
which Eq. (3. 8) is reduced to an integral over 4+~

of the BZ, a discussion of the transmission func-
tion (3. 14), modification of the model to describe
angle-resolved photoemission, and the justification
for not considering in our model the polarization
of the synchrotron-radiation uv light used in the
experiment or the angular acceptance of the energy
analyzer. We also present a comparison of exper-
iment with the present theory and the usual "three-
step model. "

A. Reduction of integration to 4'~ th of a BZ

The k-space integral in Eq. (3. 8) can be written
in the form

fz=D„(k, n), (A3)

c-"'-

The integral has been written in this form to dis-
play explicitly the dependence of various factors
in the integrand in (3.8) on vector arguments. We
can then transform I„„.to an integral over 4zof
the BZ as follows.

x fz(yV„E„. ~ n) g fz((yk+ 6) ~ n),
(A5)

where the y are 48 matrices which generate all k
from those contained within the first 48th of the
BZ.

We now write

f&(yk) = fi(k),
fz(yv/gE ~ n) = f (&z;E. y 'n)

yk+G ~ n = yk+yG ~ n

= Zfz((k+G) ~ y 'n),

where we have used the invariance of the functions
of k in (3.8) under symmetry operations of the re-
ciprocal lattice, the invariance of products of the
form yk ~ n under the transformation of k ~ y 1n, and
the equivalence of any sum over all reciprocal-lat-
tice vectors G under the replacement G- yG for
any y.

Thus (AS) becomes

I„„,(E,, I ) ) = g J d'uf, (k)
y (1/48) B Z

xfz(V~E„. ~ y 'n) Q fz((k+6) ~ y 'n) .
(A8)

The set of 48 y
1 operating on the crystal-surface

normal n generates all equivalent surface normals
n, , ea,ch of them being generated 48/N-„ times,
where N-„ is the number of surface normals equiva-
lent to n under the operations of the full symmetry
group for the cubic lattice. We can then finally re-
write (Al) as

1„„,(E,, I ~)=
N g d'/f, f, gf, .

n nk (1/48)BZ g (A7)

The meaning of (AV) is that the k-space integra-
tion over all k in (3.8), which describes photoemis-
sion through one surface with normal n, can be re-
placed by the sum (over emission through all sur-
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faces n; equivalent to n) of the integral over one 4',

of the BZ. For cleaved Ge, n is in the (111)direc-
tion, and one should sum (AV) over all equivalent
(111}directions (i. e. , N-„= 8). In practice, the
sum over n, in (AV) can be brought inside the inte-
grand and applied to the few factors which contain
n, so that one first sums and then performs a sin-
gle k-space integration.

8. Surface transmission probability and angle-resolved
photoemission

We start with a Bloch wave expanded in a plane-
wave basis set [Eq. (3.13)] and a surface potential
barrier of the form f (r) = f (z) [Eq. (3.12)], where
z is the direction normal to the surface. That is,
we assume that the weak pseudopotential along the
surface does not mix the plane-wave components of
P„» in (3.13) in any significantly different way than
does the bulk crystal Hamiltonian.

The plane-wave components of p„.»., e'
—=

~ k+ G,. }, then match to waves l K,.}outside the
solid such that momentum parallel to the surface
and energy are conserved; i.e. , we require that

E„.(k) —Vo=h K, /2m for all i (A8)

(K,)„=(k+ G,.)„. (A9)

Thus the normal component of energy of plane wave
K,. outside the solid is

&'*' = m'[K,' —(K;)'„]/2m

=E„.(k) —Vo —h (k+G()„/2m . (A10)

A necessary condition for transmission of a
plane-wave component is that E"' must exceed the
barrier height. However, in the case that E"' & Vz
but (E,"' —Vo)/Vo«1, the quantum-mechanical
transmission coefficient tG „- in Eq. (3. 14.) should
be less than 1. The worse case is if the surface
potential barrier is a step potential [see Fig. 18(a)],
in which case t 6 „- is smallest for a given value of
(E,"' —Vo)/ Vo [Fig. 18(b), curve 1]. The actual
barrier in a real solid looks more like the dashed.
curve in Fig. 18(a), and for this barrier the quan-
tum-mechanical transmission function [curve 2 in
Fig. 18(b)] approaches the classical one [curve 3 in
Fig. 18(b)]. From Fig. 18(b) we see that the clas-
sical transmission function we use in our aniso-
tropic model, Eq. (3. 14), is an excellent approxi-
mation. We have tested this approximation by cal-
culating spectra with the two extreme transmission
functions, represented by curves 1 and 3 in Fig.
18(b). The difference was slight, giving a small
reduction in amplitude of the calculated spectra for
the first few eV above threshold. For these rea-
sons we choose the more realistic, classical ex-
treme, curve 3 in Fig. 18(b), which is closest to

the true situation (curve 2). We note that choosing
curve 3 (or 2) will produce the observed (g p

»t» a»»aid) dependence of the quantum yield I'(hv)
near threshold (Fowler law '), while the quantum-
mechanical transmission for the potential step
[curve 1 of Fig. 18(b)] would predict a (unobserved}
deviation from this law.

At this point we discuss the use of a sum of
transmission probabilities for individual plane—
wave components of tfj„,„in-Eq. (3. 15) for the total
transmission rather than a sum of amplitudes,
squared. The reason for this form, even though
the various transmitted waves are coherent, is that
the excited Bloch wave is actually localized in
space, so that for any detector at a large distance
from the sample the individual beams diverge and
do not overlap (or interfere) by the time they reach
the detector. This is similar to the case of LEED,
where coherently backscattered "plane-wave"
beams cause a spot pattern on a LEED screen rath-
er than an interference pattern.

These ideas result in a simple change in the an-
isotropic direct-transition model in order to de-
scribe angle-resolved photoemission. In this case,
we select only those beams which are directed to-
ward the angular region of acceptance of the de-
tector. More generally, if T(6, p) is the trans-
mission function of the energy analyzer, then we
replace Eq. (3. 15) by

T„,(k, n)=g t-", „-lcm', „-l r(e„y,), (Al 1)

C. Comparison with experiment

We end by addressing the two questions: (i)
What is the justification for ignoring the synchro-
tron light polarization, and the angular acceptance
of the energy analyzer, in comparing theory with
experiment? (ii} How well do the predictions of the
anisotropic direct-transition model compare with
experiment 7

The calculations we perform are for unpolarized
light [e p does not appear24 in the matrix elements
P„„.in Eq. (3.8) where i is light polarization and

p the momentum operator]. Also, we have as-
sumed collection of all electrons leaving the sam-
ple [we use Eq. (3. 15}rather than (All) to de-
scribe the transmission function]. However, our

where 8, and g, are determined by Eqs. (A8) and
(Ae) (with n ~ r& 0):

(k+ G;)„
' f2+E„(k) —Vo]/a']"'

and

cosg, = (k+6 ) P/l(k+G (A12)

where p is a unit vector in the plane of the surface
which defines P =0.
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FIG. 19. Theoretical absorption coefficient G.'(hv),
obtained using &2(hv) in Fig. 10 and a Kramers-Kronig
analysis (solid line), is compared with the experimental
o'(hv) described in Ref. 80 (dashed).

data were obtained in a spectrometer (see Ref. 28)
in which polarized synchrotron-radiation light and
a cylindrical-mirror electron energy analyzer
(CMA) were used. The CMA axis was at a large
angle (- 35') with respect to the sample normal,
so electrons with a wide range of polar and azi-
muthal angles were collected. Even more impor-
tant, we found that spectra obtained by Donovan3~

below 11.6 eV (LiF window cutoff) using unpolar-
ized light normal to a (111)cleaved surface, and
collecting all emitted electrons, were essentially
identical to ours.

Also, in the geometry of our experiment, the
light was always polarized in the plane of the sur-
face, as for Donovan's experiment, but we only
had one of the two orthogonal polarizations ob-
tained in Donovan's experiment. Thus one avoided
surface-electric-field-enhancement effects of the
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FIG. 20. (a) Theoretical quantum yield &(hv) for the
Fig. 9 energy bands and the anisotropic direct-transition
model. (b) Theoretical F(hv) using the isotropic model.
(c) Experimental yield from Ref. 31. Curves (a) and (b)
were normalized to (c) at 10 eV.
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type discussed by Kbewer. . rowever, it is possible
that certain intensity differences for some spectral
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features (see Figs. 3 and 4, obtained with different
samples) are due to the different orientations of the
samples with respect to &. Alternatively, different
cleave qualities might account for the difference.

Finally, we compare the anisotropic direct-tran-
sition model for Sec. III with the usual ' isotro-
pic "three-step model. " We present here a more
detailed comparison of experiment and theory than
is given in Refs. 19-21. For example, we first
calculate the quantum yield, starting with a deter-
mination of es(lt v) obtained using energy bands and
wave functions of potential I of Table I as discussed
in Sec. V. From these we obtained the optical ab-
sorption coefficient o.(ltv) which appears in Eq.
(3. 11) ofthe anisotropic model and in a correspond-
ing equation in the isotropic model. Figure 19
compares our calculated n(Itv) with that measured
by Phillip and Taft. " With a. obtained theoretical-
ly, we were able to calculate F(Itu) using both the
isotropic and anisotropic theoretical models. The
results are compared with experiment in Fig. 20,
and we see that the anisotropic model fits experi-
ment better, Qeing higher in the 5-10-eV region

than is the yield calculated using the isotropic the-
ory. Evidentally the anisotropic theory' s relative
enhancement of states which match through the
(111)surface is a correction in the right direction
to achieve better agreement with experiment. In
producing Fig. 21, F(hv) for both theoretical mod-
els was normalized to the experiment at A, v = 10 eV.
This normalization represents the one adjustable
parameter in the theory, which represents an un-
known electron-electron scattering matrix element
in the Kane random-k theory describing secondary
electron production.

Finally, we calculate photoemission spectra for
both theoretical models using energy bands obtained
from pseudopotential III of Table I, and compare
the calculated spectra with experiment for nine pho-
ton energies in the range 7. 5& kv& 14 eV. The re-
sults are shown in Fig. 21, and represent a more
complete demonstration of the effects described in
Refs. 19-21, namely that the anisotropic model gives
a better account of which transitions (permitted by en-
ergy and k conservation) produce final-state electrons
which have a high probability of being photoemitted.
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