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The deformation-dipole-model (DDM) formalism is derived for a crystal of arbitrary symmetry and applied to
the zinc-blende structure. In its present form, the model is more general than the one proposed by Karo and

Hardy, the principal difference consisting in introducing interactions called nonlocal electric polarizabilities,

analogous to the shell-shell interactions of the shell model. Both approaches are compared and it is shown

that in ionic crystals the present version of the DDM provides the same description of core motion as the
shell model. Parameters of one model are then expressed in terms of the other model, for ionic structures; the
case of covalent crystals is also briefly discussed. A simplified form of the DDM was used in numerical

calculations for 15 crystals with T& symmetry. Model parameters fitted to elastic, piezolectric, optical and, for
eight compounds, also to neutron-diffraction measurements gave a good description of phonon frequencies.

Some of the parameters appeared to be smoothly varying functions of the interatomic distance or ionicity.

I. INTRODUCTION

During the last decade the development of neu-
tron spectroscopy has stimulated a rapid develop-
ment of lattice dynamics of semiconducting com-
pounds. Various models have been proposed to
-describe the long-range part of interatomic forces,
which is due to electrostatic interactions in the
system of cores and loosely or tightly bound elec-
trons. Besides the rigid-ion model it was the shell
model that was most frequently used in connection
with neutron measurements, and its 14-parameter
version was successively applied by different au-
thors to several compounds having the zinc-blende
structure. It was our aim to examine the extent
to which it is possible to apply the deformation-di-
pole model (DDM) to this group of crystals. ' So
far this model has been systematically exploited
only for the description of strongly ionic crys-:
tal@. ~'" We have used this model. for a simulta-
neous study of the lattice dynamics of 15 compounds
having T„symmetry. This set of tetrahedrally co-
ordinated compounds is convenient for our investi-
gation since it provides examples of bonding rang-
ing from highly ionic to highly covalent.

The DDM proposed in this paper is a generaliza-
tion Of the model presented by Karo and Hardy. ~'3

The latter model, which was applied to soD:e crys-
tals of rock-salt structure, may be considered as
a particular version of our more general DDM. In
this article we concentrate our attention mainly
upon the conceptual and formal aspects of DDM and
we mention briefly only some of the results of the
actual numerical calculations, which are more
thoroughly discussed elsewhere.

Like other models, the DDM is based on the adi-
abatic, harmonic, and linear-dipole approxima-
tions, and situates all the electric dipoles at lattice
sites only. In this respect it can be classed in ihe
same category as, e. g. , the shell models s or the
model of Mashkevitch and Tolpygo. ' We derive
in Sec. II the basic equations of the DDM starting
from the macroscopic description of crystal. Un-

like the preceding works, ' we write the relation
between the electric polarization and the local elec-
tric field in a general form; for this purpose we
have to introduce the nonlocal electric polariza-
bilities which have not been considered explicitly
so far. We shall show that the equations of motion
which govern the DDM are analogous to the corre-
sponding equations of the shell model. The formaL-
ism, written in Sec. II for a crystal of arbitrary
symmetry, is then applied in Sec. III to the zinc-
blende structure, and the form of the matrices of
"polarizabilities, ""deformabilities, " and short-
range coupling parameters is written down for this
structure.

In Sec. IV the DDM is compared to the shell
modei. It is found that in l:.~nic crystals a formal
equivalence may be establi:.:hed between both mod-
els and relations are derived between the parame-
ters of the (general) DDM and those of the shell
model. This equivalence concerns the description
of core motion: the electric dipoles appearing on
lattice sites may still be predicted differently by
both models. In covalent crystals the expressions
relating the parameters of the two models hold only
approximately and a correspondence between them
cannot be established in a straightforward manner.
Various approximations imposed to one model are
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then discussed in terms of the other one. In par-
ticular, it is shown that the neglect of nonlocal po-
larizabilities (Karo-Hardy version of DDM) is
equivalent to the neglect of the shell-shell interac-
tions in the shell model.

Some results of numerical calculations with the
DDM are then given in Sec. V. After certain sim-
plifications the model was applied to 15 compounds
with zinc-blende structure; for eight of them (ZnS,
ZnSe, GaP, GaAs, InSb, SiC, CuC1, and CuI) a com-
plete fit of the 15-parameter version could be ob-
tained. Dispersion curves in reasonable agree-
ment with neutron measurements were obtained
for these materials. Particular care was taken in
the development of an appropriate method for the
determination of the model parameters: A suc-
cession of physically motivated simplifications was
used in this procedure. Certain trends appeared
when some of the parameters were plotted against
ionicity or interatomic distance.

II. DEFORMATION-DIPOLE MODEL

When the forces between the constituents of a
crystal are supposed to be partly or completely of
electrostatic or1gln we must consider its ('total)
dipole moment M (. . . r(«). . . ), o = 1, 2, 3. The
latter can be developed with respect to the dis-
placements u, («) in the same way as the potential
energy C (. . . r(«). .. ) of the crystal, "

M = M +P M z(«)uz(lK) + ~ ~ ~,
f fCg

higher than linear terms being neglected. Here
M are the components of the permanent dipole
moment and the coefficients

M.,(S.X) =g S.„S,„M„„(«), (8)

P, («) =Q M, («;l'~')u (l'v'). (8)

It should be noted that the decomposition (7) is
somewhat arbitrary, namely, to the same extent
as the notion of a dipole situated on a given lattice
site: Whereas M ~(«) in (1) was still a measur-
able quantity in some Gedankenexperiment, we
need a model to realize a decomposition (7) which
would satisfy (8}. We also may say that (7) togeth-
er with (8) is a model.

The choice of model [i.e. , the definition of the
coefficients M ~(«; I'~')] may further be facilitated
if we write (8) as a sum of two terms:

M 8(«; l'/c') = e~(«)—8».5„„.+ m„~(«; I'g').

The dipole (8} induced on («) can now be interpret-
ed as coming from two mechanisms: from the dis-
placements of the charge e 8(«) of the site («) and
from the deformation of the electronic charge dis-
tribution in the crystal

p„(«) = Q e,(«) u, («)

and we find immediately that M„~(«} is independent
of /. To improve our understanding of the physical
meaning of parameters we decompose M ~(«) into
contributions coming from individual lattice sites,

M„z(«) =g M~~(l z; «),
gl

foal

and we choose every parameter M 8(«;I'g ) so as
to represent the ~ component of the dipole moment
which is induced on the site (lz) when the atom
(l'g') is displaced a unit distance in the p direction:

sM.(.. . r(«). . .)
eu, («) (2)

+ Q m„(«; l'~') u, (E'a').

are evaluated at equilibrium. They have to satisfy
certain conditions, analogous to those-obeyed by
coupling parameters C z. In particular, as the
crystal is electrically neutral, a rigid-body trans-
lation

u, («) = v

does not alter its total dipole moment; therefore

In order that the partition (9) may really have the
above meaning, a rigid translation (3) of the crys
tal should not give rise to any deformation produc-
ing only the dipoles

e,(«) v, .

Therefore we have to require

PM («)=0. (4) Q m~, («;I'~') =0, (i2)

If the symmetry operation QS[v(S)+x(m)) trans-
forms the site («) into (I,K),

QS ~
v(S)+ x(m))x(«) = Sx(«) + v(S) + x(m)

= x(Z,Z),
then the symmetry of the crystal imposes on
M ~(«) the transformation law'~

which implies

8,(«) = Q M, (lg; I'~').

The splitting (9) of M into e and m thus did not in-
troduce any new redundant parameters. The ele-
ments of the matrix m are called "mechanical
polarizabilities" or "deformabilities. "
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Conditions (6) and (12) are immediately reformu-
lated as requirements for e, m:

+ g m,.(l'»'; i») Z;"(l'»'), (2o)

Qe, (l») = 0,

e.,(LK) =gS..S,„e,„(l»)„

m. ,(LK; L'K') =g S.„S,„m.„(l»;l'»'). (i8)

The last two equations imply that e ~(l») is inde-
pendent of l and that m 8(l»; l'»') depends only on
l' —l. The condition (14) of charge neutrality of
the crystal thus becomes

Q e,(») =o.

p (l») =Q e,(»)u, (l»)

+ g m, (l»; l'»')u, (l'»')

+ Q a, (l»; l'»') E,"' (l'» '). (18)

Here R'c'(l») stands for the effective electric field
on the site (l»), i. e. , the field produced by the di-
poles (18) on all the lattice sites except (l») itself.
Allowing for terms a 8(l»; l'Ic'), we are taking into
account the "polarization" of the site (l») by the
electric field on the site (l'»'). The symmetry
property

a (LK; L'K') = g S„S„a„„(lic;l'»') (19a)

Finally, we have to account for the response of
the electronic charge to the microscopic electric
field, This is done by introducing "electronic
polarizabilities" a gl»; l'»') so that the total dipole
moment induced on the site (l») can be written

is that acting on the dipole in the electric field (the
second and third terms) plus a short-range force
representing all the other interactions, not con-
sidered so far (the first term). The coefficients
4,8(l»; l'»') are the usual Born-von Klrman cou-
pling parameters whose transformation law is well
known'

C 8(LK; L K ) =g S ~ S&„4„„(1»;l » ). (2i)

%e put the origin on the metallic atom labeled
by &=1; the atom of nonmetal g=2 will be situated
at the site (-, a) (1, 1, 1), where a denotes the lattice
constant.

The symmetry of the lattice imposes upon the
short-range coupling parameters 4 8(l»; l'»') the
form

Equations (18) and (20), which are written for a
crystal of arbitrary symmetry, define the defor-
mation-dipole model. If the nonlocal polarizabili-
ties a(l»; l'»'}, l» Wl'»' are neglected in (18), we
obtain that particular version of the DDM which
was proposed by Karo and Hardy2' and which was
.applied to several crystals of rock-salt struc-
ture. 3' ~ At present, there exist no numerical
calculations with the DDM in its full generality
which would take explicitly into account the non-
local polarizabilities. Our results, which are
briefly summarized in Sec. V, were obtained in an
approximation which does not go beyond the frame
of the Karo-Hardy model either. The existing
shell-model calculations account for nonlocal po-
larizabilities implicitly, as will be shown in Sec.
IV.

III. APPLICATION TO ZINC-BLENDE STRUCTURE

a, (l»; l'»') =a, (l'»'; l») (19b)

in addition to (19a). There is in general no rea-
son' to consider only the terms with (l'»') =(l»}
(called local polarizabilities), and we shall see in
Sec. IV that the nonlocal terms may play an im-
portant role in covalent crystals.

The force acting on the atom (l»),

E (l») = —Q @„(l»;l'»') u, (l'»')

can be derived directly from (18). The nondiagonal
blocks of the matrix a will be responsible for the
wave-vector dependence of the Fourier-trans-
formed matrix a(k) in (28b). The requirement of
its Hermiticity imposes c (o, i; (-.' a)(i, 1, o), i)

=C(Zn;Zn) = D,

Da E

4(0, 2; (—a) (1, 1, 0), 2)

C~ Da —E2

-=c(s;s)= D, c, -z,

~A 8 8
C(0, 1;0, 2) =4(Zn;S)= B A B

i

8 8
(22a)

(22b)

(22c)

+g e.,(») B;"(l») We remark that the transformation law for the
mechanical and electric polarizability tensors m



DEFORMATION DIPOLE MODEL AND LATTICE DYNAMICS OF. . . 434g

and a, Eqs. (16) and (19), is the same as that for
4, Eq. (21), except, however, that m tt(ltt;l'tt')
0 ms (l'tt'; ltt). We also note that the diagonal
blocks a(ltd; ltd) cannot be derived from the nondiag-
onal ones by any condition of translational invari-
ance analogous to (12}. We may write immediate-
ly, ' by analogy with (22a),

Ys Ys Ys+

m(0, 1;0, 2) =- m(Zn; S) = 3 —
y&

- yt -yz, (23a)

(M„M„.)'ta c",(KK' Ik)

(f .ft t) t tax(t'tt') x-(ttt)t
~g Ky K

l' -l
(27)

F=- Mt t' C~ Mt~'u+(q+N') Eet'

p=(q+N) u+ aE"',
(28a)

(28b)

(see Table 1), we may write (20) and (18) in the
form

Ys Ys Y&

+ 'Y4 + 'Y4 + 'Ya

the diagonal blocks like m(0, 1;5, 1}, etc. , then
being given by (12):

m 8(0, 1;0, 1)—:m tt(Zn; Zn) = 3 yt 6

m tt(0, 2; 0, 2}—= m tt(S; S) = -
q y26 ~» (23c}

0 0

a(0, 1;0, 1) =a(Zn; Zn) = 0 tr, 0

0 0 nj

(24a)

(ya 0 0

a(0, 2; 0, 2) =- a(S; S) = 0 tttz 0

0 0 e2

(24b)

a,(0, 1; 0, 2)—= a(Zn; S}= tt', a, n4

Q4 Q4 Qs

(24c)

All other blocks are derived from (22)-(24) by the
symmetry relations (21), (16), and (19). Cubic
symmetry in (15) together with the charge neutrali-
ty condition (14}further imposes

+Y2 +74 +Y4

m(0, 2;0, 1)=-m(S;Zn) = g +y4 +y2 +y4, (23b)

F eff Bp (28c)

Here B is the matrix of the Coulomb coefficients2;
the matrices

M 8(tttt') -=M„() tt6„„.; q tt(ttK'}-=+q6 tt6„„. (29)

are, respectively, the matrices of the masses and

of the static charges; F, p and u are hypervectors
with six components F (tt), ttt (tt), and u (tt);
the dagger denotes Hermitian conjugation. Elim-
inating the electric field, we rewrite (28a) and

(28b) as the equations of motion in the variables
u Rndp,

tc2Mu=Mt~~C" Mtt'~u —(q+N~)Bp, (30a)

0 = —B(q+ N) u+ (B —Ba B)p. (30b)

Equation (30b) expresses the adiabatic approxima-
tion: It may be considered as the equation of mo-
tion of the dipole p of zero mass. The purpose of
the seemingly superfluous multiplication of Eq.
(30b) by —B was to make equal the coupling term
between the displacements and the deformation
dipoles in both (30a) and (30b), as is required by
microscopic theory. ' The equality of both terms,
which may be visualized as the equality of action
and reaction, often remained unnoticed in the pre-
vious formulations of the DDM. Finally, eliminat-
ing p from (30b} we get the equation of motion for
the displacement amplitudes M' au:

&'M't'u=C(k) M t~'u (31a)

with the dynamical matrix

e~tt(tt) = 6 q 6~8 t (25)

where +q is called the static ionic cha~ge of the
metallic atom (tt = 1).

Assuming the plane waves

(f& ~k ) + (& ~k)
- rute+ t(t t )tttttt (26)

spread out through the crystal, we may go from
u(ltd), p(ltd), F(ltt)and E, (ltd) to the amplitudes,
respectively, u(tt Ik), p(tt Ik), F(tt lk), and f(tt Ik),
as in (26). Transforming in the usual way also
4 tt(ltt; l'tt'), m tt(hatt;f'tt'), and a tt(ltd;f'tt') into their
Fourier transforms, respectively, (M„M„.)' t2

x C",(tttt'Ik), N, (tttt Ik), and a, ( 'ttItkt), e. g. ,

TABLE I. Short-range part of the dynamical matrix
defined by Eq. (27) with the force parameters (22).

Cs~'m(Ktt I k) = —4M„t(A + C„[2—ct~ (catt+ c»)) + I"„(1—ct act„)}
C g(Ktc ) k) = —4M„[D„s s2g+ (-1)"iE„s»(c2 -c2&)]

C (&, 2 I k) =+4(lfM2 A(czcgcy & szsgsy)

C &(1,2 ) k)=+4(M~M2) B(-s s&c„+ic c&s )

c~ = cos4ak~; c2~ = cos2ak~1 1

so = sin4ak; s2~ = sin&ako

(tt P, y}=(1,2, 2}
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C(k) =C"(k) —M '/~(q+ N')(I —B a) 'B(q+ N)M '"

IV. COMPARISON WITH SHELL MODEL

-A g) +4) ~ h)

g(g) A(x') Pb)

~4) A (x)

(x}=R,S, r (32)

analogous to (22a), (23a), (23b), and (24c).
although the usual notation is —o ~"', —p~"', we
are keeping the symbols A'"', J3"', in analogy with
(22a).

The matrices R(k), S(k), T(k) [the Fourier
transforms of the coupling parameters (32)] may
be easily formed, e. g. , with the aid of Table I,
and the equations of motion for the Fourier-trans-
formed core displacements u and relative shell
displacements w can be written in the form '

~ M u = (R+ Z C Z) u+ (T+ Z C Y) w,

0= (Tt+ YC Z) u+ (8+ YC Y) w

(ssa)

(ssb)

which has the same structure as the corresponding
equations (30) of the DDM. Here

Z, (~~') = Z„8„6„„,
Y ~(~v ) = Y„5,85„„.

(34)

are the diagonal matrices of ionic charges and
shell charges; C, standing for the matrix of the
Coulomb coefficients, is identical, to within a
sign, with the matrix B (28c) used in Sec. III,

C(k) =- B(k), (36)

The original version of the Karo-Hardy model
was already compared with the shell model (SM)
by Cowley et al. ~' As the introduction of nonlocal
polarizabilities into (18) substantially modifies the
former scheme, it will be interesting to see once
more whether both models can provide an equiv-
alent description of vibrations, under which con-
ditions the parameters of the deformation-dipole
model can be expressed in terms of the shell mod-
el, and what the various assumptions on one pa-
rameter set mean in the language of the other
model.

Let us choose the simplest version of the SM,
where al.l the interactions @+', + ', @'' ' extend
only to first neighbors. This corresponds to the
range of the principal interactions (23), (24) in
the DDM of Sec. III. The SM is characterized by
the ionic charges Z&e = —Z~e, shell charges Y,e,
Y3e, isotropic core-shell springs k» 0» and by
the core-core, shell-shell, and core-shell inter-
actions, which take the form

4 '"'(Zn;S) = 4'"'(S;Zn}

u' =0 - 4A"'+ 4A" ' (39c)

and the blocks 8 ' (22), 8 ' (12} are obtained from
(39) by interchanging the labels 1, 2. Formula
(39) can be evaluated analytically only in a few
particular cases.

Let us first examine the case of an ionic crys-
tal, "where

(4Oa)

In the following calculation we shall still keep the
terms

S„(~v' fk)

= s-. («'fk)+~. 8:V.+&..(«Io) s-..(«fo)]
(s6)

(seeRef. 26).
A full equivalence of two models would mean

that both models (a) provide the same eigenfre-
quencies, (b) predict the same displacements of
cores (core eigenvectors), and (c) assign the same
electric dipoles to the lattice sites. As the dipoles
are somewhat fictitious and certainly model-depen-
dent quantities, we are asking in which conditions
the SM and DDM will provide an equivalent descrip-
tion of motion of the cores-letting thus aside the
question (c). A necessary and sufficient condition
for the equality in the points (a) and (b) is the
equality of the dynamical matrices in both models.

Eliminating w from (33b) we get the dynamical
matrix for the core displacements in its usual
form, ~7 which may be written in an alternative
way~8

M-' "[R- Ts ' T'+ (Z - T S -' Y)

x(l+C YS-'Y)-'C(Z- YS-'T')]M'/' (37)

In this form (37) can be directly compared with
the dynamical matrix (slb} of the DDM. Sufficient
conditions for their equality are written immedi-
ately as

a(k) = YS-'Y, (Ssa)

q+N(k) =Z —YS-'T', (s8b)

Ml/2Csr(k)M1/2 R T 8-1 Tt (38c)

It remains, however, to be seen whether the k de-
pendence is the same on both sides of (38).

Inverting (36), we may express the sx 3 blocks of
of 3 '(k) in terms of the 3x 3 blocks S(av'ik) as
follows:

& '(ll ik) =QS(11)+0,' IB

-S(12)[S(22)+0,'I, ] 'S(21)] ', (39a)

& '(211k) = —[S(22)+A~ I3] 'S(21) 8 '(ll), (39b)

O~W"'i/„«1 (40b)
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and we shall neglect (compared to unity) only the
second and higher powers of A/k.

In view of (40), the second term in (39a) may be
neglected in comparison to the first one, and we
get

I '(ll ~k) =
1

—S(21lk)
(k, —4A"')(k2 —4A ')

(41)

and analogous expressionsfor S (22) and I (12). It
can be seen now that both sides of Eq. (38a} have
the same wave-vector dependence, because both
a(vv' [k) and S(vv' lk) were generated from
a(l~; I'~') or @'«~„',,„,&

in the same way. We may
therefore compare the individual matrix elements
'in (38a), and we get

A(s) B(s) A(r) Bo") (48)

can be reproduced by the DDM formalism if we
relate its eight parameters

and (43b) for y„y2, the same comparison at ke 0
leads to a somewhat different k dependence of both
sides —the difference concerns, however, only the
terms of order (A/k„)2.

We note that the expressions for o.„o., [the di-
agonal terms in the blocks a(v~ Jk)] turned out to
be identical with those usually denoted as z1, &2

in the context of the shell model and we recognize
the usual expressions for d„d2 in the (dominating)
first term of the expressions for 3 y„- ~ yz [the
diagonal terms in the blocks N(ter ]k)].

Summing up, the influence of polarization effects
on core motion, characterized in the shell model

by the eight parameters

Y2 Y2
1 y 4A(T) ~ 2 y 4A(T) &

1 2
(42a) Y1u ~ ~ u Y4u ™1r~ ~ ~ v &4 (4V)

—Y1 Y2 A(s)' (k, -4A"')(k, -4A "&) (42b)

—Y, Y, B(s )

(k, —4A"')(k, —4A"')
A similar reasoning allows us to compare both
sides of the (12) and (21) blocks in (38b), and to
f ind

(42c)

3Y1A. ' ' 12YA. 'A

k, -4A' ' (k —4A' ')(k —4A' ') '

—3Y,A ~)
Y2 y 4A(T )

2

3Y B(~)
~3 u -4A"'

1

—SY,B(~'
~4 u -4A")

2

(k, —4A"')(k, —4A"'}'

i2 Y,B(s)A")
(k, —4A' ')(k —4A' ') '

y2Y B(s)A( )

(k —4A'r')(k, —4A'"') '

(43b)

(43c)

(43d)

Px.,(~~'~0)=0 (44)

Before comparing the diagonal (11) and (22) blocks
of (38b), let us first recall that, owing to the con-
dition

(48)

(49)A(T). n(T)
Y1 Y3 Y2 ' Y4

to the parameters (46) by formulas (42) and (43).
Moreover, we can see from (42) that the first-
neighbor SM attributes to the nonlocal polariz-
abilities (24c) small but nonvanishing values of or-
der A/k times the local polarizabilities a(ly; lv).
In the shell model, as a consequence of (19b) and

(42), if one assumes that only one ion is polariz-
able (e. g. , k, - ~) all nonlocal polarizabilities
vanish. This apparently unphysical limitation does
not exist in the formalism of the DDM; in the nu-
merical calculations, however, it can hardly have
any noticeable effect, as long as the SM is applied
to ionic crystals, in which case condition (40)
holds.

Having established the equivalence of both lan-

guages, we may ask what the different assumptions
about one model mean in the language of the other
one; e. g. , the assumption, frequent in SM calcu-
lations, that the interactions are transmitted only
through the shells (R=S= T) can be formulated in
the DDM with the aid of (43) as

ri: r2=y3: r4= —I'&/ki: I'a/k2y

(45a)q= Z or q=Z1,

N(k) =- Y& 'T~. (45b)

Comparing then the (11) and (22) blocks in (45b),
we obtain again! still at k= 0) the relations (43a)

imposed by (12), the splitting of the left-hand side
of (38b) into "charges" and "deformabilities" is
unambiguous in the formalism of the DDM. So is
the analogous splitting in the formalism of the SM
on the right-hand side of (38b), because in the ap-
proximation (40) the relation (44) is fulfilled also
bythe matrix Y 8 ' Tt, as may be easily verified.
We may therefore write C, (s ) 0 (5o)

that is, shell-shell interactions would be entirely
neglected.

The last matrix to be examined is the short-
range part of the dynamical matrix. Evaluating,
e. g. , the (12) block on both sides of (38c), we get

On the other hand, neglecting the nonlocal electric
polarizabilities (42b) and (42c) in the DDM (i. e. ,
the Karo-Hardy model) would impose on the shell
model the condition

A's'=B' '= 0

1, e.
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()VAN ~ ) C"(12)= R(12) —T(11)I (11)Tt(21)

—T(12) 3 '(22)T'(22)

—T(11)$ '(12)Tr(22)

—T(12)s (21)Tr (21), (51)

which shows that the short-range forces appearing
in the DDM need not necessarily be identical with
the core-core interactions of the shell model. The
last two terms in (51) may be neglected against
R(12) in view of (40); the remaining terms have the
same k dependence on both sides of (51) because
T(err) and 8 '

(Irrr) are diagonal, and their compari-
son gives

(r) 3 1
A =A +4A (r) + (r)

1 2
(52a)

+4A &
~ 4A(r) +

~ 4A(~
R) (r ) (r) 1 1

(52b)
Thus the short-range matrices in both models dif-
fer only by terms of first order in A/k.

Finally, let us examine how the preceding rea-
soning is to be modified in the case of a covalent
crystal29 when the assumption (40) has to be re-
laxed. It is instructive to examine first the short-
range forces. The matrices 3 '(ll) and S '(22)

M, C'"(ll) =R(11)—T(11)s (11)Tt(11)

—T(11)8 '(12) T(21)

—T(12) s -'(22) T'(12), (53)

we can see that an exact comparison is impossible:
The matrix C"(11)is diagonal and wave-vector in-
dependent —if only first-neighbor interactions are
considered —while the right-hand side of (53) de-
pends on k. Accounting for second-neighbor inter-
actions in the DDM, we can get a nondiagonal con-
tribution to C"(11)which will also depend on k,
but not in the same way as the terms on the right-
hand side of (53). We may then view the k-depen-
dent terms on the left-hand side as only simulating
the k dependence of the right-hand side of (53):
the first-neighbor shell-shell and core-shell in-
teractions of the shell model have thus built up the
effective second-neighbor forces of the deforma-
tion-dipole model.

It should be noted that our comparison of a
second-neighbor DDM with a first-neighbor SM is
somewhat accidental. Vice versa, if we compared

possess now a small k-dependent nondiagonal con-
tribution, and if we write down, e. g. , the (11)block
of (38c),
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a first-neighbor DDM with the second-neighbor
SM, we would have to conclude, by the same rea-
soning, that the second-neighbor contribution
to R(ll) simulates the wave-vector-dependent part
of M,C"(11)+(T I ~ Tt)(11) produced by mere first
neighbors in the DDM. In the absence of any cor-
responding numerical evaluations of the first- and
second-neighbor versions of both models, the two
interpretations above are g priori plausible and we
cannot decide whether the T S 'Tt term in (88c) is
missing in the DDM or it contributes in excess in
the SM,

As for the polarizabilities and deformabilities,
the relaxing of (40) will produce a similar effect:
The matrix a(11[k) will turn out to be nondiagonal
and the k dependence of N(12)k) will no longer

0.5

0
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A
0.6 1.0

- 0.2—

- 0.3

Cu Br Cul

FIG. 3. For every group of compounds (II-VI, QI-V,
etc. ) the static ionic charge q [Eq. (25)] is approximately
the linear function (57) of the ionicity f& (straight lines).
As the procedure for determining q provided two values
for each compound, every material is characterized by
one full and one open square, the latter being considered
as unphysical, The above regular behavior was found

only when. the ionicity scale of Pauling was used. See
Ref. 5 for a more detailed discussion.
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FIG. 2. Some of the fitted model parameters may be
organized into regular schemes. For every group of
compounds (II-VI, III-V, etc. ) the parameters A. , 8 char-
acterizing the short-range interaction between first
neighbors [eq. (22a)] vary as monotonic functions of in-
teratomic distance ~0. These regularities are discussed
in more detail in Ref. 5.

correspond exactly to that of (- Y s 'Tt) (12).
Again, we could simulate this modification by in-
troducing the second-neighbor polarizabilities and

deformabilities. The conclusion of the last para-
graph nevertheless applies aIso to this case.

Vfe may thus conclude that both models seem to
provide different descriptions of those covalent
crystals in which condition (40) does not hold —in
contrast to ionic crystals, where the equivalence
of the SM and DDM was shown. An exact analysis,
following the lines of the Eqs. (41)-(52), is hard
to perform in the covalent case, because the 3 '
matrix cannot be written down explicitly for k $0.
The comparison which we have made in this case,
at least for k = 0, provided expressions for yj, y~,
o.„o,z and n~ of a form analogous to formulas (42)
and (48): The ratio of local and nonlocal polariza-
bilities was again found to be of order k/A —which

suggests that the nonlocal polarizabilities may play
as important role as the local ones in covalent
crystals. Numerical comparison of both models
in the case of covalent crystals would therefore be
desirable —unfortunately, the DDM has never been
applied in its full generality.

V. SOME NUMERICAL RESULTS

In addition to the Karo-Hardy approximation

(54a)
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z. e. ,

we have assumed in the computations that

~3 ~1 u ~4 (55)

and call (54) with (55) the deformable-bond approx-
imation (DBA). This approximation has been ap-
plied with success to the lattice dynamics of
CdS and BeO and its physical significance is dis-
cussed in detail in Bef. 1. In the language of the
shell model the assumption (55) means that

as is readily seen from Eq. (43). Equation (56) is
equivalent to the assumption of central springs be-
tween first-neighbor cores and shells if the equality
holds exactly. (This is the case only when it is as-
sumed either that S = T, or that 8 =0. )

Thus we have arrived at a 15-parameter model,
which we have applied to 15 different compounds
of the A"8 "type having the zinc-blende structure. ~

A complete set of parameters could, however, only
be determined for eight compounds —those for
which the neutron measurements of phonon fre-
quencies existed: ZnS, ZnSe, GaP, GaAs, InSb,
SiC, CuCl, and CuI. As for the remaining seven
compounds, it was possible to calculate only cer-
tain combinations of parameters from which, never-
theless, certain qualitative conclusions can be
drawn. We reproduce in Fig. 1 the dispersion
curves obtained for ZnS and InSb„which are chosen
as typical examples of rather ionic and rather cova-
lent structures, respectively. The analogous
curves calculated for all other compounds studied
may be found in Bef. 4, where they are compared
with the results of the 11-parameter rigid-ion mod-
els.

As we wished to obtain model parameters which
would not only provide an interpolation scheme for
phonon frequencies but would also be physically
meaningful, particular care was taken in the de-
velopment of an appropriate method for fitting
these parameters to experimental data. The idea
of the procedure is to decompose the fitting pro-

cess into several steps corresponding to different
degrees of simplification of the model. Proceed-
ing from simpler to more complicated versions,
we fit (suitably chosen) groups of parameters or
combinations of parameters to neutron data and to
macroscopic quantities (elastic, piezoelectric, and
dielectric constants) alternatively, trying at every
step to maintain continuity with the preceding stage.
The broken and dotted lines of Fig. 1 correspond
to two of the intermediate results of this algorithm:
one, a model where second-neighbor forces were
derived from a central two-body potential, and the
other, a model where these forces were represented
by harmonic springs only.

The degree of success of this method for deter-
mination of parameters can be judged from Figs.
2 and 3, where some of the parameters obtained in
this way are represented graphically. It can be
seen from Fig. 2 that short-range forces between
first neighbors (parameters A, B) vary as mono-
tonic functions of interatomic distance yo. The
static ionic charge q of an A"$8-~ compound plotted
in Fig. 3 as a function of ionicity f& approximately
satisfies the relation derived in Bef. 5,

q=[X+4(f, —l)]e. (57)

The reader is referred to this reference for the
description of some other trends, as well as for a
more detailed discussion of Figs. 2 and 3. The
possibility of organizing the fitted model param-
eters into a regular scheme is probably a more
significant result of the present work than the suc-
cessful fitting of all the experimental data by the
model.
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