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A theory of the band structure of semiconductor superlattices has been developed for both the direct-band-gap
and indirect-band-gap barrier layers taking into account the multivalley and nonparabolic band structure of
the materials forming the superlattice. For direct-band-gap barrier layers the nonparabohcity in the band
structure may alter the electronic energy levels measured from the bottom of the potential wells by as much

as 26/o. On the other hand for indirect-band-gap barrier layers the alteration due to the nonparabolicity is

about 14%. It is also found that even for indirect-band-gap barrier layers the band structure is mainly

determined by the states corresponding to the direct-gap minimum. Energy levels calculated on the basis of
the theory presented are also found to agree with those obtained in recent experiments with double-barrier
heter ostructu res.

I. INTRODUCTION

The properties of semiconductor superlattices
have been intensively studied in recent years with
the hope of realizing negative differential conduc-
tivity. ' It is also reported that superlattice
structures with a period of 50-80 A and having
barzier layers with widths as small as 10 A may
be successfully fabricated with high consistency„
The prediction that such structures would have
minibands within the permitted band has also been
confirmed indirectly by experiments. The mini-
band parameters have been calculated using sim-
ple square-well models for the potential distribu-
tion in the direction of the superlattiee axis. For
the solution of the Schrodinger equation, the ef-
fective mass of the electron was taken to be a suit-
able average of the electron effective mass in the
two materials. The barrier potential was taken to
be around 0. 8 times the difference in the band gaps
(direct for one material, indirect for the other).
Reasonable agreement has been claimed between
experiment and the results obtained from this sim-
ple theory.

Considering a model potential distribution, it
may be shown that this simple theory is Unlikely
to give quantitatively good results, and a more ex-
act theory is necessary for the interpretation of
experimental results. The purpose of this paper
is to develop an exact theory of the band structure
of semiconductor superlattices, taking into account
the full complexity of the band structure of the ma-
terials that form the superlattice.

II. STRUCTURE AND PROPERTIES OF MATERIALS

The pairs of materials chosen to form the alter-
nate layers in a superlattice are characterized by
almost identical lattice constants. This ensures a
minimum amount of lattice deformations across
the layer boundaries, The differences in the for-
bidden gaps of the pairs of materials are a few

tenths of an electron volt. GaAs-Ga, Ql*s seems
to be the most favored pair, ' while use of GaAs-
GaAs, „P„has also been reported

The formation of the alternate barriers and wells
at the conduction-band edge may be understood by
considering a layer of the larger gap material
flanked by two smaller gap material layers, both
materials being n type. As the layers come into
contact, a discontinuity in the conduction-band
edge appears, equal to the difference in the chem-
ical affinities of the materials. Electrons spill
over from the middle layer on either side till the
Fermi levels line up. In this process, the middle
layer is left with virtually no conduction electrons,
and may now be looked upon as insulating. The
depletion zones created by the transfer of electrons
extend from the two boundaries into the bulk of the
middle layer. The potential profile will therefore
be a rectangular barrier with a symmetrically
sagging roof. The carrier concentration in the
materials being of the order of 10 ' cm, the po-
tential mould decrease at the rate of about 2.7
x lo ~ ev/A. Since the width of the barrier is not

larger than 100 A, the sag may be neglected in
comparison with the barrier height. This condi-
tion will always be assumed to be satisfied in the
superlattices considered.

The potential well region is formed by the GaAs
layers, as the conduction-band minimum for this
material is lower than that of its mixed compounds
(i.e. , GaAlAs, GaAsp) used in the superlattice
structure.

The conduction band of GaAs has the lowest min-
imum at the F-pointand secondary minima sepa-
rated from this by more than 0.4 eV. 7 We may
hence assume that the electrons will occupy only
the j. -point minimum up to room temperature, and
since the E-k relation for this minimum is iso-
tropic, we may also assume that the electrons mill
be characterized by an isotropic effective mass.
We should note that we shall be concerned with
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electron energies significantly higher than that cor-
responding to the minima. The effective mass
should therefore be considered to be a function of

energy, and in our analysis we shall assume that
the functional relation is given by the simplified
Kane relation

"k~/2'n'= E(l+ E/E o),

where E is the total kinetic energy of the electron
measured from the band edge, and k is the mag-
nitude of the wave vector.

The position of the conduction-band minimum in
the mixed compounds forming the barrier layers
depends on the ionic replacement fraction x. We

may obtain the relative position of the different
minima for a particular value of x by interpolation
between the values corresponding to GaAs and AlAs
in the case of Ga, „Al„As, and to GaAs and GaP
in the case of GaAsy „P„. The interpolation curves
are shown in Fig. 1. It may be seen that depending
on the value of x, the lowest minimum will be ei-
ther a I'-point minimum or an X-point minimum.
If the value of x is less than 0.37 for Ga& „Al„As and
less than 0. 53 for GaAs, „P„, the lowestconduction-
band minimum for the mixed compound is also a I'-
point minimum. The I'-point minimum is separated
from other minima by more than 5 kT at room tem-
perature for x less than 0.25 for Ga, „Al„As, and

0.36 for GaAs, „P„. I or x up to these values, we

may hence consider the effective mass of the elec-
tron to be isotropic, as in the potential wells. We

may also use Eq. (1) to include the effects of non-
parabolicity. However, when the value of x is
larger, the I -point minimum and the X-point mini-
ma are at comparable heights. We then have to
consider possible states of the electron, when
travelling through the barrier layer, corresponding

to both these minima, and the a;tual band energies
may be obtained only by a diagonalization process.
The problem is complicated by the fact that the E-
A relation for the minimum away from the zone
center is of the form

E=kk (k —k)) ~ M ~ (k-k)),

where k,. gives the position of the minimum in 0
space, and M is the effective-mass tensor. Usua. l-
ly there are also a number of symmetrically lo-
cated minima at the same level. The nonparabolic
E-k relation for this minimum is not yet well
known. We shall, however, use the following rela-
tion to evaluate the effects of nonparabolicity for
the elliptic bands

h'k'/2m+ = (E- Eo) [1+(E-Eo)/Eo],

where Eo is the energy at the minimum', E~ is the
energy gap between the conduction band and the va-
lence band at k= k, . The above relation, although
not rigorously derived, has been used in the litera-
ture for transport calculations in indirect-gap ma-
terials like Ge. 9

For large values of x nearing unity, the indirect
minimum has the lowest position and is separated
from the I'-point minimum by more than 0. 7 eV in
Ga, „Al„As. For this composition, it may appear
that we should consider only the states correspond-
ing to the indirect minima. It will however be
shown that due to the smaller value of effective
mass for the I'-point minimum, states correspond-
ing to the latter play an equally important role in
determining the band structure even for such high
values of x.

We may hence conclude that for obtaining accu-
rately the band structure of semiconductor super-
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lattices, we may consider the electron character-
ized by an isotropic effective mass in the potential
well region, but in the barrier region it may have
different kinds of states characterized by either an
isotropic effective mass or a tensorial anisotropic
effective mass. Our theory should take into ac-
count all these possible states. However, before
presenting this theory, we discuss in Sec. III the
nature of the bands that may be obtained for the
lower values of x for which we may assume, as
discussed above, an isotropic effective mass in the
barrier layer.

III. BAND CALCULATIONS FOR DIRECT GAP IN BARRIER
LAYER

250",
Yg ply

200"

p 'l50 g

100 y//g

/Pi ~/g,

(a)

We assume that the width of the potential wells is a
and that of the barrier layers is b, as shown ip Fig. 2.
The difference in the conduction-band edges results
inabarrier of height V, . Inearlier analyses, V& was
taken to be 0. 8 times the difference in the band gap of
the two materials. However, recent work by Dingle
et a/, . indicates that a more appropriate value of the
factor is 0. 88, and this value has been used in our
analysis. The value of a for the experimental
structures varies between 40 and 100 A, and that
for b ranges between 10 and 100 A. For the cal-
culation of the band structure, we shall assume
that the interfaces between the layers are sharply
defined and devoid of any surface effects, so that
the potential distribution may be considered to be

. an array of square wells. To obtain the band
structures, we have to solve the Schrodinger equa-
tion for the atomic potentials having the one-di-
mensional periodicity of the superlattice structure.
We shall, however, make three simplifying as-
sumptions: (i) The effect of the atomic potentials
is only to modify the effective-mass value of the
electron corresponding to the E-k relation of the
particular material. 's (ii) The electron mean free
path is much larger than the superlattice period,
so that the collision effects may be neglected.
(iii) The total length of the structure is long enough
for neglecting the boundary effects.
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FIG. 3. Energy levels up to the barrier for super-
lattices with a= 50 A, and 5 as indicated. (a)
Gap, SAlp, 2AS I'b) GBAsp 7Pp, 3 The P columns are for
parabolic bands; Np, N&, and N5 are for nonparabolic
bands with E~ = 0, kT, and 5kT at room temperature.

FIG. 2. Potential profile for the superlattice struc«
ture. The dashed lines indicate schematically the small
sag expected in. the barrier layer.

Let us consider an electron with energy E, and
wave vector k having the components k„, k„k, in
region l (see Fig. 2). Let the same electron,
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when it enters region 2, have energy E~ and wave
vector k' with the components k'„, k'„, k&. Since
energy is conserved in the transition, E~= E~. We
also note that the wave function at the boundary be-
tween two adjacent layers should be continuous.
Since this continuity is to be ensured for all values
of z and y for a fixed value of z (e. g. , z =0), it
also follows that the x and y components of the
wave vector should also be conserved, i.e. , k'„

k ky ky Using the energy -conservation con-
dition and a parabolic E-k relation for the two ma-
terials, we then obtain

In Fig. 3 we have shown the band structure for a
= 50 A, and b =10, 50, and 100 A, using for m~& the
effective-mass value of GaAs, andform, * the effec-
tive-mass values for Gap SAlp 3As and GaAsp qPp 3.
The barrier heights were taken to be 0. 88x0. 28
eV and 0. 88x0. 36 eV, respectively.

The effect of nonparabolicity may be included
straightaway into the dispersion relation by putting

k, = [(2m~~/h2) E(1+Er/Ep, ) ]'~z

(n'/2m')(k', + k', ) = (k'/2m, *)(k', + k', ) + V„(4) k„=O2m,*/k')(V, —E)[l —(V, -E )/E, J)'~',

where k, =k„+ k~, m*, is the electron effective mass
in the potential well, and m~ is the electron effec-
tive mass in the barrier layer. Since

k, = (2m, E/5 ) ~, (5)

we obtain from Eq. (4)

k, = ((2m,*/)f') [E- V, + E,(1-m,*/mzq ]]'~, (5)

E,(1 —m~ /mz ) «V, .

where E is the energy corresponding to the s com-
ponent of the wave vector in the potential well re-
gion, and E, =k k', /2m, is the transverse energy
in the GaAs layer. We find from the above rela-
tion that k, is imaginary if E & [V, —E,(1 —m~ /mf )],
and its magnitude depends on E as well as on E„
since m& em2*. The latter dependence will have
the effect of broadening the bands, since E, will
vary from electron to electron even if E is the
same. The magnitude of this broadening will be
discussed later. For the present, we calculate
only the band structure, assuming

which follow from Eqs. (1) and (3). We show in
Fig. 3 the modification in the bands resulting from
the nonparabolicity. E~, was taken to be 1.4 eV,
and E~~ was taken as 1.68 eV for Gap, Alp 2 As,
and 1.76 eV for GaAsp. ,Pp.„respectively. E~
was taken to be equal to E." The nonparabolicity
may change the parameters by as much as 15'%%up for
the low values of x considered in the examples.
However, the change would be larger and will be
more significant for higher values of x when the
barrier heights become larger, (see Fig. 5), re-
sults for which are presented later.

In order to assess the magnitude of band broad-
ening (mentioned earlier), we have also calculated the
band parameters for QaAsp 7Pp, and Gap SAlp pAS

corresponding to a = 50 A and b = 10, 50 and 100 A,
taking E, = k'k', /2m, to be equal to kT and 5kT at
300 'K. We find that the parameters change by
about 1.3 /p for E, = k T and by about %%% for E, = 5k T.
Since most of the electrons are contained in the en-
ergy interval (0-2)kT of the conduction-band edges.
we may conclude that the band broadening for the
particular case considered here will be of the or-
der of 3/p. The results are shown in Fig. 3.

The wave functions for the two regions may be
written as

IV. BAND CALCULATIONS FOR INDIRECT GAP IN
BARRIER LAYER

where

k2& ——[(2m( /5 )(V~ —E)]~~z, for 0 & E & V~.

Using the conditions of continuity of the wave func-
tion and its derivative at x=0 and z=b, we get the
familiar dispersion relation

[(kz, —k, )/2k~k&, ]sinh(k2, b) sin(k, a)

+ cosh(kz, b) cos(k, a) = cos(kd)

In order to keep our derivation general, we as-
sume that the crystallographic ~es of Ga, „Al„As
layers are oriented in an arbitrary direction with

respect to the superlattice axis, which we have
chosen as the z axis (Fig. 4). As noted earlier,
there are a number of equivalent minima corre-
sponding to the indirect-band gap located in the di-
rections of symmetry. We first consider one of
these minima, the E-k relation for which is given
by Eq. (2). The wave vector of the electron in

Ga& „Al„As, k&, for a state. corresponding to the
minimum may be obtained by applying the condi-
tions of conservation of total energy and of con-
servation of the transverse components of the wave
vector. We thus obtain
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(k + k&) 5 (k» k o) 5 (k& k&0) 5 (kk k»0) 5 (k k»0)(k k&0) 5 (k& k&o)(kk k»0)

@'(k,-k.,)(k„-k )
1R

(10)

where V2 is the potential barrier between the I'-
point conduction-band edge of GaAs and the (100)
conduction-band edge of Ga, „Al„As; k„o, k&o k o

are the components of k„ the wave vector giving
the location of the minimum; m„„, m„„, etc. are
the components of the effective-mass tensor. We
should note here that since k„and k, in the barrier
layer are the same as in the potential well region,
the terms (k„—k~) and (k, —k„o)k will be large and
the corresponding energies will also be large. For
these energies, the effects of nonparabolicity would
be important, and we should use the exact disper-
sion relation between 8 and k„, k„ to obtain precise
results. However, as our interest at this stage is
only to deduce the general shape of superlattice

k2= k2„+ik2

where
k.o k. k.o2&»0+»»

)~ 'g»
(12)

k„.= [(2m.,/n')(V, ' —Z)]"',
where

(13)

band structure for indirect-gap barrier layers, we
start by assuming that the parabolic relation re-
mains valid.

Equation (10) gives complex values of kk, which
may be written as

2 1
+k (k„-k„,)(k, -k„,) — - -I kP.O —,-k k.k.o —--m»» 2 1 VE

Pl «y Pl «»Sl y» «««» Pl
pQ PPg y»

gee find from Eq. (14) that the x and y components
of the wave vector, as in the earlier case, changes
effectively the barrier potential and would cause
broadening of the minibands. The effect is ex-
pected to be larger in this case as 1/m,* may dif-
fer by larger amounts from 1/I„„, I/m», etc.
We also note that the effects of location of the min-
imum away from the zone center is an enhance-
ment of the barrier potential. The magnitude of
this enhancement depends on the direction of k,.
with respect to that of the superlattice. In fact,
we should point out that the effective barrier
height for the different equivalent minima may be
very much different as their orientations are dif-
ferent.

In order to obtain the E-k relation for the super-
lattice related to the indirect minima under con-
sideration, we use Eq. (11) to construct the elec-
tron-wave function in the barrier layer,

(+) Ce(ikk -kk ~ )» De(gkk»+kk()»

g, (z) and g, (z) remain unchanged from Sec. III.
Matching the derivatives and values of the wave

003

[010j

FIG. 4. Orientation of the ellipsoidal constant energy
surfaces in the indirect-gap barrier layer. The k» axis
denotes the superlattice direction.



12 BAND STRU CTURE QF SE MIQQNDU CTOR SU PE R LATTICE S

functions at the boundaries z =0 and z = b, we get

' sinh(kz, b) sin(k, a)
1 2j

+ cosh(k„.b) cos(k,a) = cos(k„b —kd). (16)

The E-k relation for the superlattice for states
corresponding to the minimum away from the zone
center may in general be worked out from Eq. (16),
together with Eqs. (12), (13), and (14). However,
we discuss only the detailed nature of the bands
that are obtained when the (100) direction of
Gay Al As coincides with the z direction, as this
is likely to apply to practical structures. For this
orientation, we have to consider separately two
sets of energy e11ipsoids —the two ellipsoids lying
along the k, axis, and the four along the k„and k,
axes.

For the k, ellipsoids, Eqs. (12), (13), and (14)
gives

bands arising due to these ellipsoids would be nar™
row and would probably lie in the region between
the bands arising from the direct-gap barrier and
from the k, ellipsoids.

To obtain the band structure arising due to the
k, ellipsoids, Eqs. (17) and (18) may be put in Eq.
(16). It is then evident that the E-k relation would
be critically dependent on the value of k,ob, and
we may expect significant changes in the superlat-
tice bands with little change in the thickness of the
barrier layers. However, when b is large, i.e. ,
when the barrier layer contains a large number of
lattice points in the direction of the superlattice
axis, we may apply the cyclic boundary condition

The E-k relation then becomes

' sinh(k2;b) sin(k, a)
1 2j

k2r = k.o (17) + cosh(kz&b) cos(k, a) = cos(kd). (22)

and

k2„= 0 (19)

k (
——[(2m /k )(V~' —E)] ~

where

V,'= V, +k'k'„0/2m„p, =x,y, (21)

and m, is the transverse effective mass of an elec-
tron in the ellipsoids. Due to Eq. (19), the E k-
relation for the k„and k, e11ipsoids reduces from
Eq. (16) to the form of Eq. (7), with k„being
characterized by the electron effective mass rn„
and an enhanced barrier V2. The additional term
k k„„/2m, or ff k,'0/2m, in Eq. (21) effectively in-
creases the barrier V2. A precise estimate of
this enhancement, however, is not possible be-
cause, as has been pointed out earlier, the non-
parabolicity effects in the k„and k, terms in Eq.
(10) have not been taken into account. An order-
of-magnitude estimate can only be made, and this
indicates that electrons in the k„and k, ellipsoids
are characterized by a barrier even larger than
that arising from the difference in the direct gaps,
and by a mass greater than the zone-center mass
but less than the longitudinal mass. As a result,

(18)

where m, is the longitudinal effective mass of an
electron in the ellipsoids. In obtaining (18), the
terms involving k„and k, in Eq. (14) have been
dropped, as their band-broadening effects have
been discussed in detail earlier.

For the k„and k, ellipsoids, Eqs. (12), (13), and
(14) give

In this relation k~, is given by Eq. (18), and it is
readily seen that the barrier height V2 is deter-
mined only by the indirect-band gap. Since this
gap is much smaller than the direct gap for large
values of x in Ga, „Al„As, one might expect that
this minimum will predominantly determine the
superlattice E-k relation. However, this expec-
tation is not fulfilled, mainly because the term k, o

in the first term on the L.H. S. is much larger than
either k, or k2,. and would cause the bands to be-
come extremely narrow, on the assumption that
k,o for Ga& „Al„As lies at the zone edge. ' To
bring out this point, we present in Fig. 5 the band
structures arising from a Ga, „Al„As barrier lay-
er with x=0. 5 and 0.7, both for the direct gap in
accordance with Sec. III and for the indirect gap
using Eq. (22). For this latter case, k, o has been
assumed equal to 27j/d„where d, = 5. 653 A is the
lattice constant of the materials. We have also
presented in Fig. 5 the energy levels obtained for
the direct gap neglecting the effects of nonpara-
bolicity. It is seen that the nonparabolicity alters
the results by about 26%, which should be consid-
ered significant when comparing theoretical re-
sults with experiments.

V. DISCUSSIONS AND CONCLUSIONS

We have developed in this paper a complete
theory of the superlattice minibands considering
the nonparabolic E-k relation and also the multipole
minima in the E-k space for the material forming
the barrier layers. We find that the miniband pa-
rameters calculated by using the nonparabolic re-
lation differ in some cases by large amounts from
those obtained with the constant effective-mass ap-
proximation. The agreement reported earlier be-
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tween experiment and theory based on this approxi-

mationn

therefore requires further examination.
We also find that for compositions of the barrier
layer for which the band gap corresponding to the
I'-point minimum is larger than that corresponding
to the X-point minima, the miniband energies have
two possible sets of values arising from the two
kinds of minima. The bands arising from the I'-
point minimum are in fact lower in position as
well as wider, although the corresponding barrier
potential is higher. We also find from the calcula-
tions made for barrier widths of 10, 50, and 100
A that for the compositions used in the experiments,
minibands may be obtained only for barrier layers
having a thickness of about 10 A, and these mini-
bands will originate from the states corresponding
to the I'-point minimum. The states corresponding
to the X-point minima give rise to bands of negligi-
ble widths even for a barrier thickness of 10 j,.
It has also been shown that for all the cases con-
sidered, the bands or the energy 1evels may be
broadened as a result of the conservation of trans-
verse momentum, but for lattice temperatures
near the room temperatures, the broadening would
not be significant.

Experimental results proving definitely the for-
mation of discrete levels in a structure analogous
to the superlattice structures has recently been
reported by Chang et al. and by Dingle et a/. ' It
is of interest to compare our calculated results

with those of these experiments. In the experi-
ment of Dingle et al. , the absorption spectra were
measured for a single-well heterostructure made
with GaAs and Gao, AID 2As. The energy levels ob-
tained from the analysis of the experimental data
were found to agree with theoretical calculations
apparently based on an energy-independent effec-
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D-Theoretical values for direct gap, I-theoretical values
for indirect gap, E-experimental values.
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tive mass corresponding to GaAs. We find from
calculations, ' using the nonparabolic dispersion
relation and the effective masses corresponding to
GaAs and Gas. sAio sAs as required by expressions
(V)-(9), that the theoretical values decrease from
those of Dingle by small amounts, the maximum
difference being about 12 meV. The agreement
observed by Dingle et al. between their theoret-
ical values and experimental results therefore re-
main unaffected, even when we include the effects
of all the complexities discussed in this paper.

The results obtained by Chang et al. from the
resonant tunneling experiment are shown in Fig.
6, along with our calculated values for the experi-
mental superlattice parameters. " We find on
comparison that the experimental results agree
fairly well with those obtained for the F-point
minimum, including the effects of nonparabolicity.
It may, however, be noted that according to our
theory, discrete levels arising from the X-point
minima and positioned at intermediate heights be-

tween those observed experimentally are also ex-
pected. The probability of resonant tunneling
through these states may, however, be lower, and
a more sensitive method of detection may be re-
quired to observe the effect of these states.

In conclusion, we would like to point out that ac-
cording to the present calculations (see Figs. 3
and 5), there is a greater possibility of obtaining
superlattice minibands and the associated negative
differential mobility if the structures are made
with Ga, „Al„As with x &0.25 or GaAs, „P„with
x &0.36. For higher values of x, as is evident
from these calculations, discrete levels are likely
to be obtained rather than minibands.
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