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A Green’s-function theory of Raman-scattering line-shape asymmetries is developed here for a system in
which a one-phonon (discrete) excitation is degenerate with intervalence-band (continuum) excitations. The
scattering cross section is expressed in terms of a generalized dynamic form factor, S(t‘f,m), appropriate for the
second Born approximation. The S(q,w) is defined in terms of a composite Green’s function which describes
the quantum interference between the discrete and continuum states. Introducing a model electron-phonon
interaction, the techniques of many-body theory are used to solve for S(q,) in the random-phase
approximation. This automatically leads to an expression which yields the desired line shapes, i.e., gives
antiresonances. Measurements of scattering line shapes for degenerate p-type silicon over a wide spectral
range are described. This allows a fit of the theoretical and experimental line shapes. Examination of the
analytic structure of S(q,w) leads to the conclusion that there is a new collective excitation of the crystal. This
is the result of the quantum interference between the discrete and continuum states. We associate the creation
of this excitation with the onset of line-shape asymmetry in the Raman spectrum of the semiconductor.

I. INTRODUCTION

Most one-phonon Raman- scattering (RS) experi-
ments in semiconductors exhibit symmetric line
shapes. However, recent Raman scattering experi-
ments in degenerate p-type silicon have revealed
striking and unusual effects. 2 It is seen that the
one-phonon Raman line shape depends sensitively
on a number of experimental variables, i.e., the
concentration of the boron acceptors, the tem-
perature and energy of the exciting radiation. As
the number of boron acceptors or the wavelength
of the incident photons increase, the one-phonon
line broadens appreciably and becomes strongly
asymmetric. The same effect is observed as the
temperature is lowered.

The line shape of the experimental curves is
suggestive. Apart from the asymmetry, there
exists an antiresonance on the low-energy side
of the resonance. Line shapes of this sort have
been known in nuclear® and atomic physics? for a
long time. The theoretical treatment of two-elec-
tron atomic resonances by Fano is particularly
useful for understanding the problem in which the
scattering line shape is distorted by interference
between discrete and continuum eigenstates of an
atom. The details of this are in Fano’s paper. *

It is sufficient here to say that the gist of the theory
involves the introduction of asymmetry parameters
g and T" which can be calculated, at least, in a few
simple cases for atomic systems. The function ¢
is the ratio of the transition amplitude of the dis-
crete state to that of the continuum states, while

T is a measure of the strength of the coupling be-
tween the discrete and continuum states.

The first discussion of this effect in solids con-
sidered the overlap of saddle-point excitons with
a continuum due to the interband electronic transi-
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tions.*% Interference effects have to be invoked to
fit the absorption line shapes when the oscillator
strengths of these excitons is comparable to that
of continuum. However, due to the complexity of
the problem of Coulomb effects at hyperbolic ener-
gy surface, the analysis in Ref. 6 uses the Breit-
Wigner-Fano (BWF) theory to introduce asym-
metry parameters which were treated as phenom-
enological quantities. Success of this approach de-
pends upon focusing attention on the antiresonances.

Previous theories of asymmetric line shapes
have treated the interaction of two elementary ex-
citations of the solid. For instance, Barker and
Hopfield” have discussed infrared dispersion of a
sharp phonon overlapping the wing of a broad pho-
non, These authors discuss the equations of mo-
tion in quantum-mechanical terms and then de-
velop a classical model which illustrates the in-
terference effects. Recent work has discussed
the effect on the scattering line shapes of inter-
action of two optic phonons® and the analogous
situation of plasmon-phonon interaction.® In
all the cases cited above, a BWF interference dis-
torts the line shapes. These and other papers
concerning interference effects have been reviewed
by Scott in a recent paper. *°

It is tempting to use the BWF theory for de-
scribing Raman scattering in degenerate p-type
silicon. This is because of the basic simplicity
of the theory and the antiresonant behavior of the
experimental line shapes. The presence of holes
in p-type silicon produces an intervalence-band
electronic Raman scattering. This is evident from
the structure of the valence bands of silicon which
consist of heavy, light hole and spin-orbit split-off
bands. The main point about this process is that
it gives a continuous and relatively featureless
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scattering background. That is to say there are

no sharp peaks in its spectrum. Of course, the
electronic scattering itself is a sensitive function
of the doping and the temperature. Superimposed
upon this continuum is the one-phonon Raman line,
which to a good approximation, may be considered
to be an excitation at a single discrete energy. This
statement is exact if we neglect the width due to

the self-energy of the phonon. In any case, the
phonon shows up as a sharp peak in the Raman
scattering. The coupling between overlapping one-
phonon (discrete) and electronic (continuum) Raman
scattering amplitudes due to the electron-phonon
interaction leads to an interference effect which
manifests itself in asymmetric line shapes of the
light-scattering cross section. The larger the
continuum scattering relative to the discrete one,
the more pronounced are the interference effects.

It must be emphasized, however, that this ad hoc
approach is phenomenological in character and can,
at best, provide rough guidelines for experimental
investigations. This is because the BWF theory is
only valid, strictly speaking, for nuclear or atom-
ic states which are spatially localized. The situa-
tion for solids is quite different: Here we are
dealing with spatially extended systems and propa-
gating modes. It should also be pointed out that
the BWF theory does not incorporate the effects
of temperature.

In this paper we adopt a point of view more suited
to the description of light-scattering line shape in
semiconductors. We formulate a microscopic
theory of Raman scattering from a system in which
both continuum and discrete states can be excited
simultaneously in a manner analogous to what was
done in Refs. 8 and 9. This is different from the
BWF theory since it is quantum statistical in char-
acter, while retaining the essential nature of the
interference. The light-scattering cross section
is expressed in terms of a generalized dynamic
form factor S(§, w). The §(§, w) is a generaliza-
tion of the Van Hove dynamic form factor!! for
second Born approximation to include resonance
of the incident and scattered light with intermediate
states of the scatterer (this effect is usually called
resonance Raman scattering). This approach em-
phasizes the many-body character of the system,
and we determine S(§, w) approximately using the
techniques of many-body theory. The §(§, w) is
itself related to a composite Green’s function
F(§, ), which includes the coupling between the
discrete and continuum states due to the electron-
phonon interaction. Introducing this interaction
explicitly, we solve for §(§, w) in the random-
phase approximation (RPA) by a selective summa-
tion of diagrams. This gives the desired scatter-
ing line shape automatically, which can be com-
pared with experiments. We should add that our
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method has the virtue that it gives a self-consistent
treatment of the spectral response of the system
to the external light probe.

It emerges from the above analysis that the line-
shape asymmetry is due to the onset of a composite
state of the system in which it is impossible to
separate the phonon and electron-hole-like char-
acter of the scattering. The exact nature of the
asymmetry will, of course, be sensitive to the de-
tailed nature of the electron-phonon interaction.

In this paper we prefer to treat this as a constant,
which is a fair approximation for silicon. Even
with this simplification, it is evident that the line-
shape asymmetry must be associated with the ex-
citation of an eigenstate which is a new elementary
excitation of the crystal due to strongly interacting
phonons and electron-hole pairs, It is our conten-
tion that the beginning of the line-shape distortion
signals the birth of this collective excitation. Our
formulation gives not only a proper account of
Raman scattering line shapes in semiconductors,
but has the attractive feature that it describes a
new eigenmode of a system in a natural way.

Section II presents a formulation of a micro-
scopic theory of Raman scattering from a system
in which a discrete phonon excitation is degenerate
with a continuum of intervalence-band electronic
excitations. The generalized dynamic form fac-
tor S(g, w) is defined in terms of a composite
Green’s function which describes the coupling of
the discrete and continuum states. - We then solve
for $(q, w) within the RPA by introducing a model
electron-phonon interaction. The result leads to
an analysis of the scattering line shapes which also
incorporates the effect of finite temperature 7. By
adapting the theory to the case of degenerate p-type
silicon, we can express the effect of variation in
line shape as a function of concentration of doping
n and incident photon energy 7Zwg.

Section III is devoted to the comparison of the
theory with experimental results. We discuss the
manner in which line shapes can be generated by
suitable simplification of the theoretical expres-
sions. Then we go on to describe measurements
of the scattering cross section in degenerate p-
type silicon. The variation of the scattering cross
section with the various experimental variables,
i.e., n, T, lw,is discussed. The theoretical line
shapes are compared with experimental ones and
their compatibility is demonstrated for a sample
set of measurements. This yields values of the
electron-phonon coupling constant g. Section IV
contains the discussion and concluding remarks.

II. GENERALIZED DYNAMIC FORM FACTOR

Consider the problem in which there exists a
discrete phonon excitation juxtaposed on a con-
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tinuum of electronic transitions between the various
bands of a semiconductor. Such a situation might
be expected to obtain for light scattering in p-type
silicon, germanium, and III-V compounds like
InSb and GaAs. In addition, it might also occur in
gray tin and zero-gap semiconductors like HgTe.
The theory for Raman scattering which we will
present now is quite general and may be applied
to a variety of experimental situations. We would
be interested primarily in Raman scattering in de-
generate p-type silicon. Therefore, we shall adapt
our final theoretical results to make contact with
our specific situation,

We introduce a composite Green’s function for
the whole system as follows:

g, 0= -i<T(A<I>;,(t)+ e ; ; By, (k) w ¥ (K, t))

<A<1> ©+v1y Z

> (B) W (i o))>.

myn
(1)
Here <I>a(t) are the spatial Fourier transforms of
the phonon-field operators which are related to the
creation and destruction operators of the phonons
in the usual way, *? and ¥ ¥/( K, ) the electron-hole
operator which creates an electron in band Z and
hole in band j. The symbol 7 denotes the Wick
time-ordering operator and the brackets ( ) indi-
cate thermodynamic averages!® of the operators
at finite temperatures and ensemble averages at
T=0. The functions A and B are related to the
Raman tensors for one-phonon'® (discrete) and
interband electronic!* (continuum) excitations. We
must emphasize that both A and B depend upon the
energy of the incoming and outgoing photons and as
such describe the resonance of these photons with
intermediate states.
Taking the time Fourier transform of Eq. (1), we

get

F(§, w) = A2F,(§, )+ V2 2 ZE B} Bp(K")
mn kk’'
i

x FHm™(& k' q, w)
+2AVTY D BRVFE(K,q,w). (2)
ij K

Here F, is the one-phonon Green’s function, F,
that corresponding to interband electronic transi-
tions, F,, that which mixes the one-phonon and
electron-hole pair states.

This form for the composite Green’s function
is quite general. We can simplify this formula if
we neglect the effect of electron—electron inter-
actions' on the F'™ (k,k’,q, w). This is justified
since we want to focus attention on interference ef-
fects. In this case we need only the i=# and j=m
component of F:/™ , Therefore, we define
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FH(k, K, q,w)= FH & &, w). (3)

Further, for the sake of brevity of the notation we
suppress the band indices on FY (k Kk a, w) and
B,,(k) their existence being understood. We shall
assume a two-valence-band model which makes
the sum over ¢ and j redundant. This assumption
makes for mathematical simplicity without preju-
dice to the physical effects involved. Generaliza-
tion to a many-valence-band model is straightfor-
ward. With these remarks, Eq. (2) becomes

F(d, w) = A%F,(q, w)

+V? D BE) BE)FE ¥, q, )
Kk
+24 V1 20 B(K) F,(k, §, ). @)
k

It is now necessary to relate F(E, w) to the Raman
scattering cross section and for this purpose we
shall make a small digression. Light scattering
from the intvaband transition of free carriers is
usually described by _:42 term for the electron-pho-
ton coupling, where A is the external electromag-
netic vector potential,® In this case the differen-
tial scattering cross section for the light can, in
the first Born approximation, be written as a prod-
uct of the dynamic form factor S(d, w) and a factor
which contains all the information about the inci-
dent and scatterer photons and their law of inter-
action with the system. The dynamic form factor
S(q, w) contains all the information characteristic
of the system and is determined by the particles
comprising the system and their mutual interac-
tions. This point has been stressed by Noziéres!?
and enabled Van Hove!! to relate S(a, w) to the Fou-
rier transform of the time-dependent pair-distribu-
tion function for the many-body system.

Raman scattering of photons due to phonons!®
or interband electronic excitations!® must be de-
scribed in the second Born approximation, since
the leadlng terms in the electron-photon coupling
are p -A. In this case it is no longer possible to
factorize the cross section into a term which de-
pends upon the probe and another which depends
upon the target. This is because resonance of the
incident and scattered light with intermediate states
of the scatterer must be included. Of course, when
the energy of the incident or scattered light ap-
proaches that of one of the excited states of the
crystal, the resonance effect dominates and we get
resonance Raman scattering.? However, even
off-resonance, a proper theory, must include this
term.'®!8 We therefore introduce a generalized
dynamic form factor § (E, w), which is appropriate
for the second Born approximation., This new
function depends not only on the properties of the
many body system but also on the energy of the
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Fep= w<

FIG. 1. Diagrammatic representation of the Green’s
functions F,, F,, and F,, in the RPA. The electron-pho-
non interaction g is given by the small filled-in circle.

A

The first term in the equation for F, is its value for g=0.

The corresponding value for the phonon propagator F,,
is given by the wavy line.

incident and scattered photons.

Returning to Eq. (4), the generalized dynamic
form factor is given in the region of w>0, i.e.,
for Stokes scattering, by

§(@, ) =~ ImF(q, w). (5)

Hence to determine the cross section, we must
get F(d, w), which means solving for F,, F,, and
F,,.

It is obvious that the Green’s functions are very
complicated because of the many-body character
of the problem. We can, therefore, hope to de-
termine them only approximately. In this, we take
recourse to standards methods of many-body theo-
ry. Before describing this, however, it is neces-
sary to define the electron-phonon interaction for
the problem at hand. For silicon because of the
short range of the deformation potential, 19 it is
sufficient, as a working model, to approximate
the electron-phonon interaction by a constant g.

It is possible to refine our subsequent treatment
to include the Frohlich interaction and anisotropy
effects. We prefer to avoid this here for simplic-
ity and because our approximation is a good one
for silicon.

We now solve for the Green’s functions in the
RPA by a selective summation of Feynman dia-
grams. The diagrams. to be summed are given
in Fig. 1. The functions F{® and F® are the
electronic and phonon Green’s functions in the
absence of the electron-phonon interaction and g
is the electron-phonon coupling constant. For
k=K', the F{* is given by**

FO (i, K", q, w) =[ £,(K) - £,(K+ )]

x [ By(K) - Ey(k+Q) + hw + in]™?,
(6)
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where E,(E) is the electron energy, ﬁ(E) the cor-
responding Fermi factor, and n—-0. For the pho-
nons we use (for T=0)

FOE, ) =[w - 0)(@) +in]™ - [0 +w,(@) - in]",

(7
where w,(a) is the unperturbed phonon frequency.
We prefer to use the 7=0 form of F{*’ and avoid
the complications of its finite-temperature counter-
part. This is reasonable since, as will be dis-
cussed later, the effect of 7 on F{* is small, From
Fig. 1 we get the Green’s function

-

Fe(E, E" a, w) = Fe(O)(E, EI, q, w)
L EA0E G 0) PG, 0) AV, T, 0)
1 _ng(o)(q’ w) F,§°’(q, w) 4
(8)

FD(O) (i (J))

F,(q, w) = 9
»(d, w) =270 g, o) FOG, o) ° (9)
and
> - FO(Q, w) Ak, §, w)
Fok, g, w)=—£ ¢ 3 dy @) 10
ep\h My 1 _ng(OT(q, w) F,§°’(q, w) ( )
Here
AR, G, @)= FOKK,G, ) (11)
¥
and
A (G, w) =2 FOEE, G, ). (12)

ky k'

Using Egs. (4) and (8)—(10) we get for the compos-
ite Green’s function

F(q, ) = Fy(q, ) + F,(d, 0) +2 F,,(@, w), (13)
where
f«"p(-&, 0)) :Aan(a, w) ’ (14)
F@G @)= 2, BRBE) FER,G0), 15
P
and
ﬁep(ay w) :AZ B(E) FeP(E’ a, UJ) . (16)
k

Combining Egs. (5) and (13)—(16) we get the fol-
lowing expression for the generalized dynamic
form factor:

§(a’ w)=(A2/| Gla)(F;,G” - FLIGI) _iél +g2{GII[F‘l’(7\I2 _AIIZ)_ZFLIAII‘\'II]

—G'2F,AA" + F) (A2 - A3}/ | G|? +24g[G'"(F)A' = FY A') = G(Fy A + LA/ 6|2,  (17)
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with 8@, w) == Fy'-[(A+g A') - g2A""?]
G'=1-g*a'F;-A"F}), (18) x Fj'-2(A+g M) gD F}, (21)
¢"= -ga(A,F"’, +aTFS), (19) where F, is given by Eq. (9). Further, by simple

and algebraic manipulation, it is shown in the Ap-
AGw) :% B®) FO(%, ¥, 3, w). (20) ~ Pendixthat

In Eqgs. (17)—(19) it is understood that all the func-
tions depend upon q and w. Further, we have sup-
pressed the superscripts on F{®, F{®, and A9,
it being implicit that they refer to the noninteract-
ing case. The superscript prime denotes the real
part of a function, and double prime its imaginary
part. Equation (17) is the most general result in
this paper, and the RS line shape, is determined
by it.

The complicated look of the above set of equa-
tions makes it necessary to point out the salient
features for insight into their structure. The terms
Fy(Q, w) and F,(q, w) in Eq. (13) give the scattering
from phonon and interband electronic excitations
appropriately renormalized by the electron-phonon
interaction. The denominators of Eqs. (9) and (10)
and hence of F,(, w) and F,(q, w) are typical of RPA
calculations where a geometric series is summed,
The term F,,(q, w) is the “interference” between
the phonons and continuum electronic states and it
vanishes when g— 0, as it should. This is the
term, which is primarily responsible for distorting
the line shape. It should be emphasized that this
“interference” incorporates the interference of the
BWF theory while expressing the effect in terms
of Green’s functions. This is obviously appropriate
for describing scattering line shape in solids.

We can gain further insight into the structure of
Eq. (17) by regrouping various terms in it. The
coupling constant g is a measure of the interaction
between phonons and electrons in particular bands
from which originate the continuum of electronic
transitions. It is not known how this coupling con-
stant compares with coupling constants of phonons
with the electrons in other bands which are, for
example, implicit in the function A. It is there--
fore expedient to introduce a general electron-
phonon coupling constant A for the interaction be-
tween phonons and all electrons in the crystal.

All the deformation-potential constants which are
defined by taking appropriate matrix elements of
tie electron-phonon interaction Hamiltonian are
proportional to A, As there is no a priori in-
formation about the relative magnitude of these
different deformation potentials, we can classify
different terms in the calculation in powers of A.
Consequently, since A(w)~X and g~2,. Eq. (17)
expresses §(§, w) correct to second order in A,
It is shown in the Appendix that Eq. (17) can be
written

8@, w)=- F}' +o[(g+€)?/(1 +€))] - gy, (22)

where the functions g, € and oy are also defined.
It will be seen that the second term of the above

equation is just the Fano* line-shape function

multiplied by 0y. In fact, writing Eq. (22) as

3@, w) =~ FI +[(g? = 1)/(1 + )]0, +[2q¢/(1 + €)]o,

(23)
it is easy to see that the second terms of Eqs. (21)
and (23) are equal to each other and represent the
RS from the modified discrete state. The third
terms of these equations give the contribution due
to interference between the discrete and continuum
states while the first terms are due to interband
electronic transitions. It must be stressed that
Eq. (22) allows for both partial and complete anti-
resonances. The latter situation obtains if | F’|
=|opl. The positive definiteness of the scattering
cross section is guaranteed by the unitarity of the
S matrix and does not have to be imposed arbitrar-
ily. This implies that | F2/|> | o,l.

The pole of F((I, w) corresponds to the real ele-
mentary excitations of the system. Neglecting the
damping of the phonon by other processes, the
energy of the excitations wy is given by the solu-
tion of the equation

g2A"(Q, wg) Fj(q, wg) =1, (24)

which also gives the dispersion of these modes.
Neglecting the dispersion, Eq. (24) reduces (for
emission of phonons) to

g2 (wg) (wg - “’1’)-1 =1, (25)

where wg is the new excitation frequency and w,
the unperturbed phonon frequency. Since A’(w)

is a slowly varying function of w; we get for small
8

szwp+g2A’(w,). (26)

From the above arguments it is clear that if the
interaction is weak, the phonon pole is shifted by
a small amount because of discrete-continuum
self-energy effects, which brings out the quasi-
particle character of the excitations. In addition
to a simple pole of the phonon, there exists a
branch cut in the complex w plane due to the con-
tinuum of interband electronic transitions which
overlaps with it., This is evident from the structure
of Eq. (24). The analytic structure of F(d, w)
illustrates how the coupling of the discrete-con-
tinuum excitations affects the RS. As long as



the coupling of the discrete-continuum is weak,
we still have a phononlike pole as explained above
and the strength of the scattering is given by its
residue, The residue diminishes as the coupling
increases, i.e., the discrete state is displaced
and dissolved in the continuum by the interaction.
As the coupling is increased even further, the
phononlike character of the excitation disappears
and we have a mixed mode of the crystal. For
very large coupling the resonance disappears and
we are only left with an antiresonance. We shall
return to this point later. It is necessary to em-
phasize that the line shape is determined by the
$(d, w), which is the spectral function of the Leh-
mann representation for F(§, w),? rather than by
the poles of F(§, w) The latter only define the
resonant energies and lifetimes of the quasipar-
ticle excitations.

It is evident from the definition of F{°’ and F
[see Egs. (8) and (7)] that the line shape depends
upon the temperature T and the concentration of
doping ». The point is that the intervalence-band
electronic RS is very sensitive to the concentra-
tion and temperature—particularly for p-type sili-
con, This fact is amply substantiated by experi-
mental evidence and its detailed analysis.? The
variation of electronic RS with #» comes in through
the chemical potential p in the Fermi functions.
As n increases, |ul increases and together with
the intervalence-band structure of silicon, this
leads to an overall enhancement of the electronic
RS.% The effect of non F* is very weak. Turn-
ing to the effect of the temperature, again the
Fermi functions play the main role through .

As T decreases, |ul| increases and we have for
silicon an enhancement of the electronic RS. Again
the effect of 7 on F/” is weak, ?® relative to the
electronic RS. This means that as » increases or
T decreases, the electronic RS increases with
respect to phonon RS and interference effects begin
to predominate. These qualitative remarks make
the compatibility of the theory given here and ex-
periment seem plausible. A thorough examination
of this is given in Ref. 21 which establishes the
correctness of our approach.

Before concluding this section, a few words
about the dependence of RS line shape on the ener-
gy of the incident radiation Zw, are in order. This
comes in through the functions A and B. The line
shape is determined by Eq. (22), which depends
upon A and B [through 7\(&, w)]. We may argue
roughly as follows. For the phonons, 15 at least
for the M, edge and neglecting electron-hole inter-
action, we have

A(wg) ~ (wg+ w = 0o = (w, - w)!/2, (27

(0)
4

where 7w, is the band~gap energy. For the inter-
band electronic RS, the resonance is controlled
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by18
B(w)~ (wg+ 0w — wo)™? = (w, + aw + wy)™t, (28)

where « is an adjustable parameter, which takes
into account the unknown k-dependence band struc-
ture.

As the energy of the incident photon approaches
that of one of the gaps, A(w,) increases more
rapidly than B(w,) because of the high value of a.
This weakens the interference effects, 2! which is
in agreement with experimental results.

1II. COMPARISON OF THEORETICAL AND EXPERIMENTAL
LINE SHAPES

We have discussed the underlying theory of line-
shape distortion due to discrete-continuum inter-
action at length in Sec. II. It is our purpose here
to simplify the complicated expression for 5@ w)
[Eq. (22)] with approximations which can be justi-
fied on physical grounds. Then, the line shapes
generated from the simplified expression for
3(&, w) can be fitted to some of the measured ones.
We must point out that our aim here is strictly
limited: We wish to demonstrate the correctness
of our approach. A complete analysis of the gen-
eral form for S(q, w) vis-a-vis the over-all experi-
mental results will be published elsewhere. %

Consider the functions in Eq. (22) which come
from interband electronic RS. These are 4, F,,
and A. The structure of F,’ has been studied be-
fore for gray tin'® and interband transitions in the/
valence bands for groups IV and III-V compounds.'*
Using an effective-mass approximation and noting
that k=k’, we do the sum over k| and get (for op-
tical experiments, we have q=0)

F,a=0,w) ~§9 w!’? j dQ(K) (function of k). (29)
1

The explicit form of the function of K is given
in Ref. 18 and depends upon w and w, through ener-
gy denominators. The actual numerical value of
the angular integral in Eq. (29) depends on the
specific material and the scattering geometry and
requires the knowledge of the wave functions near
k=0. It is beyond the scope of this paper to per-
form the angular integrals to determine 17‘9 and A
for silicon. We simply assume that B(k) is inde-
pendent of k. Then from Egs. (12), (15), and (20)
we get

7, (w) ~ B(w)A(w) (30)
and
Alw) ~Blw)a(w) . (31)

With this assumption, the generalized dynamic
form factor becomes

§(@=0, w)=o0y(q+€?/(1+¢?), (32)
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where
(33)

and oy and € are changed appropriately from their
definitions in the Appendix. Equation (32) is the
simplest form of $(q =0, w) which can be compared
with experiments and in this paper we shall con-
fine our attention to it. The main point to note
about the Fano-type formula [Eq. (32)] is that the
line-shape asymmetry is determined by the func-
tion ¢. Since the electronic functions A", A"/,

and the intensity functions A and B vary weakly
with energy 7w, so will g. Now A'' <0, as well

as A’ for w ~wg. In either case, if [A]>|gBa [,
Eq. (33) gives an antiresonance (g >0) on the low-
energy side of the resonance for g >0, which is
consistent with experimental results. The sign

of the electron-phonon interaction is as it should
be. For large values of the asymmetry parameter
g, the line is symmetric. This happens when the
transition amplitude of the electronic continuum
background is small compared to that of phonon
resonance. At the other extreme, for small g the
line is very asymmetric and the antiresonances
deep. It should be pointed out that Eq. (32) gives
perfect antiresonances, which is a consequence of
the approximations made in Eqs. (30) and (31). In
actual fact this may not be quite so, but it is never-
theless expected that the parameter ¢ will be a
good index of line-shape asymmetry.

The qualitative Raman spectrum of heavily doped
silicon has been reported previously. > We have
performed experiments to include the electronic
RS and the comparative intensities of the spec-
trum as a function of the free-carrier concentra-
tion, laser wavelength, and temperature. A com-
plete report of our experimental results will be
published elsewhere. 2!

The exciting sources were the 6471-A line of the
Coherent Radiation 52K krypton-ion and 4880- A

q=- (A+gBA’)/gBA”

.
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line of the Spectra Physics Argon-ion lasers.

The analyzing spectrometer was a Coderg PHO
800-mm double monochromator and a photon count-
ing system. To compare the scattering intensi-
ties, measurements were made with respect to a
standard which was taken as the 110-cm™?! air line.
In the backscattering configuration the best results
were obtained for the incident laser beam at the
Brewster angle to the sample surface. With this
geometry there is no reflected light and this al-
lows measurements close to the Rayleigh line.

The surface sample was perpendicular to the (111)
direction and due to the high index of refraction,
the incident and scattered wave vectors were paral-
lel to the (111) axis. The free-carrier concentra-
tion was inferred from the infrared reflectivity
plasma frequency.

In Fig. 2 we show the hand-smoothed traces of
the Raman spectrum of pure silicon, silicon con-
taining 7.6x10'%, 1.13x%10%°, and 2.7x10?° B ions/
cm®, The experiment was done at room tempera-
ture with the 4880-A laser line. It is seen that the
asymmetry of the resonance line as well as the
electronic RS increases with increasing doping.

The functions B(w), A’ (w), and A" (w) pertain-
ing to the electronic RS were determined in the
following way. The energy dependence of the elec-
tronic RS may be written!®

B3 (w)A" (w)~ (Fw)2(liw, + aliw = Twg)?,  (34)
where « is a fitting parameter to take into account
the unknown k dependence of the bands. A fit of
Eq. (34) with the experimental curves determines
« and the energy dependence of B(w). Figure 3
shows the fit of the experimental electronic RS
with Eq. (34). The experimental electronic RS
is obtained by subtracting the multiphonon contri-
butions of the pure-silicon intensity from that of
the doped silicon for frequencies outside the inter-

> rﬂ‘
5 Ai=4880 A
2 T" 00K ——._Si +7.6x10" B/cm3 G R o
L =3 i : 20 10 . 2, Raman scatter-
E k —+-—--S1 +1.15x10 B/em? ing spectra of silicon con-
- % ST +2.7%10%° B fom® taining different concentra~
<Z: Q . tions of boron, with the
s ] \ \\ :[-_“. ,\ 4880~A laser, at room
é A} i (Y \\ 7\ temperature.

RZ4\ 1’ A A ‘H -
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FIG. 3. Electronic Raman scattering, comparison
between theory [Eq. (34)] and experiment extrapolated
from the noninteracting range.

ference region. The contribution in the interfer-
ence region is obtained by extrapolation. The
actual value of B(w) was obtained by using the the-
oretical expression for A''(w) and fitting the prod-
uct B3 (w)A’ () to the experimentally observed
cross sections for the electronic RS.

The function A (w) for the phonon RS was deter-
mined from the spectrum of pure silicon and a
value of w, =520.5 cm™ was used in the expression
for €.

The theoretical line shapes were generated by
using Eq. (32). The results of this are given in
Fig. 4, for one exciting laser wavelength 6471 A
at 2.4 K, which also shows their fit with the ex-
perimental line shapes. It is evident that there is
good agreement between the theory and the experi-
ment, for two impurity concentrations: 1.13x10?

N\ yTHEORY q=17
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and 3.3%10%° 1°B cm™. The value of the new ex-
citation half-width is I'=10+0.5 cm™™.

IV. DISCUSSION AND CONCLUDING REMARKS

We have shown in Sec. III how the RS line shapes
in degenerate p-type silicon can be fitted to the
experimentally observed ones. The important
thing to notice about this fit is that Eq. (17) for
3(@, w) and its simplified form Eq. (32) can be ex-
pressed in terms of Green’s functions for a sys-
tem of noninteracting phonons and electron-hole
pairs. This means that we can determine the
phonon Green’s function by using the measured
cross section for pure silicon. The Green’s func-
tion of the electron-hole pair is determined in a
region far away from the resonance, where the
scattering is purely electronic, and then extrapo-
lated to the resonance region. This approach has
the virtue that there is only one disposable param-
eter in the fit, which is the electron-phonon cou-
pling strength g. We verify that g is a constant
independent of 7w, and n because I" and A" do not
depend on these quantities.

Throughout our treatment, the effect of tempera-
tures has been incorporated into the theory in a
self-consistent manner. This is because of the
quantum-statistical nature of our approach. As
already stated, the electron-hole Green’s function
is a sensitive function of the temperature. This is
less so for the phonon Green’s function, where the
temperature would come in through a Bose factor
and width T', due to anharmonic interaction between
phonons. As T increases, I', increases. One way
in which the temperature could be introduced into

FIG. 4. Comparison of
the theory Eq. (32) and ex-
periment for Si+1,13x10%0
B atoms/cm? and Si+3.3

x 102 B atoms/cm?® with
Maser =6471 A, the full line
is the theory and the dashed
is the experiment.
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the BWF treatment of the problem is to consider - F},‘”(ﬁ, w)

the phonon self-energy due to phonon-phonon inter- Fy@, w)= 1-g2A0(, w) Ff”(&, w)’ (A1)
action as giving an incoherent broadening I',. Then . O T .

the final line shape could be generated by convolut- F,(q, w)=F; (X', q, w)

. 6 . . : > - - >y >

mg the Fano formula with a Gaussian of width T',. + g2 A0, g, W) F,(d, WAO®E § w), (A2)
This approach would neglect the effect of T on the

interband electronic scattering, which we know is and

important. Our formulation avoids this procedure Fep(a, w)=gAO [, §, w) Fp(q, w). (A3)

and gives a proper account of the temperature de-
pendence of the scattering. Further, the theory
also adequately describes the variation of the spec-
trum with the concentration of doping and energy

of the incident photons.

An important by-product of our theory is the
natural way in which the line-shape asymmetry can
be correlated to a new collective excitation of the
system. The asymmetry is a direct consequence
of the coupling of discrete and continuum states.
The same interaction leads to a composite state of
the crystal which is collective and bosonlike in
character and which we propose to name interferon,
In fact, we may give a spectroscopic criterion for
this new state: the line-shape asymmetry is an in-
dex of the formation of the collective excitation.
The oscillator strength of this excitation is deter-
mined by the residue of the pole which defines it.
The value of the residue would depend upon the
phase relationship between the discrete and contin-
uum scattering amplitude and their relative mag-
nitudes. Turning to the concomitant antiresonance,
we see that this is a consequence of the destructive
interference. When the electronic RS is weak, anti-
resonances are difficult to detect and may be
masked by incoherent broadening. As the oscillator
strength of the electronic RS increases, i.e., by
increasing the doping, antiresonances become more
evident. Eventually, for high enough doping the
resonance all but disappears leaving only the anti-
resonance. At this point the residue of the reso-
nance pole is almost zero.

We conclude by stating that although the above
analysis has focused attention on a phonon coupling
to electron-hole excitations, the theory developed
above is quite general. It might be expected to
apply to a variety of situations in which overlapping
discrete and continuum states interact strongly.
Appropriate discrete-continuum coupling would
have to be introduced for each case. The general
approach and structure of the theory would be the
same as that presented above.

APPENDIX
The set of Egs. (8)-(10) can be written

Combining these and Egs. (13)-(16) we get
F@, o) =[FO@, 0)+ A+ gAE, ) PF,@, ) , (A4)

which leads to Eq. (21) for 3(J, w). For Stokes
scattering (w>0) at 7T=0,

F;O)(w) = (W= wp+ i6)t, (A5)
so that
Fy(w)=(w=wgp+il)7?, (AB)

where the new excitation frequency and width are
given, respectively, by

Wrp=wy+g2A0 (A7)
and

T=—g2a®" (A8)
We now write F| and F}' as

Fi=T""e/(+1)] (A9)
and

Fi'=-T"[1/(€+1)], (A10)

where we have introduced the reduced energy vari-
able

€=(w-wgp)/T. (Al11)

With these, and introducing the functions ¢ and
0y by
q=- (A+gh")/gh"

and

(A12)

Uo:gzj'VIZ/I-\:_AHZ/A(O)H’ (A13)

the generalized dynamic form factor becomes using
Eq. (A4):
$@, w)==FM" +05(q+ €)?/(1+€) =05, (A14)

This is a typical Fano-type formula.

*Permanent address: Physics Dept., Indian Institute of
Technology, New Delhi 29, India.
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