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The influence of stacking disorder on the electronic properties of layered materials is discussed. It is shown
that the problem of stacking disorder is equivalent to the problem of one-dimensional disordered chains.
Consequently, the presence of stacking disorder leads to a localization of the electronic wave functions in the
direction perpendicular to the layers. The localization lengths are estimated in the framework of a tight-
binding model. Results of dc measurements on GaSe indicate that transport along the c axis is indeed strongly

affected by stacking disorder.

For a long time, layered materials have been
considered as essentially two-dimensional solids,
i.e., their electronic properties have been de-
scribed in terms of two-dimensional band struc-
tures, where the layer-layer interaction is ne-
glected. Support for this drastic simplification
came from the extreme weakness of the mechanical
coupling of the layers. In the course of the last few
years, however, there has been increasing evidence
that layered materials behave in many respects like
three-dimensional crystals. For example, the elec-
tronic transport properties of GaSe at high tempera-
tures show that this layered semiconductor cannot
be understood in terms of a two-dimensional mod-
el. The same conclusion can be drawn from op-
tical data! and from band-structure calculations. ?

In view of this, the interlayer interaction cannot
be neglected in a discussion of the electronic prop-
erties of such crystals. However, the layers can
be stacked in a variety of ways. The correspond-
ing stacking energies are nearly the same, the dif-
ferences arising only from third and more distant
neighbor interactions. Consequently, it is neces-
sary to investigate how different stackings affect
the electronic properties, In this context, the
band structures of different polytypes of PbL, have
been investigated recently.® These calculations
readily explain the differences observed in the op-
tical properties of the 2H and 4H polytypes Pbl, .

In the present paper, an attempt is made to go one
step further and to discuss the influence of stacking
disordev, i.e., the effect of a nonperiodic stacking
sequence. Indeed, since the stacking-fault energy
in layered materials is small, 7eal crystals grown
at high temperatures usually exhibit a nonperiodic
stacking sequence.

As an example, we consider the case of GaSe.
Three different stacking types are found in this ma-
terial.! They are denoted as 8, ¥, and €. For the
€ and y stackings, the successive layers can be
generated from one primitive layer by pure trans-
lations, whereas an additional rotation through 60°
about the ¢ axis is required in the B stacking. It
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is noteworthy that these operations do not destroy
the translational symmetry of the hexagonal two-
dimensional Bravais lattice of a single layer. Thus,
if the real crystal contains only the 8, ¥, and €
stackings distributed at random, the full crystal
still obeys the translational symmetry of the single
layer. Along the layer normal, however, transla-
tional symmetry is destroyed. These structural
properties will become important when a model is
developed which describes the influence of stacking
disorder on the electronic properties.

Stacking disorder can only influence those prop-
erties which depend on the layer-layer interaction
in the perfect crystal also. In Fig. 1, the band
structure of B-GaSe is shown as calculated by
Schliiter by the pseudopotential method.? The in-
fluence of the layer-layer interaction on the elec-
tronic states can be estimated from th_g dispersion
of the different bands in the directionkli ¢, i.e. ,
along the I' = A axis. We find that the lower valence
bands show only a very small dispersion along this
axis. Therefore, they can be considered two di-
mensional; that is, they are independent of the lay-
er-layer interaction and consequently the existing
stacking order will not influence the corresponding
electronic states. However, other bands like the
uppermost valence band and the lowest conduction
band show a dispersion along I'-A which is com-
parable to that in the other directions. These
bands are three-dimensional and their shape de-
pends strongly on the interlayer interaction. It
may be expected, therefore, that they also depend
on the actual stacking disorder in a real GaSe crys-
tal.

In order to investigate this dependence, electronic
transport measurements have been performed on
GaSe. The dc conductivity parallel with the layers
and the Hall effect in a magnetic-field parallel with
¢ have been measured by the Van der Pauw tech-
nique.? The dc conductivity across the layers has
been measured by the Valdes technique, ® in which
four-point contacts are aligned on a cleaved face of
a thick sample. Conductivity along the layers is
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FIG. 1.

Band structure of 3-GaSe.,

governed by a hole mobility which can be written

p~T, - (1)
where y=1.9+0.1, This behavior can be explained
as band conductivity of holes scattered by optical
phonons which modulate the layer thickness.® Di-
rect measurements of the drift mobility by the time-
of-flight technique show that the mobility parallel
to ¢ exhibits the same behavior’

p~ T (2)
Since short-range interaction with optical phonons
is an isotropic process, the anisotropy observed
in these measurements is given by the mass ratio
m,/m, which is found to be of the order of 4. In
the limit of high temperatures, the anisotropy o,/
0, reaches the same value. At low temperatures,
however, the anisotropy of the conductivities obeys
the relation

u_a eTAE/RT (3)

GJ.
where the preexponential factor A is again of the
order of m,/m,. Because of this high value of A,
a description of 0, in terms of hopping between the
tails of strongly localized states can be excluded.

This behavior is always found at the lowest tem-

perature in our measurements (77 °K). Equation
(3) suggests that conductivity parallel with the ¢
axis differs from that in the layers by a process
involving an activation energy AE. This activation
energy turns out to be strongly sample dependent.
It is in the range of 15-100 meV. Clearly, the
observed anisotropy (3) cannot be explained in terms
of the band structure. In the following, we will
show that this activation energy can be interpreted
as an effect of stacking disorder on the electronic
states close to the band edge. To this end, we con-
sider the single-band Hamiltonian

H= Zk &, (k) |nk,) (k|
n

+2 Z Vink, ,n'&!)|nk,) '%!| , (4)

nn' k_|_k_|_
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where € (k ) is the band structure of an isolated
layer n and where Ink ) are the corresponding ei-
genstates. The first term of (4) describes the
Hamiltonian for several noninteracting layers,
whereas the second term accounts for the interac-
tion between layers » and n’. This irlteraction is
specified by the matrix elements V(nk,,n’k,). If we
now assume that only stackings of the type B, ¢,
and Y are present in real crystals of GaSe, trans-
lational invariance perpendicular to the c axis is
preserved. The e1genfunct10ns therefore, are
still Bloch functions for kl, and consequently the
overlap matrix V is diagonal in k and k/. Under
these circumstances the Hamiltonian reduces to a
sum of one-dimensional Hamiltonians

IO OIAEATEY
+z Vir, n', -l.cl)ln-lzl) (n"-l;l |>
=2 Hian®) . ®)

The problem of stacking disorder is thus trans-
formed into a problem of one-dimensional disor-
dered chains, which can be solved readily.
Disorder may be introduced in Eq. (5) in two
ways: either by statistical fluctuations of the ¢,
(“diagonal disorder”) or by statistical fluctuations
of the overlap matrix elements V (“nondiagonal
disorder”). Both types of disorder affect the elec-
tronic properties in essentially the same way. In
the following we assume that stacking disorder acts
on the electronic states primarily through the fluc-
tuations of overlap matrix elements between the
single layer functions only, i.e., we restrict our-
selves to the discussion of nondiagonal disorder.
Let us consider the Hamiltonian

Hi_d‘m=ez:|n)<n| +Z Vi(n, n’)|n>(n’l (8)

describing a one-dimensional disordered chain.

For the numerical treatment of this Hamiltonian,

we have considered a finite chain of 1001 atoms,

the interaction being restricted to nearest neigh-
bors only. Disorder is described by statistical
fluctuations of V(n, n+1) over two discrete values
V,and V,. The probabilities of V, and V, are given
by x and 1 - x, respectively. Disorder is thus spec-
ified by the probability x and the relative deviation

A=(V,=V,)/V, (7

of the overlap matrix elements V, and V,. It is well
known that one-dimensional disorder leads to a lo-
calization of the eigenfunctions which therefore ex-
tend over a finite region only.® In our model this
means that stacking disorder leads to eig'enfunctiorxs‘s1
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which are nonzero over a finite number of layers
only. The physical properties obviously depend on
the degree of localization and we define a localiza-
tion length L as the region over which 80% of the
eigenfunction ¥ is localized. In other words, if

N
V= Ea,,ln) (8)
n=1
and
1
2. lal%=0.8, (9
n=1
then
L=min(l-i+1). (10)

Outside this region, ¥ decreases exponentially. ®
We have computed the localization length L and the
density of states n(E) for several values of the pa-
rameters x¥ and A. In Fig, 2, we show the results
for a relative deviation of V, and V, of 8% and a
concentration of 50%. This choice of A appears to
be reasonable for the case of GaSe, in view of the
difference of 50-meV observed between the direct
exciton line of the 8 and of the € and y polytypes. 1
The results are normalized to a bandwidth of 1 eV
(V,=0.5 eV). This corresponds to the bandwidth
of the upper valence band of Fig. 1.

The results shown in Fig. 2 have been obtained
by averaging over four statistical distributions of
V, and V,. The top of Fig. 2 shows the number of
states as a function of energy in the immediate vi-
cinity of the band edge. As expected, we find that
the 1/VE singularity of the periodic chain is some-
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FIG. 2. Density of states (above) and localization
length (below) of one-dimensional disordered chains
near the band edge.
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FIG. 3. Percolation limit for one-dimensional chains.

what blurred by disorder. Below, the calculated
localization length L is given as a function of ener-
gy. L is found to be a roughly linear function of
energy and it goes to zero at the band edge. We
can thus conclude that stacking disorder confines
the electron states close to the band edge to a few
layers only.

We are now in a position to estimate the influence
of localization on the de conductivity. The charge
carriers have to travel from one side of the crystal
to the other in order to contribute to the de. Ina
first step, we consider random distributions of
states of localization length L and we calculate the
average number 7, of such states required to cover
the chain from end to end. The result of this sim-
ple percolation calculation is shown in Fig. 3. We
now argue as follows: The charge carriers can ex-
change with the lattice an energy which is typically
of the order of #T. We therefore consider the car-
riers within an interval 2T around the energy E.

In this interval, the average localization length is
L(E). We then compare the number of states n(E)
with the critical number #n,(L): A contribution to
the dc transport across the layers is expected only
if the chain is entirely covered by the states be-
longing to the energy interval, i.e., if #>#n,. In
this manner, a lower estimate for a critical energy
E, is obtained such that the contribution to the dc
of carriers with E< E, can be neglected. In our
measurements on GaSe, kT was of the order of

10 meV. In this case, one finds that all charge
carriers in the shaded area of Fig. 2 do not con-
tribute to transport across the layers, although
they participate in the transport along the layers.
We can thus conclude that the critical energy E, is
a lower limit for the activation energy AE which
appears in the expression (3) of the anisotropy.

The mechanism which we propose for conduction
along ¢ and for E > E, is formally a hopping process.
However, in contrast with the usual picture where
variable-range hopping occurs via the small over-
lap between the exponential tails of localized states,
it occurs here via the large overlap between states
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which extend over many layers with a nearly con-
stant amplitude. The high value of A in Eq. (3)

can thus be understood. Below E,, hopping occurs
via the exponential tails. This contribution can be
neglected at all but the lowest temperatures. The
localized states below E, should make a sizable
contribution to the ac conductivity. In this manner
one can explain the frequency-dependent conductivity

(11)
observed in several layer compounds such as SnS,, !
ZrS,, and HfS,. 12

In conclusion, the following points should be

stressed: Because of the high incidence of stacking
disorder in layer structures, these materials are

o,~w', y=~0.8

4315

ideally suited for an investigation of the properties
of one-dimensional disordered systems. More-
over, we have shown that the anisotropy of the dc
conductivity in GaSe is not an effect of the band
structure but rather one of disorder. The optical
properties of layered semiconductors near the ab-
sorption edge should yield more information on the
disorder-induced localization of the wave functions.
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