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Overiap interaction between spheroidal ions and the lattice dynamics of zinc and beryllium
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A phenomenological model of lattice dynamics of hcp metals has been developed by assuming the ions to have

a spheroidal shape with the axis of revolution parallel to the c axis. Overlap of spheroidal ions causes a
noncentral interaction between the first neighbors (as in beryllium). The model is derived from a force system

consisting of this noncentral overlap interaction, as six-neighbor central. pair potential, and an electron-ion

interaction term. Application of this model to zinc and beryllium shows that the force parameters coupling

neighbors beyond the second are rather small as compared to the parameters for the first two neighbors. The
dispersion curves derived from the model present a good agreement with the experimental curves.

I. INTRODUCTION

Studies on lattice dynamics of hcp metals are
usually bas ed on well-known phenomenological
models, viz. , the tensor-force (TF),' the axially
symmetric (AS), 2 and the modified axially sym-
metric (MAS) models. These models consider
the total interaction between ion pairs and do not
give us any idea as to the constituent interactions
that lead to the resultant force constants. Some
of the recent models using ion-ion and ion-elec-
tron-ion interactions ' should be considered in
this sense somewhat better than the above models
even though the ion-electron-ion interaction in
these models is generally considered only in an
approximate way. One of these recent models is
that developed by Verma and Upadhyaya, ' who
derive the ion-ion interaction from a five-neighbor
central pair potential. The potential parameters
are usually determined through the equations for
the five elastic constants and some of the lattice
vibration frequencies at the zone center and zone
boundaries. This model has explained the dis-
persion relations in many hcp solids in a satis-
factory way. An application of this model to beryl-
lium, however, leads to unsatisfactory results,
and in the case of zinc the solution of the model
equation leads to an imaginary value for a certain
combination of force constants (usually called the
optical correction). As against this, the MAS'

describes the dispersion relations in beryllium
3nd zinc to a satisfactory degree. It may be
pointed out that the MAS arbitrarily distinguishes
the bond-bending force constants in the basal
plane from those perpendicular to the plane and
thus makes the ion-ion interaction effectively non-
central.

The close packing of rigid spherical ions in the
hcp structure gives an axial ratio c/a =M= 1.63.
However, the measured values of c/a vary over
a significantly wide range around this ideal value.

Phenomenologically this variation can be attributed
to a spheroidal shape of the metal ions, the spher-
oids being surfaces of revolution around the c
axis. The close packing of prolate spheroids will
give c/a &~&(as in Zn) while the oblate spheroids
will lead to c/a&~~3 (as in Be). The axial ratio
of the spheroids could be related to the observed
c/a ratio of the solid through a simple geometric
analysis.

The overlap repulsion between ions must be
directed along the line perpendicular to the com-
mon tangent plane at the point of contact. In the
case of spheroidal atoms, this line goes through
the centers of the overlapping ions only when the
point of contact is along the principal axes. For
contacts at the other points, the overlap of the two
ions is necessarily noncentral. We have developed
a new phenomenological model of lattice dynamics
of hcp metals where we have added this noncentral
interaction to the usual ion-ion and ion-electron-
ion interac tions.

The geometrical positions of neighbors of vari-
ous orders are not the same in Be- and Zn-like
solids. This, in general, leads to different mathe-
matical expressions for the elements of the dy-
namical matrix in the two cases. However, if we
collect contributions of all the neighbors up to
certain orders (like the third, sixth, or eighth
and so on), the two kinds of the hcp solids will
give identical expressions for the dynamical ma-
trix. This is why we have represented the central
ion-ion interaction by a six-neighbor pair poten-
tial. The ion-electron-ion interaction has been
derived from a modified Sharma-Joshi scheme.
The new model differs from that of Verma and

Up3dhyaya essentially in having broken the first-
neighbor interaction in two parts, viz. , the over-
lap repulsion which is noncentral and the I em3in-
ing central interaction which may be understood
as the electrostatic ion-ion interaction. The ap-
plication of this model to the relatively difficult
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metals, beryllium and zinc, gives very satis-
factory results.

where,

q =~(a/c, (3)
II. THE MODEL

Let us for convenience number neighbors as
they would be in beryllium (c/a&~&s). The position
of the ion in the lattice is given by vectors R(l, K),
where l =(l„ l„ l, ) is the cell index and K is the
basis index. Let the origin ion be (0, K). The
first neighbors of the origin ion will be of type
K'0K. The axial ratio of spheroidal ions closely
packing together to give the observed c/a ratio
can be easily proved to be

a,/a, =)} 38 c/a, (1)

where a, =a, are the base semiaxes and a3 is the
semiaxis parallel to the c axis. Denoting the
Cartesian components of the position vector H(l, K)

as X (l, K), we can derive the expression for the
unit normal to the common tangent plane between
the origin ion and the first neighbor at H(l', K').
Thus we find

q(V, KK') = (X„X3,qXS)/(X, + Xm+ Xs)'

and, for simplicity, we have dropped the indices
(l', KK') on the right-hand side. The overlap of the
ion will be determined by,

[u(l', K') —u(0, K)] q(l', KK') =u(l', KK') ~ q(l', KK'),

so that we can write the overlap potential in the
form

~((, , ) b
U(l««), ' «((, ««')) (~)

p

This potential can be expressed in a more con-
venient form by introducing a factor exp
x [-R(l', KK') ~ q(l', KK')/p] with the relative equi-
librium position A(l', KK'). Thus we have

(), ,) ~
—R((', ««') ~ «}(( ««')

)
',

( )
p

Differentiating this potential twice with respect
to the coordinates, we obtain the force constants

(
8 Q(l)KK ) Q BR(l )KK) 'q(l)KK )

Bx„(l', KK ) XB(l8', KK ) p BX (l', . KK')
0

BR(l'qKK ) ''g(l ) KK ) "(P 8 R(l') KK ) '7/(1) KK )
BXB(l', KK') p BX~(l', KK')8XB(l', KK')

where we have put

x(yx8
B P

x~x() '

(8)

The derivatives involved in this equation yield
cumbersome expressions. We can, however,
retain the important terms leaving remainders
which are necessarily small and thus express the
force cons tants as

c
8' P(l', KK')

«X„(l', «« ')«X«((', ««'))

where the summation is to be made over only such
l' indices which refer to the six first neighbors of
the origin atom at (0, K).

The coupling coefficients so obtained are added
to those derived from the six-neighbor central
pair potential to give the complete ion-ion cou-
pling coeff icients.

The electron ion coupling coefficients used by
Verma and Upadhyaya are

e x~ i +e qnqSQ~ &
K K

X)~8(qq KK J =

Oq K4K

r =(x„x„x,) =(X,2C,qX, ),
'0/p'= ~ and "0/p = V.

(9)

(10)

where X, is the bulk modulus of the electron gas,
q is the phonon wave vector, 0 is the unit cell
volume, and

These force constants are now used to compute
the coupling coefficients

«x„()', ««'}«w«() ', «« ') )
x exp[-l c[' R(l ', KK')], (11)

6 = 3(sink. '
q —X' q cosA. ' q)/(a', q', +a', q', +a', qms)'~',

where A.
' is given by X' = (a', q', +ammq2+a, 'qm)'"/q,

q„q„and q, are the components of q along the
three semiaxes a„a„and as of the atomic spher-
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2&' 8(g, m') =—' g q, qaG'0
first neighbors

xexp[- iq R(l'ae')],

with

6$ z(ti, tcK) = K, q q&G'0 .

(13)

The parameter K, in Eq. (13) differs from that in
Eq. (12) by a factor —,', but since E, is an undeter-
mined parameter in the theory, this difference is
immaterial.

old.
The assumption that a)' 6(j, ~a ') = 0 for z e ~' is

arbitrary, and is, in fact, incompatible with the
hcp structure having two atoms per unit cell. The
Sharma-Joshi theory determines the strain energy
of the electron gas due to a plane wave propagating
through the gas. The motion of the wave front
containing the ion is identical with the motion of
the ion. The ion-electron coupling coefficient
expressed in Eg. (12) has been determined by
averaging the strain energy of the electron gas
over the atomic polyhedron around the ion at the
center. Now let us consider the motion of the
electron gas at the boundary between the two poly-
hedra of the two neighboring ions z t z'. Since the
two ions vibrate independently of each other in a
lattice mode, the boundary layer of the electron
gas s eems to have two very different displacements
at the same time. This is certainly not correct.
We can overcome this difficulty by averaging the
strain energy over a unit cell which is the peri-
odic repeat unit of the crystal by assigning an
element of the electron gas a displacement which
is the resultant of the two independent plane waves
starting from the two ions. The procedure leads
to a nonzero coupling between the two ions. Sum-
med over the six first neighbors, this coupling
results in the coefficients

TABLE II. Input data for Be. a =2.2856 A,
c =8.5882 A, m = 9.012 amu, c /a = 1.5677.

Elastic constants
(10 dyn cm )

Phonon frequencies
(THz)

Cff =2.923, Cf2=0.267, C33 =3.364,
C44-=1.625, Cf3 =0.140

Pt p (I') =20.1 PTp(I') = 13 75
PEA{A) =15.00, PTAS(M) =12.60,
PTp &(M) = 17.00, vTAii (M) = 11.75,
PTpii (M) =16.60~ v&A(M) =16.00,
vt p(M) =16.82

III. CALCULATIONS AND RESULT

The total number of parameters described in
Sec. II are 15, viz. , the 12 central potential pa-
rameters n„p, (i =1, ' ' ', 6), the two overlap
parameters X, p, and the bulk modulus of the
electron gas, I|,. These parameters were deter-
mined from the five elastic constants C,J, the ro-
tational-invariance condition, and nine chosen fre-
quencies v at the zone center and zone boundaries.
It was found that the parameters n„a.„and ~,
could not be determined from the equations used,
as the latter invariably lead to the same combina-
tions of these parameters. In the ordering of the
neighbors used by us, the sixth neighbor in berylli-
um is the farthest among second, fifth, and sixth,
while in zinc it is the fifth neighbor which is the
farthest of the three. Hence the solution for these
parameters O.„a,„and 0., was obtained by arbi-
trarily assigning various values to e6 in beryllium
and e, in zinc and then choosing those values which
gave us the best agreements with the dispersion
curves. The input data used are given in Tables I
and II, and the values of the parameters finally used
in the calculations are listed in Tables III and IV.
These values show that the strongest contributions
to the force system came from the first two neigh-
bors, the coupling due to the relatively distant
neighbors being rather weak as it reasonably should
be. The model leads to the dispersion curves for
the [0001] and [0110]directions, as shown in Figs.
1 and 2.

TABLE I. Input data for Zn. a =2.660 A, c=4.88 A,
m =65.37 amu, c/a =1.8346.

Elastic constants
(10f~ dyn cm ~)

Cf f 1.791, Cf2 =0.375, C33 0.688,
C44 =0.4595, Cf3 0.554

TABLE III. Evaluated force parameters for Zn in
units of 104 dyn cm f and bulk modulus of the electron
gas (K ) in 10 dyn cm

Phonon frequencies
(THz)

vf.p (I ) =4.57 PTp (I ) =2.29
vf.A(A) =2.92, PTA& (M) = 2.02,
v ToJ (M) 2.70, PTA ii (M) =3.52,
PTp i) (M) =3.72, vLA (M) =6.11,
vj p (M) =6.44

n f =-9.103, n g
= -0.370, e3 =+0.003,

0, 5 =+0.173, G.'g =+0.116, P f =+0.822,
P 3 + 0 154 P 4 -0.455, P g

= -0.289,
p =+ 8.967, A, =+7.803, K =+0.143

n4 =+ 0.148,
P, =+2.903,
P6 =+0.120,
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.TABLE IV. Evaluated force parameters for Be in
units of 104 dyn cm ~ and bulk modulus of the electron
gas (X,) in 10 dyn cm

'$0

n
g

=+ 0.261, n2 =+8.802, n3 = -0.049,
n5 =+0.300, n g

= -0.100, p g
=+1.301,

pe =+0.141, p 4 =-0.364, p 5=-0.469,
p =-8.684, A, = -15.488 j Ke =+0.529

n4 =+0.327,
P, =+ 3.467,
P g =+0.456,

~O &0

5

The curves for beryllium present a good fit to
the experimental curves of Roy et al.' except for
the Z," branch in the [0110]direction. Similarly,
in the case of zinc the agreement with the experi-
mental points of Almqvist et a/. ' is excellent, ex-
cept in the case of the Z~ branch in the [0110]di-
rection. However, our curves for both Be and Zn
are at least as good as those of de %ames et al. ,'
who essentially use a 19-parameter model as
against our 15-parameter one. It is true that the
model of de Wames et al. uses a smaller number
of parameters in the case of beryllium, but that
has been possible by using an artificial constraint
among the bond-bending force constants. Our
curves in the case of Zn are almost identical with
those of de Wames et a/. In the case of Be, how-

ever, the MAS calculations lead to a much better
Z,"branch, but the Z," branch goes very much off
the experimental curve. We could reproduce the
MAS curves by varying n„but the curves obtained

by us (shown in Fig. 2) perhaps present a better
overall agreement with experiment than the MAS

curves of de Wames et a/. If we assume the three
principal axes of the spheroid to be equal, our
model will reduce to the central-pair-potential

oz
w

2g

0.8 0.6 OA. 0.2 t 0.2 0.4 0.6 O.8
q/q .„ q/q

FIG. 1. Dispersion curves of Zn in the principal sym-
metry directions. Triangles and circles show the ex-
perimental points (Ref. 7). Solid lines show results from
our theoretical calculations.

0.8 0 6 0.$ 0.$ ] 0.2 0.4 0.6 0.8
— q/q~ q q~~

FIG. 2. Dispersion curves of Be in the principal sym-
metry directions. Triangles and circles show experi-
mental points (Ref. 10). Solid lines show results from
our theoretical calculations. The dashed lines show
Verma and Upadhyaya s results (Ref. 6).

model of Verma and Upadhyaya' (see also Upad-
hyaya and Vermae'"). In the case of zinc, their
model leads to imaginary values for some of the
parameters, and for beryllium their curves,
shown by dashed lines in Fig. 2, show much larger
deviations. Thus the assumption of spheroidal ions
not only explains the deviation of the c/a ratio from
the ideal value ~, but it also gives a sufficiently
good description of the dispersion relations and,
in fact, reproduces the MAS results exactly. It is
evident that the artificial assumption of the MAS
can be replaced by a more plausible assumption of
spheroidal iona constituting the hcp system.

A recent work on the lattice dynamics of berylli-
um by Roy et al.' shows that certain degeneracy
properties of frequencies at the zone boundary in
the [1120]direction cannot be satisfied by a central
potential or axially symmetric forces, while a
second-neighbor tensor force leads to the observed
degeneracy. We have, therefore, checked to see
if the overlap interaction used in the present work
gives the desired results. Unfortunately it does
not. Bertoni et al."have presented first-principles
calculations of the dispersion curves of beryllium
which include the third-order terms in the electron-
ion pseudopotential. This scheme is equivalent to
including a three-body interaction in the force sys-
tem and leads to the correct explanation of the
dispersion relations. Therefore, the inclusion of
a three-body interaction in our model may remove
the small errors appearing in our calculations and
lead to a better explanation of the disperion re-
lations in hcp solids in general.
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