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Bulk-plasmon-photoexcitation (BPPE) phenomena (particularly the shapes of resonance peaks associated with
standing-plasma-wave excitation) in thin free-electron-metal films are shown to be sensitive to surface
electronic structure. A formalism is developed which permits the microscopic evaluation of corrections to the
classical theory of the optical properties of a jellium solid, through first order in the wave vector of an
incident electromagnetic wave. This formalism permits the evaluation of efFects due to BPPE in both the
ordinary optical as well as in the photoemissive properties of thin films, and moreover, allows one to
determine their. dependence on the forms of the one-electron surface potential barriers V(z) at the two film

surfaces. Theoretical results based on the random phase approximation (RPA) to a jellium film's dielectric
response are compared to the photoyield data of Anderegg et al. taken on potassium films. The experimental
BPPE resonance features are found to be considerably narrower than the theory predicts —for all the forms of
V(z) that were tried —casting some doubt on the RPA's ability to describe surface dielectric phenomena

quantitatively. The asymmetry of Anderegg et aL.'s films, i.e., the fact that their upper and lower film surfaces
were inequivalent, is shown to require a partial reinterpretation of their data; in particular, their films were

probably only about half as thick as they supposed. Moreover, the argument that leads to this conclusion also
provides a simple explanation for the alternation of BPPE resonance peak strengths which appears to be a
fairly systematic feature of their data. Directions for further experimental and theoretical work on BPPE
phenomena are suggested.

I. INTRODUCTION

In this paper a new possibility is explored for
obtaining information regarding the electronic
structure of free-electron metal surfaces, specif-
ically, the observation of bulk plasmon photo-
excitation (BPPE) in free-electron metal films.
In an infinite homogeneous dielectric medium,
there is no coupling between transverse and longi-
tudinal waves. Therefore, BPPE in a solid can
occur only because of spatial inhomogeneities,
either those associated with the discreteness of
the solid's ion cores, or those associated with its
surfaces. For free-electron metals, moreover,
the spatial variation of the effective lattice poten-
tial is weak. Thus one would expect the strength
of BPPK in such metals to be largely governed by
the electronic structure of their surfaces.

The experimental situation in which QPPE should
be easiest to observe was first proposed by
Melnyk and Harrison' (in a paper henceforth re-
ferred to as MH), who pointed out that although
the observable effects of BPPE are small for light
incident on a semi-infinite sample, they may be
st.;. ongly (resonantly) enhanced for a. thin film of
)he same material at frequencies such that plasmon
standing waves can be excited. MH's idea was
subsequently confirmed, at least qualitatively, by
Anderegg, Feuerbacher, and Fitton' (henceforth
AFF) via nleasuI'eIIlen'ts of pilo'toelectrlc y1eld
versus photon frequency for thin (6 100 A) potassi-

um films. Specifically, in the photoyield data from
each of three films, AFF observed a number of
peaks, occurring at frequencies which they shomed
to be fit quite well by making a best guess for the
thickness t of the film in question, and by assum-
ing that peaks should occur at frequencies such
that (according to the free-electron bulk-plasmon
dispersion relation~) t equals an odd number of
plasmon half-wavelengths. (MH's resonance con-
dition. ')

As is discussed in detail below, ' because they
restricted their attention at the outset to a film
with identical surfaces, MH arrived at a criterion
for the occurrence of resonant-bulk-plasmon-
photoexcitation (RBPPE) peaks, which includes a
special selection rule, viz. , that no peaks should
occur when g equals an eve. number of plasmon
half-wavelengths. Since the AFF films did not have
identical surfaces (the upper surface was a K-
vacuum interface while the lower one was a K-
silica substrate interface), it seems likely that
AFF's use of the MH resonance condition led them
to best-fit values of f which mere on the order of
twice too large. '

On the other hand, AFF's interpretation of their
peaks as being a manifestation of RBPPE still
seems correct, and so does the idea that RBPPE
peak positions are fundamentally determined in-
dependently of a film "s surface properties. The
set of frequencies at which BPPE resonances can
occur then, is always given by the film material's
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bulk-plasmon dispersion relation and by the film
thickness; the MH selection rule for a symmetric
film shows, not how surface conditions can modify
RBPPE peak positions, but rather how they can
modulate RBPPE peak intensities' (or more gen-
erally, how they can affect RBPPE peak shapes).

The idea that film surface structure may be
significant in determining RBPPE peak shapes is
alluded to by AFF, who point out that among the
possible reasons why their experimental peaks are
broader than those calculated by MH are, not only
MH's use of a bulk dielectric relaxation time which
is unrealistically long (-50&y~

' rather than -20ggg~ ',
where gd& is the classical plasma frequency), but
also their neglect of surface roughness and film-
thickness nonuniformity. However, no quantitative
work has been reported to date directed at explain-
ing RBPPE peak shapes, nor in particular has
there been any investigation of the intriguing pos-
sibility that they might contain useful surface-
electronic- structure information.

Experimentally, at this time, there are several
steps that would aid an investigation of the surface
sensitivity of RBPPE phenomena. They are as
follows:

(i}Since RBPPE peak positions for a symmetric
film of thickness t are quite similar to those for an
asymmetric film of thickness -—,'t, it would be
useful, to resolve the ambiguity, to have RBPPE
data from films of known (i.e. , independently mea-
sured} thickness. Such data would thereby answer,
also, the question of whether the seeming alterna-
tion of peak strengths seen in AFF's data is an
indication of the near symmetry of their films and
thus of the net, r satisfaction of MH's selection
rule, or whether this behavior has some other
cause. '

(ii) It would be useful to have RBPPE data as a
function of film thickness, for fixed frequency.
Such data would make it possible to sort out bulk-
damping from surface-reflection effects in RBPPE
peak shapes; this conclusion follows because bulk-
damping effects should increase with film thickness
while surface effects would remain the same.

(iii) It would be useful to have RBPPE data as a
function of impurity adsorption. Changes in
RBPPE peak shapes associated with adsorption
would give an immediate experimental indication
of how sensitive they are to surface conditions.

Theoretically, apart from surface irregularity
effects (i.e. , diffuse reflection) the influence of
surface electronic structure on RBPPE peak
shapes is shown, in Sec. G of this article, to be
mediated by two complex, frequency-dependent
parameters (per film surface): (i) P, whichgoverns
the probability that when a transverse electromag-
netic wave strikes a surface (either from the vacu-

um or the metal side), a longitudinal wave will be
generated, and (ii) s, which governs the probability
that when a longitudinal wave strikes a surface, it
will be reflected as a longitudinal wave rather than
disappear with the simultaneous excitation of an
electron-hole pair.

if Ip I a« I z
I »e»rge, t en I »smons wt» be

generated with relatively high probability when
light strikes a surface, and they will not be se-
verely damped upon reflection. Thus if ~p ~

and

~s ~
are large, plasmon resonances should be rela-

tively strong and narrow; and vice versa.
At the outset then, in order to provide some idea

of the theoretical surface sensitivity of RBPPE,
Figs. 1(a) and 1(b) present plots of IPI and I&l
vs co for a variety of models of surface-electron-
ic structure. The various models represented
in the figures are as follows: (i} the model used
by MH, viz. , an electron gas whose density profile
at a surface is a step function and whose dielectric
response is hydrodynamic, and (ii) the models for
which calculations are described below; in each
case the behavior of the electromagnetic field is
determined via a nonlocal conductivity tensor [cal-
culated within the random phase approximation
(RPA)] that corresponds to the choice of a model
surface potential barrier V(z). The potential bar-
riers which are represented in Figs. 1(a) and 1(b)
include the Lang-Kohn self-consistent potential'
for r, (the electron-gas radius) equal to 5 (approx-
imately the value appropriate for potassium), and
the potentials V(z;m, 4) defined by

I,(,, „,4}= "8-('=,5),
, (11)1+exp[- (z/go +z'/125gg')] '

in which gg and 4 represent the model surface dif-
fuseness and work function, respectively. (Szis
the Fermi energy. )

Figures 1(a) and 1(b) reveal that
I lg'I a«

I s I
do

depend appreciably on surface-electronic struc-
ture The cur. ves of Fig. 1(a) show their variation
with potential barrier shape for 4 fixed (at its val-
ue, -0.2 Ry, ' for a clean K-vacuum interface),
while Fig. 1(b} indicates their dependence on C for
the barrier of Eq. (1.1}with ggg =0.5 A. The sensi-
tivity of )p( and of )s( to 4 is particularly strong.
Note, for example, that the plasmon ref lectivity
parameter

~
s

~
increases rapidly to 1 as 4 in-

creases from its clean-surface value through the
photon energy K~ (beyond which plasmon decay into
a photoelectron-hole pair is impossible).

These results suggest that if one can extract
experimental curves of (p ( and

) s [ vs ~ from data
such as AFF's, one may indeed be able to use
these curves to gain knowledge of surface-elec-



PETER J. FEIBELMAN

1.0- 1.0- (b)

0, 8- 0.8—

0.6-

.D.4—

0.2-

0.6—
g~ = .319 Ry

0.4—
5u '.344 Ry

0. 2-&~ = .369 Ry

5~ = .393 Ry

I~I» 0

[su (r = 5) = .310 Ry]
p 5

0.0
1.OO10- l.05 l. 10

~X~ ~~ee~fX~X~x~
l I I

1.15 l. 20 . 1.25 0
0. 0

0.6—

I I

0. 1 0. 2 0.3 0.4 0. 5 0.6 0. 7 P (Ry)

0.8-

0.6—

0.4—

0.2—

I

1.OO

I

l. 05
I

1.10
l

l. 15

X~~~
I I

1.20 1.25 gs~/~
P

hu ..319 Ry

0.5—

0.4—

0.3 -5u .344 Ry

0. 2—
B~ = .369 Ry

0. 1-5m = .393 Ry

)y) vs. @

flay * .319 Ry

.344 Ry

u ' .369 Ry

"o.o
I I I — ~l I I

0. 1 0. 2 0.3 0.4 0.5 0.6 0.7 0 (Ry)

FIG. l. (a) Frequency dependence of the parameters )sf and [p) which govern, respectively, the probability of plasmon
reQection at a surface and the probability of transverse-to-longitudinal wave conversion there. Different curves cor-
respond to different models of surface-electronic structure. That labeled NH corresponds to the hydrodynamic potas-
sium surface model of Ref. 1. Solid curve (LK) corresponds to the use of the Lang-Kohn clean ~, =5 jellium surface
potential barrier (Ref. 6). Other curves (corresponding to various values of "w") were calculated using the potential
barrier of Eq. (1.1) with the work function equal to approximately its clean potassium value (taken from H,ef. 6), 0.2 Ry.
(b) Work-function dependence ~s) and

~ p~ for various frequencies cu. Calculations were performed using the potential
barrier of Eq. (1.1) with r, = 5 and w=0.5 A. Notice that both )p) and (s( undergo rapid variations as 4 increases through
the value S~ beyond which photoemission becomes impossible.

tronic structure; specifically, by determining
what form of V{z) provides lhe best description of
the response of a free-electron metal surface to
an incident electromagnetic wave.

Further calculated results for RBPPE-related
experiments, which suggest that one is still some
distance from achieving this goal, are presented
in Sec. III. The reader who is mainly interested
in assessing the present situation is therefore
encouraged to skip over Sec. II, at a first reading.
Section II contains a derivation of general micro-
scopic formulas which describe the first-order
(in the wave vector} corrections to the classical
theory of the optical properties of a two-dimen-
sionally translation-invariant solid. It also de-
scribes the use of these formulas to calculate

RBPPE effects in optical reflection, transmission,
and absorption as well as in photoemission.

II. MICROSCOPIC THEORY OF LONG-WAVELENGTH

OPTICAL PROPERTIES OF THIN FREE-ELECTRON

METAL FILM

In this section microscopic formulas are derived
which enable one to compute lowest-order surface
effects, particularly bulk-plasmon photoexcitation,
in the optical properties of a thin, flat free-elec-
tron metal film, including not only its ref lectivity
and transmissivity, but also its photoelectric
emissivity. The formulas are applicable for the
case of long-wavelength light incident on the film. '

The basic assumption underlying the derivation
is that, by virtue of the short healing distance in
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the electron gas, film-thickness effects in the
film s conductivity tensor can be ignored for thick-
nesses ~20 A. Thus in what follows the optical
properties of a film are evaluated in terms of
parameters characterizing a single surface. The
remainder of this section is accordingly divided
into two subsections, the first concerned with the
scattering of electromagnetic waves at a single
surface, and the second with the relation between
the optical properties of a film and those of a
semi-inf inite metal.

A. Scattering of electromagnetic waves at surface

of semi-infinite metal

Figure 2, schematically illustrates the rather
complicated process which ensues when an elec-
tromagnetic wave of frequency e) (d~ is incident
on a metal film. Both transverse and longitudinal
waves are caused to propagate back and forth
inside the film at the same time as the incident
wave is reflected and transmitted back into the
vacuum. The idea which enables one to analyze
this process simply is to make use of the super-

position principle which holds for sufficiently weak
fields, and thus to represent the complicated pro-
cess of Fig. 2 as a linear superposition of the pro-
cesses illustrated in the five panels of Fig. 3. In
what follows, then, I show how to solve Maxwell's
wave equation in the long-wavelength limit for each
of the relevant sets of boundary conditions: (a) a
transverse wave incident from the vacuum onto a
semi-infinite metal, (b) a transverse wave incident
from the interior of a semi-infinite metal upon its
surface, and (c) a longitudinal wave incident upon
the surface of a semi-infinite metal from the in-
terior. [Note that case (b} describes the situation
illustrated in both Figs. 3(b) and 3(d} while case
(c) describes those of Figs. 3(c) and 3(e). Thus
only three types of boundary conditions are nec-
essary to describe the five basic processes under-
lying that of Fig. 2.]

For an electromagnetic wave of frequency ~ and
wave vector q)) along the flat surface of a semi-
infinite jellium metal (which lies in the right half-
space z )0), it is convenient to write the Maxwell
wave equation in the form'

4nA- (z)=-
q)) (d

oo

dz ' sinq~(z —z ')

1 .~ ~ ~ .~ 9
4m

fq(( +Q fql +Qg 'Aq (z )~Z
(2.1)

wherein A~,
~

(z} is the electromagnetic vector po-
tential (in the gauge for which the scalar potential
vanishes identically), where o'z (z', z") is the
sample's nonlocal conductivity tensor, where i, is

a unit vector pointing in the +z direction (into the
metal), and where ei = [(&u/c)' —

)q~~ l']' '. More-
over, it is easy to verify that the asymptotic be-
havior of the most general solution to Eq. (2.1) is
of the form9
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where g~ is the s component of the classical trans-
mitted-wave vector given by

Z=0

FIG. 2. Schematic indication of what happens when a
transverse wave of amplitude Ao impinges on a thin
film. Transverse and longitudinal waves are excited in
both directions (+2) in the film and reflected and trans-
mitted waves are generated on either side of it. For a
long-wavelength incident vmve, the tranverse waves in-
side the film are also of long wavelength and therefore
do not change phase or amplitude as they transverse the
film.

—
l

qual

/e (g, v) = g' -=uP/c',
(2.3a)

(2.3b)

(2.4)

[~ (g, &u) is the metal's bulk, transverse dielec-
tric constant], where p~ is given by the solution
to
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FIG. 3. Schematic drawings of the five elementary
processes which combine linearly to constitute the
transmission process of Fig. 2. (a) Transverse wave
impinges on the a=0 surface from the vacuum creating
"outgoing" transverse and longitudinal waves. (b) Re-
flected transverse wave impinges on the &=0 surface,
with a similar result. (c) Reflected longitudinal wave
strikes the &=0 surface with a similar result. (d)
Transverse wave in the positive-& direction strikes
the surface at z=d generating reflected longitudinal
and transverse waves as well as a wave transmitted
into the vacuum. (e) Longitudinal wave on the positive-' direction strikes the z=d surface with a similar
result.

q = ((I(), +qA), q =((1(), +qAi)

q (%II ) q L)) q (qll t qA)

(2.V)

(2.8)

The various sets of boundary conditions for which
it is necessary to solve Eq. (2.1) can now be speci-
fied precisely Th.ey are (a) T =L„~=o, (b)

In order to proceed, one specifies a value of z,
called Z (which is typically of the order of a few ang-
stroms), beyond which Eq. (2.2b) is true with neg-
ligible error. Then substituting Eq. (2.2b) into Eq.
(2.1), the latter can be rewritten in a form which
enables one to take explicit advantage of the fact
that for light in the frequency range of interest
(h&us30 eV), (q(((, qi are small on the scale of
typical microscopic inverse distances (such as
the Fermi wave vector k~ and the inverse surface
thickness). One thereby obtains the equation'

[e (q, ~) is the metal's bulk, longitudinal dielec-
~ptric constant], and where A-„„, R~, T~, and

Lqi~ are constant vector amplitudes which satisfy

where A', the contribution to the right-hand side
of Eq. (2.1) from the integration range Z~ z'&~,
is

sinqA z —Z) d -+; r~ — - &rg q -+ ( is -( igA-.(~;Z)= cosq, (~-Z)+ ' T-.e'"'+T=. e '"'+ (L e" '+L e '"')
q dz "(I ~II I 2

(2.9)

and where A", the contribution from z &z' &Z is

AT( (8; Z) = dg' q 1+ sq((+uA, i(l((+u
g qj ' dg' ' dz'

(2.10)

The expansion of Ecl. (2.9) in Powers of the small wave vectors q and qA is straightforward. Assuming
that q~z, q~Z, q~z, and q~Z are all «1, one obtains through first order the expression

A „(zi&)=Tz ((+z'e z)+Tz ((-(e z)e((e(z-A) ) (L e" zeZ, e " z)z. . . (2.11)

The exPansion of Eq. (2.10) is somewhat more complicated. To begin, making use of the facts that

~()-o, ~( ) &~(-0,~( ), and ~q 0, (&', z ) are, respectively, of O(q, q„), O(q, ), and O(q, ), 'Done finds

through first order that
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~Tl 47Tz 2
A-„(z; Z) = dz'(z-z'), dz" iq()o„(z'z") A „(z")

Qg

xx zy y

(2.12)

(2.13)

and

where summation on the index y=x, y, ~ is implied.
Integrating by parts on a', and making use of the assumption that for z' in the neighborhood of Z,

o q (z', z") has healed to its bulk (translation and rotation invariant) form, "Eq. (2.12) may be reduced to
the expressions"

A-„(z;Z) = —iq, )
dz'(z —z')

g
dz'

(z'Z) =(d (O, ra)-(I (Ti ()+id Z)+T', () &d Z)I —()+(&-S) ) (&i '**+&q

2

(d II II

(2.14)

Substituting Eqs. (2.11}, (2.13), and (2.14} into Eq. (2.8), and using the fact that' both

dz' o-", (z, z') and dz' o-", (z, z')

are at least of O(q'))), one obtains the greatly simplified" long-wavelength form of Eq. (2.1),

A
q))

(z}= T q)) (d[ E (o, (()) +X q d ]z+ T q (d [ E (0 ) ()d-)i qd]z

4mi
+ 6 0& 40 ~ lq&Z Tq ~ Tq ~ + A 4Z 0 ()& 8 &dzd lq)]) Aq

and

4ni Z
) dz" o*'(z z")A- (z")

(d J 0~ q„

Aq (z) Tq I)
(1+ iq~~z) +Tq ~(1-iq~z) +(q))/qy)(Lq ~ "d.'-Lq ~d '&')

2
-iq dz' [A- (z')-I; ~d "&' - L- d "d-' —T- - T- ] .

tl q)) Q~J ~)I
'

qtt q)}

(2.15)

(2.16)

[Note that Z in Eq. (2.16) can now be set equal to
As will be shown below, this limit can also be

taken explicitly in Eq. (2.15). Thus this arbitrary
cutoff parameter does not affect any of the results
found for A „~(z), as, of course, it should not. ]

All of the results presented in this paper are
based on the solution of Eqs. (2.15) and (2.16) us-
ing approximate forms of 'oq (z', z"), and for vari-
ous sets of boundary conditions. Before attempt-
ing to solve for Xq (z), however, it is worth not-
ing that from the very forms of Eqs. (2.15) and

(2.16) one can deduce the microscopic generaliza-
tions of the classical matching conditions across
a surface, which enable one to write formal ex-
pressions for the reflection and transmission
amplitudes for electromagnetic waves impinging
on it.

where the function f~(z; Z), defined by

4wif (g;Z)-=dz fdic" ~.**(z',z"), '(2.18)

ln order to derive matching conditions forA-„(z),
Cf (J(d

first note that, according to Eq. (2.16), A~ (z) is
independent of z to zeroth order in q)). (This fact
in itself represents the classical matching condi-
tion for the tangential electric field across the
surface. ) As a result, in Eq. (2.15), since one
is only interested in retaining first order in ~q((~,
the third term on its right-hand side can be re-
placed by the expression

([~ (O, u))-1]iq,z(Tq -T=,' )

(2. 1'I)
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has the useful asymptotic properties

f~(z; Z)-[er(0, &u) -1](Z-z), z-~ (2.19a)

-[e (0, &u) -1](Z-a), z- -~, (2.19b)

A- (z)- T-, [er(0, &o) + iqi(z —a)]

+T-,'„[er(0, (u}-iqir(z -a)],
(2.22b)

where a is a constant. Substitution of Eqs. (2.17)
and (2.19) into Eq. (2.15) reveals the asymptotic
behavior of A~q (z), viz. ,

Eq. (2.2a) undergoes a similar change. Thus the
comparison of Eqs. (2.22b) and (2.2a) yields the
matching conditions

A~q (z) Tq (1+ iq, z) +T (1 iq—rz)
+g ~ L L+L iq~g +L -fqgg

t

(2.20a)
and

Aq' +R& =or(0, (u)(T'q'~+Tq' )
qg qtl q Il II

+0(lqi&l', q'. q: } (2.23)

[e (0, rs)(1+ iqia) + iqi(z —a)]

+T=„*„[er(0, (o)(1 —iq~a) iqir—(z —a)],
Z (2.20b)

T

R-
OA-
qllfd

a
qll~

R
q IIQP 7

A- e "~'
(d

II

(2.21)

Adopting this latter course, Eqs. (2.20) become

A'q (z) - T'* [1+iq~(z —a) j

+T '[I -iq r(z —ia)]
fgyg + L~ fgyz-g

qll~e q II
fd&

(2.22 a)

The matching conditions for Aq ~(z) are derived
from the comparison of Eqs. (2.2(b) and (2.2a).
In order to obtain familiar looking results ope
may either choose the origin of z such that the
quantity a equals zero, or one can redefine T-
R

q &p and Aq
II

Qp.
'

qtl

+0(lqill', q,'~q; ). (2.24)

Ox' x
A qg~+ qadi~

= T qadi~ + (%i~

qadi

qi) i (2.25)

which is the classical matching condition for the
tangential component of the electric field. [For
s-polarized light Eq. (2.24) is vacuous to lowest
orders in qadi, qi, qir. ] Note however that the cor-
rections to Eq. (2.25) are of first order in the
small wave vectors. Thus unlike Eq. (2.23), Eq.
(2.25) is of no use in evaluating the lowest correc-
tions to the classical description of the behavior
of an electromagnetic field at a surface.

In order to obtain another useful matching con-
dition, one returns to Eq. (2.16), which, incor-
porating the redefinition of Tqll discussed above
[Eq. (2.21)], implies the asymptotic behavior of
A„' ~(z)".

Fquation (2.23) is, of course, the classical match-
ing condition for the normal component of the dis-
placement and is seen here to be valid through
first order in the small wave vectors. For P-
polarized light, incident in the x-y plane, one
may rewrite Eq. (2.24) [using Eqs. (2.5)] in the
form

Xq, ( -" ")- q„[1+iq,(z -a)]+T=,
,

[1—iq,"(z —a}] +1.-, , "i'+I,-„ (2.26a)

and

Aqti~(z- —"~")-1„I~+TqI„+iaqii[e (0, &u) -1](Tq, ~+T=' ) -iqiig (Z'+' +T ',~', I,-&
)

(2.26b)

where g~ is defined by

(2.27)
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Equation (2.26a) simply agrees with Eq. (2.2b}, as
it should. On the other hand, comparing Eq.
(2.26b) and the modified version of Eq. (2.2a),
one obtains a pair of matching conditions, namely,

=e (0, ~)- o (z, z')e„(z')dz'.4m

(2.34)

As z -, one finds [cf., Eq. (2.2b)] that e (z) is
of the form

which is the generalization through first order in
the small wave vectors of the classical boundary
matching condition for the tangential electric field,
and

q (Aoll R

8 (z -~) -1+Pe"~' .

Thus by virtue of the definition of 8 (z) [Eq.
(2.34)] one has that

P L+4 /T+4
qll 4 qll

or in other words, that

(2.35)

(2.36)

(2.3'1}
=0' (T+ —T )+@~~[a (0, e)-1]

(2.29)

In order to evaluate M&0 &+, one now makes use of
Eq. (2.36) and of the solution 8 (z) to Eq. (2.34),
to write

which when rewritten in the form

2
+ tk Q, ~ g -E' PyQP

1. T» =L =0
qll" qli

In this case one wishes to determine the re-
flection amplitude

M~o,s =&*- /&"
qll M qll M

and the transmission amplitudes

Mgo r+ =T" /&

(2.31)

(2.32)

(2.30)

is recognized to be the classical matching condi-
tion for the tangential component of the magnetic
field. [Note that, as with Eq. (2.25) above, Eq.
(2.30) does not provide any information concerning
first-order corrections to the classical result. ]

For P-polarized light, the case of greatest in-
terest, "Eqs. (2.15), (2.23), and (2.28) provide all
the information necessary to calculate the lowest-
order corrections to the reflection and transmis-
sion amplitude at a single surface. There are, as
noted above, three cases of interest.

M~o,s = e (0, &a}M&o,r+ —1.T (2.40)

Thus all three amplitudes are determined in terms
of the numerical solution of Eq. (2.34) for 8„(z).

2. Ao =L-» =0

One begins again by solving the appropriate
zero-order version of Eq. (2.15}, which in this
case is

g (z) -=A' (z)/(T-" +T:* )

= c (0, u&) —
I oo" (z, z')6 (z') dz'.4m'

(2.38)

Combining Eqs. (2.5), (2.23), (2.28), and (2.38),
one then obtains the expression

Mgo r+ = 2{e (0, id) +g /tg

+ ip' /p {g (1,p, 0) - [e*(0, u&) - 1]~1) '.
(2.39)

Finally, making use of Eq. (2.23) one obtains the
expression for M~o,&.'

(2.33)M~o i+ -=L" /A '
One begins by solving the appropriate zero-order
(in the small wave vectors) version of Eq. (2.15),
viz.

y

(2.41)

Note that this equation for S„(z}is identical to
Eq. (2.34) except that now @ (z) is to be inter-
preted as A.'- (z)/(T-" +T ). As a result,

qll (zf q(l fd
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=P(T'-' +T-' ),
qll Cd qll Cd

or in other words, the relation

(2.42)

the asymptotic behavior of 8 (z) as z- ~ [Eq.
(2.35)] now implies the relation

(2.45}Mr-, r+ = T'-' /T
qll cd

In order to determine the value of Mz- &+, one
makes use of Eq. (2.42) to write [cf., Eq. (2.27)]

Mr I,+ -=P(Mr- r+ +1),

Mr-, g+ = L-' /T
qll Cd q

(2.43)

(2.44)

g„(T" + T ',L",0)
q II

Cd qll Cd qll Cd

= (T-", .+ T=,'.)g.(1,p, o) . (2.46)

Combining Eqs. (2.5), (2.23), (2.28), and (2.38),
one then obtains the expression

(z (0, e) —q /q +(iq()/q~){g (1,p, 0) —[e (0, ~) —1]a]}
(z (0, &u)+q, /q, +(iq))/q, ){g (1,p, 0) —[e (0, &a)-1]aj} (2.4V}

Finally, one makes use of Eqs. (2.23} to obtain the
expression for the remaining amplitude M&-&, viz. ,

which when compared to Eq. (2.2b) implies the
formulas

Mr s= It -/T = z (Mr r+ + 1), -(2.48)
qll

which can be evaluated explicitly using Eq. (2.47). and

M~-, = T'-' /I. =y
I] Cd q

(2.55)

3. Ao =T =0

Again one begins by solving the appropriate
zero-order version of Eq. (2.15); however, in
this case it is essential to allow longitudinal waves
traveling in both the plus- and minus-z directions
in the asymptotic region z -~. Thus, for example,
one may set

('- (z) =&'-„(z)/L:„' =y+ (z)+C8 (z), (2.49)

where Ct (z) and C8 (z) satisfy the equations

Ct (z) =e (0, (u)

Mz, c+=L- /L =yP+s.

Thus independent of the value of y, one has the
consistency relation

(2.56)

M. ..=PM, -r, +s (2.5V)

In addition, since &x-„„(z,z'} vanishes rapidly as
z- -~ (i.e. , as z is taken into the vacuum), the
function S (z) must also vanish rapidly in that
limit. Therefore, one has that

6 (z - -~)- yCt (z - -~ )- ye (0, &o) . (2.58)

Comparing Eqs. (2.58) and (2.2a} one finds another
consistency relation, i.e.,

4mi o'"(z, z')Ct (z') dz'

al (z)= — ' Jz (z;z')8 (z')"dz',

(2.50)

(2.51)

M~-„=—8-' /L =yer(0, &u) =zr(0, v)M~ r+.

(2.59)

Finally, in order to evaluate y, one makes use of
the relation [cf., Eq. (2.27)]

(2.52)

(2.53)

respectively, subject to the boundary conditions

Ct (z ~) -1+pe"~'

S (z -~}- e "~' +s e"~' .

g (T;",L-, L-„,*, ) = [yg'(1, p, o)

+gs (0, s, 1)]I. , (2.60)
q IICd

where

The constant y in Eq. (2.49) is then determined by
requiring 8 (z) to satisfy the tangential boundary
condition Eq. (2.28).

Even without determing the value of y, one may
make use of Eqs. (2.49), (2.52), and (2.53) to ob-
tain consistency relations among the scattering
amplitudes relevant to the present case. Speci-
fically, combining these three relations, one has
that

g@(1,P, 0) =[mr(0, ru) —1]Z Pe"~z/i-q~

2
+ ~Z 8~ Z —f 0, (d

gP(0, s, 1}=-(se"~ —e'" )/iq~

+ dz' z' .

(2.61)

(2.62)

(z -~) - y+ (yp+s) e"&'+e "~', (2.54) Combining Eqs. (2.5), (2.28), (2.55), (2.5V), and
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8. Optical properties of film in terms of those of single surface

In this section formulas for the optical proper-
ties of a film are derived in terms of the single-
surface scattering amplitudes obtained in Sec. II A.
The basic assumption underlying the derivation is
that the film is sufficiently thick that the scattering
at either surface is independent of that at the
other. Thus the complicated process illustrated in
Fig. 2 can be treated as a simple superposition of
the five processes illustrated in Fig. 3, and, in
particular, the amplitudes of the outgoing waves
generated at z =0 in Fig. 2 satisfy equations

R~ ™~0&'-'+M~zT=' +rifi-sL='
%t~

T» = Mgog+A»' +M~- ~+ T +Mg-~+L»

(2.64a)

(2.64b)

L"~=M„O~+&&4 +Mr I+X ~+M-~ I+L ', (2-.64c}

while those for the waves generated at z =d satisfy

(2.65a)

(2.65b)

(provided that d is not too large" ). In Eq. (2.64),
the matrix elements are those calculated in Sec.
II A, while in Eq. (2.65), the matrix elements M
are the analogous quantities calculated for the
surface at z =d (which, in general, will be different
from the z = 0 surface).

In order to obtain formulas for a film's optical
properties, one simply needs to solve Eqs. (2.64)
and (2.65) for R', A~q', T, and La&, in terms
of A+ . The ref lectivity and transmissivity of the
film Ifor p-polarized light) can then be calculated
via the equations

(2.66)

and (assuming that both interfaces are with the
vacuum)

The explicit solution of Eqs. (2.64) and (2.65) is
greatly simplified if one takes advantage of the
consistency relations Eqs. (2.37), (2.43), and (2.57)

(2.60) one obtains the formula

r=( i-e'i(/q )g (o, &, I)(&'(0, +)+(I'/e,

+(ill(/e. Kg.'(I, p, o) -le'(0, ~) —1]o]) ',
(2.63)

in terms of which explicit values of ML-L+,
ML-~+, and ML-„can be calculated.

Thus the formal evaluation of the scattering ma-
trix elements at a single surface is complete.

satisfied by the M's and I's. In particular, using
these relations to substitute for M„DL, M~L+, and
M~ ~+ -in Eq. (2.64c), and combining the resulting
equation with Eq. (2.64b) one finds the relation

(2.68)L+' -sL ' =Pt'

where the quantity t-' is defined by
=-T' +T

qIt fcf qI) QJ

Operating similarly on Eqs. (2.65b) and (2.65c)
one finds that

+L-* e-ia~d sL+z ek((gd Pi+
qg~'

where p' and s are the amplitudes for the surface
atz =d, which are analogous to p and s.

One may now combine Eqs. (2.68} and (2.70),
leading to the useful relations

LL-" /L~'„= " (P+Pse" ')/(P+Pse' & ) (2.71)

(2.69)

(2.70)

and

L=' /t-' = (p+pse"~')/(e "~' —sse"~'). (2.72)

Equations (2.V1) and (2.72) combined with Eq.
(2.65c) immediately yield an expression for T=' /
T „. This expression and Eq. (2.72) may then
be substituted in Eq. (2.64b) yielding the solution
for T„" /Aq and ultimately leading to the complete

qIIht qg 4P

solution of Eqs. (2.64) and (2.65).
In the case of a symmetric film (i.e., one with

identical surfaces) for which the barred amplitudes
are equal to the corresponding unbarred ones (i.e.,
p=p, s= s, M~+~ =M~ ~+-, etc ),-the f.inal results
are particularly simple. One finds, for this case,
that

&-"' = Il+&-"'
I

'
qIl~

(2.V3a)

-' =
I
&-'" /(1 +&" ) I'

q)l" q

where

(2.73b)

ge (1,p, 0}= I1 —e r(0, (u}]/i ~~,

g+(0, s, 1) =2/iq~,

s=-i, p=e (o, m)-l, a=o
(2.75)

are satisfied. Substituting Eqs. (2.75) into Eq.

n'& -=I. &'/&, F(0, ~)](g.'(I, p, o)

—[~ (0, (u) -1]N + tp/(e "i'- s}]g(0, s, I)].
(2.74)

For the classical model treated by Melnyk and
Harrison, ' namely a film with identical geometri-
cally sharp surfaces at z =0 and z = d, and with a
dielectric behavior given entirely by the bulk diel-
ectric constants e (q, u&} and e (q, ~), it can
easily be shown (see Appendix) that the equations
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(2.74) one thus obtains the expression

(2.76)

&(), (z) and $1(z) being the initial and final photoelec-
tron wave functions, respectively.

In order to evaluate %fi and Sitz,.', one solves the
Schrodinger equation

II~, = dz jq,.(z}A& (z)/t' (2.79a)

which agrees, as it should, with the MH result
fcf. Eqs. (2.52a} and (2.52b} of Ref. 1]. Thus the
microscopic equations presented here yield the
correct classical limit.

The final topic to be treated in this section is
the photoemissivity of a metal film. For photon
frequencies in the range 1 & ~/~~ ~ 1.5, one can
calculate the photoemission probability to lowest
order via a simple model, because at these ener-
gies the photoelectron mean free path ~ is typi-
cally &154, a value large compared to the surface
thickness but small compared to typical film thick-
nesses d. Thus to lowest order one may assume (i)
that only electrons emitted directly into the vacuum
(i.e. , which do not transverse the film) are detec-
ted, but (ii) that A, can be neglected in calculating
the probability of photoexeitation at either of the
film surfaces.

Kith these two assumptions the photocurrent
emitted per incident photon, from that surface of
a film upon which the photons are incident, is
given by the formula"

(Il E } (277
dQf dE~ cos81 IA I

~ti~

where 8 is the film surface area, 6I is the angle
of incidence of the photon beam, Qz = (0&, )t&z ), and

Ef are the emergence angle a,nd energy of the
photoelectrons, where t' is defined in Eq. (2.69),
and where

Q (Q&,E&)
-=(u/&&'nkvd)8(&)fee —C) —E&~&)

x8(E~&~& +4 + St —tf~)

x fE~/(E~&& +4& + 6 —ta)&) ]' tm

x {[SIIy&[ + )If@&p)g(&)=zc »-) ~ (2 78)
i f

In Eq. (2.78), 4& is the film's work function, 8&, is
its Fermi energy, a is the fine-structure constant,
Ez ' and E't ' are the initial and final electron ener-
gies due to motion normal to the surface, and the
matrix elements SR«and Nf',-' a,re defined by

, + V(x) —EJ'j) t)~;)x) =0 (2.81)

for the photoelectron wave functions, "and one
takes A& /t'„- from the equation

gt(QJ

I
—,'""- =8 (z)+- „z„,z $~(z), (2.82)

which, as may be easily verified, satisfies Eqs.
(2.64) and (2.65) in addition to solving Eq. (2.15).
[ti „(z) and tII (z) are defined in Eqs. (2.50)-(2.53).]
The photoemission results presented in See. ID
are all ba,sed on the numerical evaluation of Eq.
(2.77) via Eqs. (2.78)-(2.82).

III. NUMERICAL RESULTS AND DISCUSSION

This section is devoted to a numerical study of
HBPPE phenomena in photoemission from free-
electron metal films, and particularly to the ques-
tion of their sensitivity to surface electronic
structure. The study necessarily begins with the
specification of a "reasonable" approximate form
of the nonlocal conductivity tensor o~„~ (z, z') to
substitute into the (exact) formulas of Sec. IL Two
criteria guide the choice of an approximate
&7-, „(z,z'): (i) The approximation must be suf—
ficiently general as to accommodate a variety of sur-
face models. (Thus, e.g. , an approximation which
presupposes surfaces at which electrons are con-
fined by a square-step potential barrier would be
too restrictive. ) (ii) The approximation should
give a correct account of the film material's bulk
optical properties, e.g. , the calculated ref lectivity
for a thick film should agree with experiment. "
Unfortunately there does not appear to exist any
simple approximation to ff~, „(z,z') which sat-
isfies both these criteria simultaneously. Thus
in what follows, a form of (T&~) o (z z }is chosen,
which sacrifices the exact satisfaction of the sec-
ond criterion, but thereby preserves the generality
required by the first.

To begin, let us consider adopting the RPA form
of o„-, , gz, z'), '

2 d 0 ~0K . ~or'
F g Et (4 +SO —(dgi+QPg

where 'x&„,(x))tax ')) . (3.1)

(2.80) In Eq. (3.1) the current density uzi(z) is defined



SURFACE -E LECTRONIC-STRUCTURE INFORMATION FROM. . . 4293

dg», d(P(z)
JK, K (*)-~. (K(~) g

— ~ (K (*)), 'Y —S =*

(3.2)

(I)P(z))I)gz), y =1, 2=- x, y,

where the g»(z) are the single-electron wave func-
tions of the free-electron metal in its ground state,
thus the g»(z} [as well as the ~» of Eq. (3.1)] are
obtained via the Schrodinger equation

S2 d2
+ V(z) —h(u» (»(z) =0,

2m dg2 (3.3)

where V(z) is a single-electron potential barrier
which represents the electronic structure of the
unperturbed metal's surfaces.

The K and K' integrals of Eq. (3.1) cover all
solutions to Eq. (3.3} above as well as below the
vacuum level, and the quantities 6)„K are the zero-
temperature Fermi function, i.e.,

52k
K ~E @K2m

(3.4)

where

g» =—5~k~/2m (3.5)

is the Fermi energy and 8(x) is the ordinary step
function. Finally, n, (z) is the unperturbed metal's
electron density profile; that is, '

(3.6)

It should be noted in passing that the choice of the
specific approximate form, Eq. (3.1), for
oq&r o (z, z') automatically implies the choice for
a form for the transverse dielectric constant
er(0, ~), which, cf., Eqs. (2.34), (2.41), and (2.50),
is required in solving for the electromagnetic field
in the surface region. In particular, Eq. (3.1) im-
plies' the relation

er(0, ~) =1 —e~/&()'. (3. I)
yy'

The RPA form of o~, (z, z'} specified in Eq.
(3.1) has a number of virtues. Specifically, (i) it
can be expected to yield a reasonable qualitative
description of the collective response of an elec-
tron gas to an imposed electromagnetic field (see,
however, the limitation noted below); and (ii) per-
mits the study of the sensitivity to surface elec-
tronic structure of a film's optical properties in-
sofar as Eq. (3.1) imposes no a Priori restriction
on the spatial form of the surface potential barrier
V(z) [Eq. (3.3)], which ultimately determines the
specific form of o~ ~ (z, z') .

Moreover (and significantly), computer methods
for evaluating the RPA conductivity tensor and
using it to solve for electromagnetic fields near
surfaces have previously been developed and test-

ed.
On the other hand, the use of Eq. (3.1) has a

number of important disadvantages; in particular,
the RPA conductivity of that equation cannot yield
an accurate quantitative description of the optical
properties (including the photoelectric yield~') of
any real metal because (a) it does not incorporate
any bulk damping [i.e., the effective relaxation
time in Eq. (3.1), and consequently in Eq. (3.'t), is
infinite]; and (b} it includes neither dynamical ex-
change22 nor interband effects22 on bulk plasmon
dispersion, even though both are believed to be
quantitatively signif icant. "

Additionally, since the use of Eq. (3.1}yields
values of the plasmon reflection amplitude s
which are generally rather small [cf., Fig. 1(a)
for 4 equal to the clean potassium work function
(-0.2 Ry), and for all the forms of V(z) that were
tested, ~s~ was found to be &30@for 0&1.1], it
thereby leads to the prediction of RBPPE features
in photoemission which seem decidedly too broad
when compared to the AFF data. This discrepancy
can be remedied somewhat (see, e.g. , Fig. 11) by
increasing the values of 4 used for one or both of
the film surfaces; which [cf. Fig. 1(b)] leads to
sharply increased values of ~s~; and indeed one
can even justify the use of higher than the clean
surface values of 4 in terms of the facts that in
the AFF experiment the lower film surface was
an interface with a silicon substrate, while the up-
per one may not have been perfectly clean. How-
ever, it may be that at least part of the discrepancy
is due to a more fundamental problem than the use
of poor forms of V(z) to describe the AFF surfaces,
i.e., it may be due to the neglect in Eq. (3.1) of
dynamical exchange and correlation effects or to
the neglect of lattice periodicity.

These possibilities must clearly be studied even-
tually. However, for this first investigation of the
surface sensitivity of RBPPE phenomena the ad-
vantages of using Eq. (3.1}clearly outweigh the
disadvantages, and in what follows the results ob-
tained within the RPA are presented and then com-
pare to AFF's observations.

To begin, it is necessary to discuss the exact
significance of AFF's data. In Fig. 4, reproduced
from AFF's letter, ' curves which are said to rep-
resent the wavelength derivative of photoyield ver-
sus photon energy are shown for potassium films
(grown on silica substrates) whose thicknesses,
according to AFF's best fit, were -2V, -58, and
-100A. The following comments must be made
regarding these curves:

(i) Although AFF state that the curves shown rep-
resent photoyields "measured relative to (that of)

pp ~a reference film thicker than 500A, " it is perhaps
not clear that what they mean" is that these curves
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x 10
7

tained straightforwardly from Eq. (3.1}, which im-
pIies the formula

(0)

Y(58 A) — YP50 A), ~ = ~, g. = 45
I

LK, r =5
5

p S
a= lim z — dkn (z)ln (" ")).

@~44~ tt oo

(3.8)

~w = 0. 5 )(

The thicknesses t of the films for which computed
results are shown in Figs. 6 were assumed to be
related to the parameter d (Fig. 2) by the equation

t =d+2Q5 (3 9)

0-

l. 00 l. 05

3

0-

w=1.
I I

1.10 l. 15
I I I

l. 20 l. 25 1.30 S? -=~1~(

w =0.5A

w =1.3A

. (b)

d(n )
[Y (58A) - Y(750A)], W=m,

e. = 45'
I

LK, r =5
S

which incorporates the thickness of a film's sur-
face regions into the definition of its over-all
thickness. This remark applies not only to Figs.
6, but to all the calculated results in this section.

All the curves of Figs. 6 clearly show resonance
features due to BPPE. However it is evident that
none of the curves of Fig. 6(b) bears much resem-
blance to the "58-A" curve of Fig. 4. The main
reason for this discrepancy is that within the RPA
there is no, bulk damping, and thus the use of Eq.
(3.1}for v„„(z,z') gives a very poor account of
the optical properties of a real metal film. (A
film's photoelectric emissivity and its ordinary
optical properties, e.g. , its absorptivity, are ob-
viously very closely related. ")

In order to remedy the RPA's defective descrip-
tion of a real film's optical properties, one is
i~mediately tempted to try incorporating damping
effects via a "relaxation-time" approximation in
which (o in Eq. (3.1) is replaced by &a+i/r(&u), and

consequently, in which the bulk, transverse di-
electric function is of the Drude form

s „(u)) = 1 —((d'/(d)/[(d + i/T((u)]. (3.10)

I I

l. 00 l. 05 1.10
I I ( I

1.15 1.20 1.25 1.30 0 -=~/~p

750-A films. '4

In passing, it should be noted that the distance
a [cf. Eq. (2.19b)], which is used in evaluating theI's and N's of Eqs. (2.64) and (2.65), can be ob-

FIG. 6. (a) Photoyield calculated for a 58-A, x~ =5
jellium film minus that for a 750-A, film having the
same surface structure. Calculations were carried
out assuming a 45 angle of photon incidence 0~ and no
bulk damping (i.e. , relaxation time v equal to ). Three
curves correspond, respectively, to using the Lang-
Kohn r~ =5 surface potential barrier (Ref. 6), and to
the barriers of Eq. (1.1) with w~ = 5, 4 = 0.2 Ry,
so=0.5 A, and m= 1.5 A. In each case the same potential
barrier was used at both film surfaces. (b) Photon
energy derivatives of the curves of Fig. 6(a). Note
that these curves bear little resemblance to curve 2 of
Fig. 4.

Through the use of Eq. (3.10}, r(&u) can easily be
fit to optical data for real metals. Unfortunately,
however, while the replacement of a) by &@+i/T (cu)

in Eq. (3.1) does permit an improved description
of the propagation of transverse waves in a metal,
it also yields a description of longitudinal wave
propagation which violates charge conservation. "
A relatively simple prescription by which the re-
laxation time approximation can be made charge
conserving has been given in Ref. 26. However,
the simplicity of the method used there for a bulk
metal does not carry over to the case of a sample
having surfaces. Thus at least for the present no
calculation has been undertaken in which Eq. (3.1)
is modified to include relaxation effects while
charge conservation is preserved. Instead use has
been made of a somewhat ad hog calculational rec-
ipe which is described in what follows.

The basis of the recipe is the fact that for free-
electron metals, and for m -(op, the bulk damping,
though nonnegligible, is weak. That is, the in-
equality
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u)v((c)»1 (3.11) exp[iqi (&)d], (3.13)

where, for example, the (complex) plasmon wave
vector q f(v) is obtained from the charge-conserv-
ing bulk longitudinal dielectric function e ~i(qi(r}, &c)

of Ref. 26 by solving the equation

exp(iqiid}, (3.12)

which represents the change in a plasmon's ampli-
tude as it moves from z =0 to ~ =d, is replaced by
the quantity
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FIG. 7. Real and imaginary parts of the plasmon
wave-vector q as a function of frequency calculated
for r, =5, and (1) no bulk damping (w=~), (2) damping
given by the relaxation time 7'=40/p (~, = 5), (3)
damping given by a relaxation time T() which rises
from about 20/~& at ~ =1 to about 25/~& at ~ =1.25, in
proportion to the rise indicated in the potassium optical
data of Ref. 28. [Note that for T= ~, Imqi(cu) =—0 in the
frequency range shown. ] Note that the effect of weak
bulk damping on qi(ur) is weak except when ~ is close '

to 1.

is reasonably well satisfied. [For example, in Al,
~(~ = (u~) = 30/(u~, 27 while for K, r(ut = (u~) = 20/to~. "]
The significance of Eq. (3.11) is that if it holds
(and, cf. Fig. f, if &c is not too close to &u~), the
changes in A~~,

i
(z) caused by the fact that T(&u)o ~

can be expected to be important only on a scale of
distances which is large compared to the thickness
of a film surface. Thus the main effect of v will
be to cause a decrease in the amplitude of a longi-
tudinal electromagnetic wave" as it traverses the
interior of a film; otherwise there should be only
slight modification due to v in the spatial behavior
of A+q, (z) in the surface region. This reasoning
makes plausible the validity of the following cal-
culational scheme: Wherever it appears in the for-
mulas for the photoyield from a thin film [e.g. , in
Eqs. (2.65) and (2.82)], the quantity

si(q~i(r), (o) =0. (3.14)

In addition, in order to account for the effect of
T(tu} on transverse wave propagation in a film's
interior, the Drude transverse dielectric function
e, (a&) [Eq. (3.10)] is used to calculate the M's and
M's which appear in Eqs. (2.64) and (2.65). No
other modifications are made in the formulas of
Sec. II; in particular, the forms of the functions
8 (z) and $„. (z) which enter the calculation of the
photoyield are taken to be unmodified by 7' in the
surface region.

Although this calculational prescription is not a
fully consistent one —e.g. , it neglects the bulk
photoemission which must occur if 7 (v) is finite-
it does lead to results which, as can be seen in
Figs. 8 and 9, resemble the AFF data far more
closely than do the 7((u) =~ results of Figs. 6.
Thus it has been adopted for the present as a
means for comparing RBPPE theory and experi-
ment, and for discussing the surface sensitivity
of RBPPE phenomena.

Although the curves of Figs. 8(b) and 9 certainly
resemble the corresponding curves of Fig. 4 more
closely than do any of the curves of Fig. 6(b}, the
results of Figs. 8(b) and 9 are still unsatisfactory
in the following respects: (i) The large dip, which
is present in all three curves of Fig. 4 is absent
in the curves of Figs. 8(b) and 9; (ii) the number
and positions of the RBPPE features in the curves
of Figs. 8(b) and 9 disagree with the corresponding
experimental results of Fig. 4; and, finally, (iii)
the resonance structures in Figs. 8(b) and 9 are
far broader than those of AFF's data —indeed, the
peak widths in Figs. 8(b) and 9, in all the curves
shown, are quite comparable to the peak separa-
tions, whereas the peaks i.n all three curves of
Fig. 4 are well separated.

The explanation for the first discrepancy, the
absence of the large dip in Figs. 8(b) and 9 at
0 - 1.07, is simply that with the prescription which
has been used to include the effects of bulk damp-
ing it is not possible to make reliable calculations
too close to w~. This fact can be understood by
reference to Fig. 7 in which values are shown of
the complex plasmon wave vector qi(v) vs e for
r =~, v =40/to&, and for the experimental r(&u)

corresponding to potassium. " Note that for fre-
quencies between ~~ and I.05'~ the effect of even
a "weak" bulk damping is large; the plasmon
damping length is -8 A for 7 equal to the experi-
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mental r((d) in this frequency range.
If one were able to calculate reliably all the way

down to &~, one would expect yield curves such as
those of Fig. 8(a) to turn over and approach finite
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FIG. 9. Photon energy derivatives of photoyields
from films of 27, 58, and 100 A minus that from a
750-L film. All these curves correspond to the use of
the potential barrier of Eq. {1.1) with m= 0.5 A, and

the work functions at the upper and lower surfaces 4 „
and 4'& equal to 0.2 Ry. [Labels &~ =45 and &=&,»
are explained in the caption of Fig. 8(a).)
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FIG. 8. {a) Photoyield from a 58-A., r~ = 5 film minus
that from a 750-A. film with the same surface structure.
Photons are assumed to be incident at 45' and bulk
damping effects were incorporated by the prescription
given in the text, using a relaxation time 7'(~) which
increases from -20/co& (r~ =5) in proportion to the
experimental v'(~) (Ref. 28). Three curves correspond,
respectively, to the Lang-Kohn, r~ = 5, surface potential
barrier (Ref. 6), and to the barriers of Eq. (1.1) with.
r~ = 5, 4 =0.2 Ry, and w = 0.5 A and te = 1.3 A. In each
case the same potential was used at both film surfaces.
(b) Photon energy derivatives of the curves of Fig. 8(a).
Note that these curves resemble the data of Fig. 4
(curve 2) much more closely than do the curves of
Fig. 6(b).

values at &~; which would imply the existence of
large dips in the corresponding derivative curves
[e.g. , those of Figs. 8(b) and 9j at approximately
the correct positions.

The second discrepancy between the curves of
Figs. 8(b} and 9 and the corresponding data of Fig.
4, namely, the disagreement in the number and
positions of the RBPPE features, the following has
twofold explanation:

(i) Equation (3.1) neglects dynamical exchange
and correlation"' as well as interband"b effects;
therefore the bulk plasmon dispersion relation
which it implies [via Eq. (3.14)], and which deter-
mines the relative. positions of RBPPE features
in Figs. 8 and 9 (inasmuch as it determines the fre-
quency dependence of the plasmon wave vector), is
expected to be quantitatively inaccurate. "'"And

consequently, although the number of RBPPE fea-
tures (say between 0 = 1 and 0 = 1.3} on any of the
curves of Figs. 8 and 9 can be adjusted to agree
with the data of Fig. 4 by changing the assumed
values of the film thicknesses (one has the freedom
to make such changes since AFF did not measure
their film thicknesses absolutely), such changes
will not remedy the discrepancy between the posi-
tions of the calculated and measured resonance
features.

(ii) The calculations which underlie the curves
of Figs. 8 and 9 were carried out for films having
identical surfaces. However, this condition was
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not satisfied in AFF's experiments; their films
were grown on silica substrates and had nominally
clean upper surfaces.

The remarkable effect of film asymmetry (i.e.,
of having inequivalent film surfaces) is illustrated
in Figs. 10 and 11, in each of which photoyield
versus frequency curves are shown corresponding
to films with a fixed value of the work function at
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FIG. 11. Same as Fig. 10b, but for films with 4„
= 0.3 Hy and ~'~ = 0.3 and 0.4 Ry at the lower surface.
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the upper surface 4„and various values of that at
the lower surface 4, . [All the calculations of Figs.
10 and 11 were done using the form of V(z) given
in Eq. (1.1) with a) = 0.5A at both upper and lower
surfaces. ] Note that as a film becomes asymme-
tric, one new RBPPE feature appears between
each pair of features that were present for the
asymmetric film of the same thickness.

The fact that for an asymmetric film one should
see twice as many RBPPE features (per frequency
interval) as for a symmetric film of the same
thickness can be understood via Eqs. (2.77)-(2.79),
and (2.82). These equations show that BPPE res-
onances arise in the theory from the rapid varia-
tion of the quantity [cf., Eq. (2.72)]

Y(58A) - Y (750A), 7.
d(Rv) - -' exp

(I));
= 450, w = .5 A, 4„= .2 Ry

I

l. 00 l. 05 l. 10
l I I

1.15 1.20 1.25

FIG. 10. (a) Illustration for a 27-A film of the effects
of having inequivalent surfaces. Photoyield derivative
curves were calculated using the V(z) of Eq. (1.1) with
=0. 5 A for both upper and lower surfaces. But while
@'„, the work function at the upper surface, was taken
to equal 0.2 By in all three cases, 4&, the work function
for the lower surface was taken to be 0.2, 0.3, and 0.4
By in the three different curves. [See Fig. 8(a) for the
explanation of the labels 8~ =45' and 7'= 7',„p.] (b) Same
as Fig. 10(a), for a 58-A film.

Lq /t&q~=(Pe & +Pse ~ )/(1-sse & ) (3.15)

which represents the relative amplitudes of longi-
tudinal and transverse waves excited in a thin film
as an electromagnetic wave is transmitted through
lt. Slllce 'tile denominator of Eq (3.15) w. ilicll I'ep-
resents the coherent addition of the amplitudes of
plasmons reflected back and forth across the film,
has a minimum whenever the quantity ss exp(2iq d)
is real and positive, Eq. (3.15) would lead us to
expect the position of the nth BPPE resonance to
be

(q )„=n77/d — rg(sas)/2d, n = 0, 1, 2, . . . . (3.16)

However at the same time, according to Eq.
(3.15), the variation of Iq /tz is also affected by
the factor P exp(iq~d) +Ps exp(2iq~d'), whose pres-
ence accounts for the additional interference ef-
fects which result from the fact that plasma waves
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are coherently generated at the upper and lower
film surfaces. In the general case, i.e. , for an
asymmetric film, the numerator factor will sim-
ply modulate the strengths of the RBPPE features
seen. However for a symmetric film (i.e. , one for
which P =P and s =s) the numerator cancels a fac-
tor in the denominator of Eq. (3.15). Thus the
"modulation" of RBPPE peak strengths in the case
of a symmetric film is quite drastic; it results,
as can be seen in Figs. 10 and 11, in the annihila-
tion of half the peaks which would otherwise be
anticipated. [Mathematically the point is that if
P =P and s =s, then Eq. (3.15) reduces to

&7 /tq I„.=p/(e '~"-e). (3.17)

BPPE resonances in this case will occur when the
quantity s exp(iq d) is real and positive, and thus
the nth resonance now occurs when the equation

(q, )„=nrem/d —arg(-s)/d, n = 1, 3, 5, . . . (3.18)

is satisfied. Note that half the resonances are ab-
sent. ]

Returning now to the comparison of theory with
AFF's data, one notes that (a) if one wishes to
fit AFF's data using a model which accounts for
the asymmetry of their films, one is forced, by
the fact that one sees twice as many RBPPE fea-
tures in the asymmetric case as in the symmetric
one, to assume film thicknesses of the order of
one-half the AFF best-fit values. (b) However
by doing so one may not only improve the agree-
ment of theoretical and experimental resonance
positions, but one may also be able to provide a
simple explanation for what seems to be a fairly
systematic alternation of peak strengths in AFF's
curves (Fig. 4), namely, that the weak peaks are
the ones that would disappear if the films were
symmetric. [The weakness of these peaks can
then be interpreted as a sign that the asymmetry
of the electronic structure of AFF's films is rel-
atively weak (cf., the results shown in Fig. 11).]

I return now to the third discrepancy, between
the curves of Figs. 8 and 9 and those of Fig. 4,
namely that the theoretical RBPPE features are
too broad. This disagreement is directly trace-
able to the smallness, for the barriers used (which
had 4„=4, =0.2Ry= the value for clean potassium),
of the parameter s which governs the plasmon re-
flectivity at the film surfaces. Thus in order to
remedy it, the first possibility to check is that by
using an increased work function at the lower sur-
face —to represent in some degree the presence
of AFF's silica substrate —one might find sharper
theoretical RBPPE features. [Increasing 4, should
sharpen these features because, cf. Fig. 1(b), s
increases rapidly with increasing 4, .]

This effect is seen in Figs, l0, and might be

made even more pronounced by an increase in 4„
to account for the fact that the AFF surfaces may
have been somewhat contaminated (cf. Fig. 11).
However, in comparing the curves of Figs. 10 and
11 to the AFF data (recalling that because of film
asymmetry effect one should compare the curves
of Fig. 10(a) to AFF's "58-A" curve and those of
Figs. 10(b) and 11 to AFF's "100-A" curve), it
still seems as if the theoretica1 RBPPE features
are somewhat too broad. The source of this dis-
agreement is as yet unknown. It may be due to
the fact that the forms tried for V(z) are not suf-
ficiently accurate (to predict large enough values
of s and s), or it may be due to the neglect of dy-
namical exchange and correlation or of lattice ef-
fects in the description of surface dielectric re-
sponse provided by Eq. (3.1).

In any event it should now be clear what direc-
tions should be taken in both theoretical and ex-
perimental work concerning RBPPE phenomena.
Theoretically, it is essential to replace Eq. (3.1)
with a model conductivity tensor that yields at
least a better description of a film material's
bulk optical properties. Thus one must learn how
to incorporate bulk damping effects consistently
(presumably by generalizing the method of Ref. 26
for including a relaxation time without violating
charge concentration); and one must develop a
method for incorporating both dynamical exchange
and correlation effects as well as those of lattice
periodicity.

Experimentally, one must attempt to obtain
RBPPE data from well-characterized samples.
In particular, in order to permit a detailed ana-
lysis of the peak shapes, one would like to know
the thicknesses of the films studied (via an inde-
pendent, absolute measurement) as well as the
conditions (smoothness, atomic composition) of
both surfaces. (Obviously in order to know the
condition of the lower surface of a film, the most
favorable situation would be to have the film un-
supported. The fact that such a situation is de-
sirable however does not make it realizable. ) It
would also be useful to have data concerning the
effects of altering surface conditions; for example,
(a) a study of the effects on RBPPE of impurity
adsorption (as noted in the Introduction) would
give an immediate indication of the surface sensi-
tivity of the data; (b) a study of the behavior of
RBPPE features as a function of film asymmetry
would be useful in confirming the predictions made
above, i.e., the doubling of the number of RBPPE
features as a film becomes asymmetric and an al-
ternation in RBPPE peak strengths for a weakly
asymmetric film.

The possible significance of carrying out this
work is suggested by the results presented in Figs.
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1 and 8, above. These figures indicate the inher-
ent surface electronic structure dependence of
HBPPE data.

APPENDIX

In this appendix Eqs. (2.75) are derived for the
surface model used by MH (Ref. 1). The MH mod-
el assumes that the surface of a metal can be rep-
resented as a geometrically sharp plane (say at
z =0). To the left of the plane there is vacuum
(and thus the conductivity tensor is zero), while
to the right is metal whose dielectric response is
that of an infinite metal. Thus at the outset, the
quantity a [cf. Eq. (2.19b)] is equal to zero by con-
structionn.

The quantities g(1, P, 0) and g(0, s, 1) can easily
be calculated in the MH model by making use of
the classical boundary condition

A'+.8'=e (7'"+T "),

which, of course, the model must (and does) in-
corporate.

According to Eq (Al) .[in case 1, Sec. IIA 1

(T '= 0)], one-has in the MH model

(A2)

Similarly in the MH model one has [cf., Eq (.2.5&)]
that

8 (z)=0, z«0
L . L

=e "&'+se"&', z &0.
(A4)

Substituting Eq. (A4) into Eq. (2.62) one finds the
expr ession

g(0, s, 1) = (1 -s)/iq, . (A5)

Finally one needs expressions for P arid s. These
follow directly from MH's dynamical boundary
condition, namely, the vanishing of the current
normal to a surface at the surface. Assuming the
surface to be at z =0 this condition may be ex-
pressed as

or(0, (u)(T' +T' )+ o(q„~)(L' +I,' ) =0. (A6)

En order to determine P one applies the conditions
I.' = T' =0 of case 1 [Sec. HA 1. These conditions
together with Eqs. (A6) and (2.4) imply that

P = L' /T* =-c (0, (u) —1. (A't)

Finally to determine s, one imposes (in the q~~- 0
limit) the conditions of case 3 (Sec. IIA 3), viz. ,T"= 0 and 7 ' = 0. These conditions together with
Eq. (A6) yield the formula

s = L"/L ' = -1. (A8)

Z.(I,P, o) = P/f~'. - (AS)

Substituting Eq. (A2) into Eq. (2.61) one thus finds
the formula

Substituting Eqs. (AV) and (AS), respectively, into
Eqs. (A3) and (A5), one then has derived all of
Eqs. (2.75).
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