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The influence of lattice dislocations on conduction electrons has been studied both theoretically and

experimentally in copper single crystals. A first-principles de Haas —van Alphen (dHvA) dephasing calculation
was made, using the dislocation strain field with a realistic dislocation array. Both the Dingle temperature X,
which characterizes the amplitude reduction, and the dHvA relative phase shift were measured using dHvA
wave-shape analysis. Breaking the cubic symmetry by introducting a forest of edge dislocations allows a test of
the sensitivity of previously equivalent neck orbits to the relative orientation with respect to the dislocation
lines. Both magnitude and anisotropy agree with the theory. Orbits in contact with the Brillouin zone were

found to have larger X. A slight field dependence predicted by the dephasing calculation was observed. The
large discrepancy observed among different 1/~ results obtained from dHvA, radio-frequency size effect, and
resistivity measurements is due to the different sensitivity of each method to small-angle scattering by the long-

range strain field around dislocations. It is shown how to separate dislocation effects from mosaic-structure
effects also present in these strained crystals.

I. INTRODUCTION

The de Haas-van Alphen (dHvA) effect has been
used to investigate electron scattering in a dis-
located lattice to shed some new light on the old
baffling problem of electron scattering by lattice
dislocations. ' Many theories have attempted
to bring the theoretical estimates of the dislocation
electrical resistivity p„closeto the experimental
values, which are usually one order of magnitude
larger. However, none of these theories are satis-
factory, especially in dealing with the core of a
dislocation which is believed to have the dominant
contribution to p„.Experimentally, the observed
values of p„were inconsistent and recent findings
revealed even more controversies. Contrary to
earlier results those observations showed that the
dislocation resistivity p„is anisotropic, and de-
pends on the stage of deformationv and on the method
by which the dislocations are introduceds (i.e. , on
the dislocation configuration in a deformed crystal).
Lattice dislocations are sizable line defects which
often extend over hundreds of thousands of inter-
atomic spacings, and the strain field of a disloca-
tion decreases slowly frown its core in a plane per-
pendicular to the dislocation line. A microscopic
tool such as the dHvA effect can bring detailed in-
formation on the scattering, which is averaged out
in bulk transport measurements. First, the mea-
surement is local in k space, offering the opportuni-
ty to compare different regions of the Fermi sur-
face (FS) with differing sensitivities to strain.
Second, the scattering is dominated by the small-
angle effects of the long-range strain field, and un-
certainties about the core are relatively unimpor-
tant.

Basinski, Howie, and Templeton have attempted
to study the scattering anisotropy in a bent copper

single crystal by observing four (ill) belly dHvA

amplitudes. (Their preliminary results were brief-
ly mentioned in the discussion to Ref. 9 ~ ) Their
results indicated that the scattering is anisotropic.
Unfortunately, no further systematic study was re-
ported since then, mainly owing to the complexity
of the problem. Recently Terwilliger and
Higgins" " (TH) and Coleridge and Watts'3 (CW)
have measured the Dingle temperature X as a func-
tion of dislocation density N„for several symmetry
orbits in copper, and found that dislocations, which
have little effect on resistivity, have a large ef-
fect on the dHvA Dingle temperature. The TH re-
sults, measured on an array of edge dislocations,
exhibited a linear dependence of X on N„and a
large orbital anisotropy. Viewed as scattering,
their results give a lifetime v of the order of 10~
times shorter than that obtained from dislocation
resistivity. This suggests that most dislocation
scattering is by small angles, since v measures
the true lifetime of the Landau level, unweighted
by scattering angle as in resistivity. The CW re-
sults, measured on randomly oriented dislocations,
are similar but their X's are smaller than those
of TH.

TH have proposed a classical scattering model,
demonstrating small-angle scattering, which leads
to a linear relation between X and N~ and the right
direction of the orbital anisotropy. Watts~4 has
shown that the dephasing effect due to the disloca-
tion strain field is large enough to account for the
measured X, by choosing proper orbit strain sen-
sitivity parameters. However, Watts considered
only dilational strain and rotation around a disloca-
tion and did not include the pure shear strain. The
calculation was done on two extreme regions, de-
pending on the ratio of orbit size y, to dislocation
spacing d. For x, /d« i, the strain is essentially
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constant around an orbit, . but each orbit experiences
a different strain, assumed to be given by a Gauss-
ian distribution. When the dHvA phase is averaged
over the sample it yields a field dependence Xo-N~/
H. This field-dependent X is a consequence of the
assumed Gaussian strain distribution (e.g. , X will
be independent of field if the strain distribution is
Lorentzian). For r, /d»1, however, the strain
varies around the orbit. Watts assumed a Gauss-
ian correlation relation among orbits, giving X
~N ~ with negligible field dependence. Experi-
mentally, the range of dislocation density suitable
for dHvA measurement is 10 ~K„&10cm~. For
higher densities the dHvA signals become too weak
to be observable. For smaller densities the Dingle
temperatures are small and comparable with the
experimental error. Therefore, the experimental
conditions fall near r, /d= 1, requiring an inter-
polation of the Watts extremes. In his calculation
the directions of the dislocations were assumed to
be random and hence there is no orientational
anisotropy. The dephasing of Watts and the small-
angle scattering notions of TH are not necessarily
incompatible. Instead, dephasing may be viewed
as the physical origin of small-angle scattering. ' '

Pippard' has suggested that the existence of even
one dislocation in an orbit with Bragg reQections
could wipe out the contribution of this orbit to the
dHvA signal. However, fairly large signals have
been observed in the dog-bone orbit in copper,
which has four Bragg reQeetions, with N„=1.4
&10 cm, which corresponds roughly to one dis-
location per orbit (see Sec. IV; preliminary results
appeared in Ref. 12). This indicates that Pippard's
conjecture overestimates the effect of dislocations.

From a theoretical point of view, the Gaussian
strain distribution assumed by Watts seems un-
necessary. Instead, since both the dislocation
strain field and the strain dependence of the FS in
noble metals' ' have been studied, we ean carry
out a first-principles calculation using a simple
model of the dislocation array. Experimentally,
we approach the problem by testing the field de-
pendence of Xby choosing favorable conditions
over as wide a field range as possible, and ex-
ploring any anisotropic effects due to this line de-
fect by measuring X for four inequivalent (111)
neck orbits of one sample to eliminate sample-de-
pendent complications. The breaking of cubic sym-
metry due to the linear array of edge dislocations
offers a possibility to test the sensitivity of pre-
viously equivalent neck orbits to the relative orien-
tation with respect to the dislocation lines. Most
measurements to be discussed have been done on
the neck orbit because its X due to dislocations
is large, and yet it is the orbit least sensitive to
mosaic structure which often causes an apparent
complication. The dHvA relative phase shift as

well as amplitude reduction (expressed as X) is
measured, using wave-form analysis22 of dHvA

signals, to extract more detailed information.
For the first time we have explored both experi-
mental measurements and theoretical calculation
of the relative phase shift of the dHvA signal due to
dislocations and mosaic structure. It is shown
that this new parameter is a sensitive indicator of
the mosaic structure of the sample and can be
used to separate dislocation and mosaic-structure
effects.

II. EXPERIMENTAL

From the Lifshitz and Kosevich (LK) theory s'3~

the oscillatory magnetization associated with an
extremal cross-sectional area of A of the FS in a
plane normal to the applied magnetic field H is
given by

M= —g M„sin[2vr(F/H- y) + v/4],
4=1

where

+-rK0m+X f H

v TF cos(erg, m*/2)
(rCH)' sinh(rKo m~ T/H)

&=2u, (&/e)'~'(2v)-'~'=6. 616' 10-' G'~'/'K

$2+
C=

H 0

Ii = IA/2ve,

K = 2v~ &s m/eh = 146.9 kG/'K,

(2)

A. Field-modulation technique

The field-modulation technique2~~7 was used.
To get strong spectrometer action the magnitude of
the modulation field H should approximately equal
the field spacing of a.single oscillation. The modu-
lation frequency &o was kept sufficiently low (54 Hz)
to ensure total penetration of the modulation field
into sample. The signal across a pickup coil sur-

, rounding the sample is rich in harmonics of the
modulation frequency owing to the nonlinear de-
pendence of M upon H, and is proportional to M.
This signal has the form24'26'2~

where g is the harmonic index, Il is the dHvA

frequency, y is a phase constant, the + signs
correspond to whether the extremum is a maximum
or a minimum, g, is the orbital g factor, m is
the ratio of the cyclotron effective mass m, to
the free-electron mass m, and X is the Dingle
temperature which is related to the linewidth I" or
the lifetime v. of the Landau levels through

X=r/va, =a/2', ~ .
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and

~„=2srS'P /P'=2spP /~P,
y„=2s~y/P y-) ~ s/4,

(5)

(5)

1dE.
M sg=cos8+ — sin8,

Vg &„gnor J„(A„)(. M u.) sin(nyct+ nv/2)
'n=i

x sin(g„+nw/2), (4)
with
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FIG. l. Example of a Fourier transform. The data
shown on the upper right corner were weighted by a tri-
angle window function. The frequency ratio of two main
oscillations is Esppt/Espp& = 17.764/7. 205 =2.462, and

agrees very well with the accepted value.

where u is the unit vector. along the pickup-coil
axis, 8 is the angle between u and the field direc-
tion (M II H is assumed), and hP=P'/E is the field
spacing of a single oscillation.

To eliminate the field dependence of the ampli-
tude, due to Z„(X„),the modulation amplitude P
was kept proportional to H~, i.e. , H = C H2. The
values of X„were so chosen that large dHvA har-
monic content could be obtained by detecting at dif-
ferent harmonics nm of the modulation frequency.

B. dHvA amplitude measurement and analysis

The dHvA measurement system was automated
and it consisted of a laboratory on-line computer
with input and output (I/O) devices, an interface
which gave two-way communication between the
computer and the experiment, magnet field genera-
tion and control, modulation-field generation, and
detection of dHvA signals. (For details, see Refs.
28 and 29. )

Harmonics of the modulation frequency generated
by the sample were processed with a software
multichannel digital phase-sensitive detector'0
which was capable of detecting simultaneously two
quadrature components (90' out of phase with each

0.02
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FIG. 2. Neck Dingle plots of same sample at two dif-
ferent Q settings. , Data shown in dots were taken at Q
=4.84, which is very close to a Bessel zero. The ampli-
tudes at lower field were elevated relative to those at
higher field due to the skin-depth effect. This agrees
with other observed Bessel plot behavior (Ref. 22). Data
shown in triangles were taken at Q =2. 50, which is near:
a Bessel maximum, and has negligible skin-depth effect.

other) of several (up to 10) even harmonics (n&o

detection channels). Dingle temperatures were
evaluated from the field dependence of amplitudes
[Eq. (2)]. In order to avoid amplitude errors due

to harmonic content and other frequency components,
the amplitudes used were those resulting from an
on-line Fourier analysis of a series of windows of
data (each typically covering 10 to 12 dHvA cycles
of the frequency of interest). An example is shown

in Fig. 1. In order to recover accurate relative-
phase information, it proved essential to deter-
mine amplitudes and phases in the spectrum by an
iterative "Fourier decomposition" procedure (es-
sentially a Fourier synthesis) which minimized the
rms residual between data and synthesized wave-
form. m The ability to carry out this analysis on-
line greatly facilitated the acquisition of reliable
amplitudes.

Within our normal experimental field range (30-
50 ko) the sample magnetoresistance saturates and

the estimated skin depth was about twice the sam-
ple size. However, a more subtle skin-depth ef-
fect occurs owing to induced phase shifts, which
modifies the Bessel function in Eq. (4), and can
seriously affect precise dHvA amplitude and phase
measurements. In cases where the skin depth is
equal to or larger than the sample size, the ampli-
tude of the Bessel function is modified only slightly.
However, there is a shift in the position of the
Bessel zeros, which is sometime substantial and

also field dependent. This can lead to serious
amplitude errors in Fourier components whose
modulation argument X„[seeEq. (4)] is near such
a zero. To demonstrate this effect, two Dingle
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plots (lnM vs 1/H) of the same sample taken under
identical conditions except at different X„settings
are shown in Fig. 2.

The magnetic-interaction (MI) effects~ is negli-
gible in the present study. The principal effect of
the MI is to change the harmonic content and hence
distort the waveform. Under conditions of a weak
MI the effect on the fundamental amplitude is negli-
gible (compared to M~). However, the lowest-
order MI contribution to the second dHvA har-
monic (x=2) may be of the same order as M2 and
is Mz ~= 2&M~, where a =8v~E/H~. An estimate of
the ratio MP/M3 using known physical constants
for the neck orbit in copper gives a value less
than 2%%uz (regardless of Ã) under typical experi-
mental conditions. The amount of change in the
measurable relative phase shift, 29, —8~, is
tan '[M2M~sin135'/(M2 —M2"'sin135')] and yields
0.83', which is comparable to the experimental
error.

C. Large-angle rotator

Since the density and distribution of the defects
and mosaic structure were usually different from
region to region within a crystal, a comparison
among the results of different orbits from different
samples is undesirable. Therefore a large-angle
rotator which could observe different symmetry
directions of one sample was constructed for the
study of orbital anisotropy. 3~ Note that the defor-
mation discussed later is anisotropic and breaks
the cubic symmetry of the crystal.

D. Crystal growth

Careful characterizing and controlling of imper-
fections in sample crystals are essential in the
present study. Earlier measurements were made
on crystals from commerical sources. The char-
acteristics of the crystals were different from one
another. In general they had low as-grown residual-
resistance ratios (RRR), and many subboundaries,
with dislocation densities of 10 cm and up.
Although an oxygen-anneal treatment might in-
crease the RRR, 3 it was found that this treat-
ment created dislocation clusters which yielded a
background X of -0.2 K, a factor of 20 larger
than an estimate from resistivity. Subboundaries
are a source of dephasing error, and in addition
are effective in blocking dislocation motion. More
dislocations are formed near subboundaries during
the generation of dislocations by bending, produc-
ing a nonuniform dislocation distribution. Since
both impurities and imperfections limited the back-
ground in such scattering studies, it was necessary
to develop in the present work techniques for the
growth and preparation of very pure and nearly
perfect crystals.

Prior to this work, many have reported on the

growth of copper single crystals. '~ However,
none had successfully combined both high purity
and high crystal perfection.

Our goal was to grow copper single crystals of
low as-grown dislocation density and high purity
and yet large enough. to cut a bar for bending. We
employed the modified Bridgman method in which
the furnace was moved relative to the crucible.
The precautions taken to grow such crystals
include: selecting high-purity starting material,
clean crystal-growing environment, stable tempera-
ture control, and good vibration isolation. Crys-
tals were grown in a Union Carbide Boralloy boron
nitride (BN) crucible in a quartz vacuum chamber.
The final crystals were 2-3 in. long and 1 in. in
diameter. Vivid blaze planes could be observed
on an etched~ surface and subgrain boundaries
at the surface would show up clearly. Crystals
having more than one grain were given up or re-
grown.

Most of the measurements to be reported were
done on crystal BN5P2. Four (111)slices were
cut from it and all four showed strong similarity
in etch-pit pattern. Each had an as-grown dis-
location density of (2-4) && 10' cm 3 [Fig. 3(a)] and
ope-half of the slice was totally free from sub-
boundaries. Some results of RRR measurements
of crystal BN5P2 are listed in Table I. Since slice
1 was nearer to the last grown part of the crystal,
a lower RRR value was not surprising. The oxygen
annealing did not much improve the already high-
purity crystals.

E. Preparation of dHvA samples with controlled dislocation
densities

Crystals were cut with an acid saw and polished
with an acid polishing wheel" to minimize damage.
For crystals having high dislocation densities
(&3x 10~ cm ~) further smoothing with electrolyte
polishing in phosphoric acid solution was necessary.
Polished crystals were etched in Livingston etchant~~
from 3 to 30 sec to reveal dislocation sites. Dis-
location densities were determined by examination
of these etched surfaces. The details of dHvA
sample preparation have been described else-
where.

To control the generation of straight edge dis-
locations of the same Burgers vector (single slip),
pure bending has been considered to be the best
method. The.direction of the applied stress was
so arranged that only the primary slip system
might occur. Dislocations generated are mostly
edge in character and the dislocation lines are
parallel. '3 The dislocation density N„canbe con-
trolled by properly choosing the bending radius r,
since N„=(rbcos8) ', ' where b is the Burgers
vector and 8 is the angle that the slip plane initially
makes with the surface of the sample. The geom-
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FIG. 3. Etch-pit .

micrographs on the (111)
surface of crystal BN5P2.
(a) Unstrained; Nz=
3&&10 cm . (b) Bent and
straightened; N& =2&&10
cm 2. The arrow indi-
cates the slip direction.
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etry of the crystal used for bending is shown in
Fig. 4. It was a rectangular bar of 3&&4&&25 mm
with faces (111), (235), and (871). The longest
dimension was along [871], which is about 7' in
plane (111)from [110]towards [112]. The bar was
bent over a circular surface of preselected radius
about the [111]direction. A resolved stress
analysis for this geometry predicts single slip.
The bent crystal was then straightened to reduce
dHvA phase cancellation due to varying orientation
of each part of the crystal. Bending back would
double the dislocation density. Etch pits were ex-
amined on the (111)face. The dislocation distri-
bution of bent and straightened crystals was ob-
served to be predominantly single slip and nearly
uniform. The (111) [101]system was observed to
be the primary slip system as predicted. N~ was
usually higher near the edge of the crystal and de-
creased towards the center, probably because the
dislocations were generated from the surface and
moved into the bulk. Since the dHvA samples had
a cross section less than 1&& 1 mrna (and 2 mm
long), it was not difficult to select a large enough
region with a reasonably uniform dislocation dis-
tribution [Fig. 3(b)]. The sample dimension was
smaller than that used in earlier measurements.
Though it might result in signal loss due to smaller
sample mass used, it hadthe advantages of reducing
the skin-depth effect and improving the field and
defect homogeneity over the sample volume. Point
defects produced during plastic deformation were
annealed out while samples mere prepared at tem-
peratures between 23 and -100 C. Therefore,
the main contribution to X came from dislocations
which cannot be annealed out at such a low tem-
perature.

III. THEORY

A. Some observations on the interpretation of Dingle

temperatures

TABLE I. Results of RRR measurements of crystal
BN5P2.

Slice No. Annealing condition

Oxygen-annealed

As-grown

Oxygen-annealed

10 000

15 000

17 000

1. Point and slope Dingle temperatures

The Dingle temperature has been generally used
as a parameter to characterize the Landau-level
broadening caused by scattering and the strain
field of dislocations or of other defects. The orig-
inal derivation of the scattering temperature by
Dingle" assumes a Lorentzian Landau-level line
shape and a constant linewidth I', yielding an ampli-
tude reduction factor for the Hh harmonic e "'+
Later work ' ~ upgrades the formalism but does
not, in essence, remove the above assumptions.
If those assumptions are not valid, then the Dingle
temperature determined from the logarithmic
derivative of amplitudes will not be a reliable mea-
sure of scattering, and will not be related to I by
Eg. (3). In the dislocation problem, there is a
scale parameter (orbit size per dislocation spac-
ing) and as a result we may except a field-de
pendent linemidth l", and need not expect a Lorentz-
ian line shape. The consequences in what can
actually be measured are examined below.
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FIG. 4. Geometry of crystal bending. (a) Physical view; (b) sterographic projection.

It will be convenient operationally to retain the
conventional form of the amplitude reduction fac-
tor, but to allow X a field dependence. Amplitudes
will then be calculated and an X(H) obtained, with-
out the need for a specific assumption that cor-
responds to a line shape. The Dingle temperature
described by the amplitude reduction factor is de-
fined at asingle fixed magnetic field and is called
the "point" Dingle temperature to distinguish it
from the conventional "slope" Dingle temperature
determined from the field dependence of dHvA
amplitude. Suppose we can measure the absolute
dHvA amplitude M„and denote the measured
quantity as V„(ingeneral, V„is a voltage); then
V„=GM„, where G is the total gain of the detection
system. The point Dingle temperature is then
given from Eq. (2),

X= —(H/rK, m*) in(V„/GC„).
This requires knowing the values of T, II, E, m*,
C and g, . However, the slope Dingle temperature
X defined over a specific field range is

X = X= const,

I

0 ZI

I/O

Z2

(a)

4J

CL

C

0 ZI

I/O

Z2

X is independent of H, the Dingle plot will be a
straight line as expected [Fig. 5(a)). However, if
X is monotonically decreasing (increasing) with
H, the Dingle plot will be concave downward (up-
ward) and its slope X will be greater (smaller)
than any X value within the field range considered
[Fig. 5(b)].

Note that when the field range narrows Eq. (8)

X= —s(rKo me) ' = —(rKeme) &
d lnf(H, T)

6(1

with

X&XQ&x
UJ
Ch

CL

f(H, T) = V„H'~asinh(rKem" T/H) /GT,

and s is the slope of the best least-squares-fit
(LSF) straight line to the Dingle plot. Note that
this does not require knowing the values of Il, C,
and g, . The latter two are generally not easily
available.

The connection between point and slope Dingle
temperatures may be demonstrated. Let p and q
be the two points where the LSF straight line intercepts
the Dingle-plot curve. Then, it is found that

x=x,+ z,(x,—x,)/(z, —z,), (8)

where Z-=1/H.
From this relation one can easily show that if

Xp

0 ZI Zp Zq Z2

I/O

(b)

I
I

I I
' 0 ZI Zp Zq Z2

I/O

FIG. 5. Connection between the point and slope Dingle
temperatures. (a) The point Dingle temperature X is
independent of field H and its Dingle plot is a straight
line. (b) X is monotonically decreasing with H (or in.-
creasing with 1/H) and its Dingle plot is concave down-
ward. The slope Dingle temperature X can be obtained
graphically by following arrows [see Eq. (8)]. Z~ and
Z2 are limits of the field range over which the least-
squares straight-1. ine fit is made.
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becomes

eXX=X+Z—
2

The sign of sX/sZ depends on the field dependence
of X. This indicates that X does not measure X
even if the measurements are taken over a narrow
field range.

Therefore, we conclude that only if the quantity
X is independent of K will the slope Dingle tem-
perature X be a direct measure of X. However,
if X is a function of H, then X mill depend on the
field range covered and be no longer equal to X.
This indicates that X is not an accurate measure
of amplitude reduction when a field dependence
exists.

'S

FIG. 6. Orbit-center-switching model for small-angle
scattering. Left: orbit center switching upon Bragg re-
flection at 8. The phase change on switching is the area
1$2. Right: the analogous geometry when. the orbit-
center switch is due to small-angle scattering at S.

2. Small-angle scattering and phase smearing

The dHvA relaxation time v differs from 7„
that which is determined from electrical resistivity,
not only in referring to a selected group of elec-
trons on a restricted region on the FS, but also in
the relative importance of small- and large-angle
scattering. The scattering rate in resistivity is
weighted by the factor (1- cos&) in favor of larger-
angle scattering. " By contrast, for the dHvA

case, every scattering event contributes equally
to the integral. The angle of scattering which
suffices to destroy the phase coherence of the orbit
is of order 1/n rad, where n=F/H is the quantum
number of the oscillation, and since I is typically
10 or 10 in noble metals, this angle is very
small. At K=40 kG in copper, this angle is 0. 1
for the neck orbit and 0.004' for the belly orbit.
Thus the dHvA effect is a sensitive probe for small-
angle scattering.

Experimentally, earlier work showed a scat-
tering rate of order 10 times higher as seen in
the dHvA effect as compared with resistivity. This
implies that small-angle scattering is dominant.
We therefore focus .on how to calculate that part of
the scattering which is due to the long-range 1/r
elastic strain field, and can ignore the more dif-
ficult region of the dislocation core.

Previous publications ' 4 have discussed whether
this factor of 10 is real or is due to amplitude
reduction resulting from phase smearing in the
spatially nonuniform dislocation strain field. It
has been argued qualitatively that the two are
equivalent in the present case. This agreement
may be made quantitative. We borrow Pippard's
result49 for the phase change upon switching of orbit
centers in magnetic breakdown, and assume it is
valid for the phase change upon switching orbit
centers in small-angle scattering. Pippard showed
that

5P= nM„.

Here, o. = eH/kc, and 5A„is the shaded area of the
triangle shown in Fig. 6 formed by the orbit centers
1 and 2 and the point of scattering S. As a check,
we note that this gives the familiar criterion that
the critical angle of scattering sufficient to de-
phase the Landau level is of order 1/n,

ey = u( ,r'e) = (-a/2v)A„e =(n/2v)(A, /~')e .
But

A, =2vo. (n+ y) =2no.n, n»1,
so that 5Q =nB, and the critical angle for catastroph-
ically destructive interference is then

e, ~ v/n .
The approach to be followed in calculating the

small-angle scattering will use this equivalence
to dephasing. The local phase on an orbit will be
evaluated using the (assumed) local Fermi surface
appropriate to the local state of strain. The net
phase shift upon completion of an orbit (together
with the requirement of flux quantization) will
shift the eigenvalue of that orbit. A sum over
inequivalent orbits will yield a net line broadening
which is the desired result. Operationally, how-

ever, we calculate the contribution to M of a given
orbit, and then obtain the net amplitude reduction
from an average of M from different orbits. The
equivalence of this to the density-of-states ap-
proach follows since M is obtained from a Fourier
transform of the density of states. ~3

The validity of this approach, which is essential-
ly one of optical refraction, is presumably identical
with the limits of validity of the WEB approximation.
In our case, with dislocation spacings of order 10
A and the de Broglie wavelength of order 10 A, the

WEB approximation is certainly valid.

B. Phase-smearing calculation

The strain field around a dislocation is planar
and can be decomposed into three components:
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dilation b, (volume strain), pure shear e, and
pure (rigid) rotation w. In a dilational strain field
the FS changes with the Brillouin-zone (BZ) size.
For example, the FS of a nobel metal expands with
the BZ mhen under a hydraulic pressure. ' By
contrast, a pure shear strain will change the shape
of the BZ. Although the volume of the BZ remains
the same, any piece of FS which is in contact with
the BZ may subject to an appreciable change.
Therefore both volume and shear strain may change
the dHvA phase through the change in FS. Since
the volume and shear strain field around a dis-
location is a long-range function of position (1/r),
the dHvA phase P (=2wE/H) will vary ai'ound the
electron orbit, and from orbit to orbit in a dis-
located crystal. Finally, the rotation simply tilts
the local crystal lattice and has no effect on the FS.
But it can have an effect on the extremal cross
section A, hence on P. In a crystal with an array
of such defects, the strength and distribution of
these components of the strain field mill depend
on the density and configuration of dislocations.

The phase-smearing effect of the volume and
shear strain of dislocations on the dHvA signals
is treated first. The effect of rotation due to dis-
locations is second order near symmetry direc-
tions and mill be neglected in our calculation. The
effect of mosaic structure in general (e.g. , sub-
grains formed during crystal growth and latter
deformation) is then treated. In both cases the
Dingle temperatures and the relative phase shifts5
are calculated in order to make direct comparison
with the experimental results.

1. Dislocations

The FS extremal cross section A in momentum
space varies with & and & around a dislocation,
i.e. , A=A(&, e). The change in A due to the local
variation of 4 and E is

8A BA
DA= ~+ —&86 8&

or

5lnA= @~4+ n~q,

where n~-=91nA/sh, and n2 ———& InA/&e. The nota-
tion has been chosen so that the parameters n,
and n~ are consistent with those used in uniaxial-
stress' and hydrostatic-pressure experiments':

5lnA= Q.i 51nA + a&& ~

Here, A, is the extremal area of a free-electron
sphere. The equivalence between 4 and 5 lnA,
follows because 4, the volume dilation, is in
fact a fractional m.ea change in the two-dimensional
strain field of the edge dislocation.

The dHvA phase change due to the local strain is
then of the same form:

b(I —2v)
2n(l —v) x +y

the pure shear

b x(x2 —y )
4~(1 —v) (x'+ y')'

and the pure rotation

b x$0=-
27T x + y

(12)

where v is Poisson's ratio, We have taken the
dislocation line as the s axis and its Burgers vec-
tor along the positive x axis. Note that 4 is sym-
metric about the y axis and antisymmetrie about
the x axis, but q is symmetric about the x axis
and antisymmetrie about the y axis. This has con-
sequence in breaking the symmetry of scattering
on previous equivalent orbits.

Substituting the expressions & and & from Eqs.
(10) and (11) into Eg. (9) gives, at any point (x, y,
z) in a dislocation strain field, the phase change
(in radians)

5((x, y) = 1.18(E/H)G(ni, n~, x, y),
with

1
G(ns~ n2~ » y) =

a 3x +y

x(x' —y')
o., y+ 1.667 o.~ x +y

where both Il and H are in gauss, and x and y are
in angstroms. The values of b = 2. 56 A and p = 0.35
for Cu were used in above derivation. We then
convert the coordinates of the dislocation strain
field to the coordinates on the electron orbit and
obtain 5g = 5$(xo, yo, P), where (xo, yo) are the
coordinates of the orbit center and P is the angular
position of the point of interest on the orbit.

The oscillatory magnetization of a volume ele-
ment d V having a phase change 5g is

M = Mp sin(go + 5P)

where $0 =2mr(E/H- y) + w/4. Then the average
magnetization over the sample volume V, is given

5$„=2vr5E/H= (2vrE/H) (n&hy n2g) . (9)

Hence the higher dHvA harmonics are more sensi-
tive to phase variation than the fundamental (r = 1).
Note that 4 and e are functions of position (on the
orbit in real space) and hence depend on the mag-
netic field through the change of orbit size. (The
subscript 1 will be dropped whenever there is no
confusion. )

The three components of the elastic strain field
of an edge dislocation are:
the dilation,
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by

] &p2 p ~03

S= — sin((6()) dxp dyp,
0 "01 ""01

Qpy happ

cos((6$)) dxp dip
"&01 ~ "01

(15a)

(15b)

where Q is the area of a domain bounded by xpl,
xpp $01 and ypp . The choice of the domain Ap

will be discussed later.
Let

8= Ad sin5d

C=Ad cos6d,'

then

~,= (S'+ C')1~',

6, = tan-'(S/C),

(16a)

(16b)

(1Va)

(1Vb)

M=
~~

Mp sin(l/)0+ (6$))dV,
S Fs

where (6P) is the averaged phase change over a
given orbit,

~ 2%'

(6A)=2, i

54(x yo 4)d4 .
7T ~p

Here we have assumed that the phase changes
around an orbit are cobe' ent so the averaged phase
change (6g) is the sum around the orbit. This
assumption appears valid since we are in the do-
main in which the WKB approximation is valid.
Since the strain field around a dislocation is planar,
Eq. (18) may be rewritten

M= Mp(Csin/0+ Scosgp),

with

„4d/3 ~ d/2
x

li

~ -Q/3 ~ -d/3

Nd

cos8p

1
sin — 6$(xP, $0, f)dQ

~
dxpdyP,

2m „p j
(19a)

„Cd/P. ~ d /P

X
gd/3 ~ ~/3

1
64 (xo ~ Xo ~ 4) d0

~
dxo d3'0

2r „p j
(19b)

Trial calculations on the strain field produced
by various numbers of dislocations indicate that
the strain field produced by dislocations outside the
central nine (2&& 3}dislocations has a negligible
effect, except at low magnetic field (say, &20 kG),

configuration in this model is shown in Fig. 7. The
parameter g is the ratio of the dislocation spacing
between slip lines to the spacing d in a slip line.
The value of g is of the order of 1-5 from experi-
mental observation. The dislocation density Kd,
counted on the (ill) face, is then N~= cos80/($d ),
where Op =19.47' is the angle between the average
dislocation line [121]and [111], the normal to the
actual plane of observation, . Thus, the dislocation
spacing in a slip line is d=0. 9Vl()Np) ~P. For a
density Nd=2&&10 cm, the spacing d ranges
from 21 600 A ((= 1) to QVOO A ($ = 5) .

The periodicity of the dislocation configuration
in this model makes it natural to choose the inte-
gration domain + of orbit centers (xp yp) as the
shaded area shown in Fig. V. Finally, Eq. (15)
becomes

Nd

cos Op

and the averaged magnetization becomes

M= oMA spin(ko 6+) ~

NECK

ORBIT
50 k6

-BOIG
IPI

—IOI

The quantity Ad is the amplitude-reduction factor
due to phase smearing and is smaller than 1;
5d is the resultant phase shift.

So far we have only considered the strain field
produced by a single dislocation. In principle,
the dislocation strain field at a given point in a
dislocated crystal is the superposition of all strain
fields produced by all dislocations. Although the
strain fieM is long range (1/r), it has both signs
in the case of edge dislocations. %e may assume
that the distribution of distant dislocations is ran-
dom and the superposition of their strains at the
point of interest vanishes. Therefore, we adopt
a model in which only nearby dislocations are taken
into account. In this model all. dislocations are
assumed parallel (to [121])and formed along slip
lines. (This assumption is fairly well justified
experimentally. ) The geometry of the dislocation

PIG. 7. Dislocation configuration used in the phase-
smearing calculation. Dislocations are lined up along
slip lines with lowest-energy configuration (polygonima-

tion). The shaded area indicates the integration domain
of an orbit center. Both neck and belly orbits are
sketched for appropriate field limits used in the experi-
ment and they are plotted in. the plane normal to disloca-
tions for convenience. In this example, Nd is 10 cm
and $ is 2.
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where more dislocations (&5&& 5) were included.
This justifies the negligible influence of distant
dislocations.

The mathematical formula for the dislocation
strain diverges near the dislocation core. The
divergence is avoided by choosing a proper cutoff
radius xp . The strain within the core region is
assumed to be the same as the strain at ~ = rp .
In the actual calculation the core radius was chosen
to be 10 A. Ignoring the core is justified by the
overwhelming dominance of the long-range 1/r
strain field on the dephasing discussed earlier.
The calculated results were indeed found to be
insensitive to the choice of ~p .

There are two main steps in the calculation:
the orbital averaging and then the sample averag-
ing. To get some physical insight about how the
integration sums up the contributions from vari-
ous parts of the strain field, we define two quanti-
ties S(y) and C(y) from Eq. (19),

8/2
Nq

(y) =
cos&p „g„/2. g/2

2F

ooc — c(C(co, C'o (')d4)
277 gp

X dXp dip q

N y .d/2 1 ~2

C(&( — '
I(

(

cco —'

Cg(co Oo 4) d(Icos80 „-4g/2 ~ g/2 &~0

XdXp dip q

where we have replaced the upper limit of the
integration of yp by a variable quantity

y=($d/N, )n„-$d/2, n„=l,2, 3, . . . , N, .
The integration domain is divided into N~, N„,
and N, intervals along (t(, xo, and yo coordinates,
respectively. Hence the quantity S(n„)is the ac-
cumulated sine-part contribution to the amplitude
A~ from the n, + 1 rows of orbits (each row has N„
+ 1 orbits whose centers are aligned along the x
direction). Similarly, C(n, ) is the accumulated
cosine-part contribution to A~ . Note that S(N, ) = S,
and C(N, ) = C. The quantities S(n,) and C(n, ) vs n,
for two different sets of parameters are shown in
Fig. 8. Some general features can be seen from
those curves. First, the quantity S(n„)is sym-
metric about n, = N„/2 and the final integral S
vanishes because S(n,) is an odd function of an anti-
symmetric strain field. This zesuEts in a zero
value for the dHvA phase shift 5~, defined in Eq.
(1Vb). Second, when the phase change 5(t(„is small,
C(n„)increases smoothly with n„.However,
when 5(t(, becomes large, the contributions from
certain rows of orbits may change sign and be-
come destructive interference.

The point Dingle temperature is calculated by
equating the amplitude reduction factor A„to the

Dingle factor,

X= —(H/K() m*) lnA, .
To obtain the slope Dingle temperature X, values
of A„arecalculated at a set of selected field values
(e. g. , field values used in experimental measure-
ments). Then X is determined from the slope of
the LSF of a straight line to the I An~-v s-I/H plot.

Although the results of calculation depend on
many parameters, the main features of the cal-
culated Dingle temperature X as a function of field
have the general form shown by the examples in
Fig. 9. For a given set of parameters a divergence
occurs in X at a certain magnetic field II, . The
position of this divergence depends on the magnitude
of the phase change 5g„,given by Eq. (9), and on
the integration domain A (i.e. , N~ and $). For
example, the divergence moves toward the high-
field end when 5II(„becomes larger The. over-all
curve rises when 8, becomes larger. The width
of the divergence when plotted vs 1/H is approxi-
mately constant. The divergence in X is equivalent
to a vanishing amplitude in M and is a consequence
of the perfect periodicity of the model used in the
calculation together with the antisymmetry of the
strain field surrounding an edge dislocation. The
divergence occurs when the orbit size is compara-
ble to the dislocation spacing. Near the field II,
large cancellation among contributions from dif-
ferent orbits at different locations occurs and
results in a vanishing amplitude. In a real crys-
tal this periodicity does not strictly hold, and hence
a strong smearing of the divergence results. Al-
though the slip-line model overestimates the ef-
fect, we expect the general structure of X(H) to be
retained, with the following consequences. Since
the Dingle temperature is field dependent, the
Dingle plot has curvature. The Dingle temperature
increases with the field on the low-field wing and
decreases on the high-field wing of an X(H) curve.
It has a weak field dependence at the high-field
end. It also increases with the dislocation density
N„according to the relation Xcf-N„",where the
value of n depends on H and other parameters.
At the high-field limit, the value of n lies between
—' and 1.

The observed behavior of X depends on the mag-
netic field "aperture" actually taken during mea-
surements. For example, the conditions of all
our experimental measurements of the neck oscil-
lation fundamental (M, ) fell on the high-field wing
of an X(H) curve. However, the conditions of
measurements of the second-harmonic neck oscil-
lations fell on the low-field wing of a different
curve, with a larger H, (see Fig. 9). In general,
the second-harmonic Dingle temperature X2 is
larger th3n the first-harrnon". c Dingle temperature
X~.
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FIG. 8. Plots of 8(n„)
and C(ng vs n, for two
dislocation densities at
H= 30 kG with 0.~ =15,
o.2= —16, ) =2, and a
3 x 3 dislocation array.
+, low density of divisions:
NxN„x N„=10x].0x10.
~, high density of divi-
sions: NzxN„x N„=60
x30x 30. The scale of
n„shown in. parentheses
is for the higher density:
of division. s. The error
in X while using the
lower density of divisions
is 0.7% for N&=10 cm 2

and 13.4% for N&
—-5x10

cm 2.

2. Mosaic structure

The average magnetization over a spread of
misoriented crystallites (subgrains) in a sample is

M= Mp(sin(pp+ 5g)),

where the average is taken over the quantity sin(gp
+ 5P). There is no phase change around an orbit
within each crystallite. By contrast, in a disloca-
tion strain field the phase varies around the orbit.

The amplitude reduction factor (Dingle tempera-
ture) of a crystal with mosaic structure has been
reported earlier. '" However, the relative phase
shift is a new result, and offers a way to dis-
tinguish between several otherwise indistinguish-
able phase-smearing mechanisms. We find that
the relative phase shift due to mosaic structure has
a, strong field and angular dependence, in contrast
to that due to dislocations. Two cases will be
discussed: a bicrystal made of two equal crystals
inclined at an angle P, and a Gaussian spread of
misorientations with a characteristic halfwidth P.
In each case the mean symmetry axis is tilted at an
angle Ho from the magnetic field H.

In the case of a bicrystal the amplitude reduction
factor is

(20)

for small 8o, and the phase shift

minima. At a sufficiently large tilt beats may be
seen in the Dingle plot. The number of beats with-
in a given field range is proportional to E Ho,
and P. For a given sample the beats are more
easily seen in the second-harmonic Dingle plot than
in the first-harmonic Dingle plot. Such a structure
was seen in the course of this experiment, with a
beat in M2 yet no beat in M, .

In the case of Gaussian spread of misorientation
the amplitude reduction factor is

1 Hoy,
m (I 2)1/P P PP(I yp)

and the phase shift
2 2

H oy.y&=«n y-
pp(I p)

with y=t8 and y, 8p=2a/, where a=2mB'(8p)/H

—I.O
)K
C)
I—

-J 0.5

p&"(8p)H' 4 ~

and then the relative phase shift
IO 20

gEXPERIMENTAL g
I FIELD RANGE I

I I

30 40
H fkG)

50 60 70

25~ —52 —-0 . (2l)

At a fixed magnetic field beats may be observed in
a rotation curve. The number of beats is propor-
tional to E", P, and 1/H. If the two crystals are
not equal in volume, then the beat zeros become

FIG. 9. Example of calculated X(H) vs H for a Nz
=1.5x107 cm 2. Parameters used in the calculation are
+f = 15, n2 = —16, $ = 2, and a 3 x 3 dislocation array for
H~ 29 kG and a 5x 5 dislocation array for H & 29 kG. X&

and X2 are fundamental and second-harmonic Dingle tem-
peratures, respectively.
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TABLE II. Summary of calculated phase-smearing
results.

(a) Amplitude reduction [the measurable quantity
(parameter) is the Dingle temperature]:

Dislocations

At symmetry dominating

Off symmetry intensitive to tilt

Mosaic structure

negligible

increases quickly
with tilt

(b) Relative phase shift (measured as 20& -82):

At symmetry

Off symmetry

Dislocations

00

00

Mosaic structure

~ 00

increases quickly
with tilt, strong
field dependence

and t = vIl "(92)/H, and then the relative phase shift

2y 68py, y
2 1 3 2 + P2(1 2)(1 4 2)

(23)
If the angular dependence of I' near the symmetry
direction is parabolic, then a=2tao and y, =y.
Note that it is the second-order term in the ex-
pansion of Il (t NO) that leads to the nonvanishing
relative phase shift. Some interesting results can
be derived from Eqs. (22) and (23). The Dingle
temperature X depends on both II and 80. At a
given tilt X decreases with II. It has a minimum
at the symmetry direction (82 =0) and increases
with the tilt quickly (nearly ~822). The above
phenomena are stronger in orbits with large I' ".
However, measurements on those orbits are more
difficult because the amplitude damps out quickly
as tilt goes up.

The most striking result is that the relative phase
shift has a strong field and angular dependence.
This can be used to separate the effect of mosaic
structure from that of dislocations, which have a
zero relative phase shift. A summary of calculated
phase-smearing results is presented in Table II.

IV. EXPERIMENTAL RESULTS

The effect of dislocations can be studied with
dHvA measurements made with H along a symmetry
axis, where the influence of the mosaic structure is
negligibly small. On the other hand, the effect of
mosaic structure can be studied with measurements
made with the sample tilted away from the sym-
metry axis, because the effect of dislocations is
insensitive to the tilt. Therefore, although dis-
locations and mosaic structure coexist in the same
sample, it is possible to separate their influences.

Two copper single crystals were used in the
present measurements. One was a commercial

crystal which had an O22-annealed RRR of 2500 and
an as-grown N„=5x10' cm 2. (This crystal was
called RCI 812.) One bar was cut from it and de-
formed and had a N„=(1.4+0. 1)x10~ cm 2. Most
results came from crystal BNBP2, grown by us.
Five bars were cut from it and deformed. Several
dHvA samples were prepared from these strained
as well as unstrained crystals. All slope Dingle
temperatures X given later were determined from
the fundamental dHvA amplitudes of the 2' detection
channel. The values of effective masses were
taken from Halse. '3

TABLE III. Comparison of observed and calculated
four (111)neck slope Dingle temperatures. Parameters
used in the calculation are n&=15, u2= —16, ) =2, and a
3 && 5 dislocation array.

F ield
direction

[111]
[111]
[111]
[111]

gobs

0. 35~0. 04
0.47+0. 04
0. 60+0. 07
0. 79+0. 06

[X/X(111)]

0.44+ 0. 09
0.59 +0. 08
0. 76 + 0.15
1.00

[X/X(111)l'"'
0. 55
0. 58
0, 65
1.00

A Dislocations

l. Amplitude reduction

The anisotropic effect due to the presence of
line defects was investigated by measuring X of
four inequivalent (111)neck orbits (N&»&)) of the
same sample (BN5P2-4), which had a N2=(1. 1
+0.2) x 107 cm 2. These results are given in the
second column of Table III. The errors given in the
table were derived from the standard deivations
of the slopes of Dingle plots plus an uncertainty of
+0.02 K in the temperature measurement. An
anisotropy was observed, with the [111]neck orbit
(N, ») whose plane is normal to the plane of the dis-
location strain field having the largest X (and hence
largest amplitude reduction), and the [111]neck
orbit (N», ) whose plane is nearly parallel to the
plane of the dislocation strain field having the
smallest X. These measured X are normalized
to that of N, » and are shown in the third column.
The same ratios from our dephasing calculations
are shown in the fourth column. The agreement
between the observed and calculated anisotropy is
good.

At first it seems that the N», senses the largest
phase variation around the orbit and would be ex-
pected to have the largest Dingle temperature.
However, its averaged phase change around an
orbit is less because of the odd symmetry of the
dislocation strain field. Thus, the averaged phase
changes of orbits from different regions of the
sample have less variation than those of N, » and
hence less destructive interference among orbits.
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FIG. 10. Calculated X (over 33 to 48 kG) of four neck
orbits as a function of Nz. Same set of parameters are
used as in Fig, 9 but with a 3X 5 dislocation array.

Note that although the symmetry of Fig. 4 would
require X(111)=X(ill) in a dilational strain field
alone, this symmetry is destroyed by the shear
component which is also included in the calcula-
tion. Owing to the specific geometry used in the
present experiment the [111]direction might have
the largest spread of subgrain tilt resulting from
possible wobbling of the slip planes. However, this
would not affect our measured results because
these data were taken with (111)directions well
aligned to field direction.

The calculated slope Dingle temperature X of
(111)neck orbits as a function of N~ are shown in
Fig. 10. Note that in addition to the anisotropy al-
ready mentioned (Table III) there is a difference
in dependence on N~, ranging from nearly linear
([111])to a pronounced concave-downward curva-
ture ([111]). However, over the experimentally
accessible range (solid curves), all four are nearly
linear. This differs from the results of Watts, 4

predicting a dependence proportional to N~~~ in the
limit r, /d»1 (high N~ or low 8). Four neckanisot-
ropy ratio is rather insensitive to the precise
dislocation density and is not consequence of the
precise periodic array.

The measured X of various orbits are shown in
Fig. 11 as a function of N„. The data from other
sources'0'3 are also included. Note that the TH
data' were also measured on samples with a well-
defined linear dislocation array generated by pure
bending. However, the CW data 3 were measured
on samples with randomly oriented dislocations
generated either by squeezing the sample in a
micrometer or by spark cutting the sample on a
coarse range, so it is not surprising that their X

I I I I I I I

25 [fllI NECK

2.0—
I5-

x I.O-
ix 05 -4P

i%a I I I I I I I

tltlI BEi LY

l 234567
N, {to' cm-')

I I I I I I I

l.0

IllOI DOGBONE
I I I I I I I

I I I I I I I

l.0 -'
Ix — ea

[00t],ROSETTE,

I I I I I I I

05, IOOIl BELLY

I 254567
N, OO'cm'I

FIG. 11. Experimental slope Dingle temperature X
as a function of sample dislocation density N&. The un-
certainty in N& is typically 10%. Large uncertainties are
shown with error bars. The uncertainty in X is typically
less than. 0.1'K. Our results are shown in solid circles
(crystal BN5P2) and triangles (crystal RCI 812). Ter-
willinger and Higgins, Ref. 10 (open triangle) and
Coleridge and Watts, Ref. 14 (open square) results are
also shown.

values are quite different from ours. Our results
for the [111]neck orbit can be fitted well to a
straight line. (Other orbits seem to follow the
same trend but there are not enough data to make
a strong statement. ) This agrees with earlier
measurements made by TH. We note that the TH
results are on samples of about a factor-of-10-less
purity, with a consequent 0.2 'K uncertainty in the
"background" X which is absent in the present re-
sults (especially for the neck, which is least sensi-
tive to mosaic structure). Note that the present, .

neck results have a larger slope (dotted line) than
TH (dashed line), presumably because both the
purity and perfection of the crystals used in this
study were better, and hence less dislocation
clustering occurs during deformation. The ex-
perimental results are in surprising semiquanti-
tative agreement with the first-principles (Fig.
10, [111])calculation. The agreement could be
made perfect by a parameter adjustment, which
we do not view as physically significant (see Sec.
V). Note also there is no evidence for significant
curvature in our experimental regime of the sort
predicted by Watts.

Our efforts to measure the ratios X„/X„(111)as
a function of N~ for comparison with Fig. 10 were
not successful, because of the difficulty in orienting
the symmetry directions other than [ill] in the
more highly dislocated samples. The dHvA signals
were much weaker because of the large pickup
coil tilt (VO. 5 ) and to a probable larger content
of mosaic structure introduced into such samples
mhile generating dislocations at high N~.

The anisotropy of X among different orbits is
also apparent, with the D&M having the largest X
followed by ~ooi ~ Nisi ~ Bi~~, and Boos in that order.
Especially, X of Bqqo, Boo~, and Nq$$ tend to form
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12.5

—12,0

~ 115

.=- 11.0

16.5

~ 16.0—

~~ 15.5—
hc'.

~ 15.0—
(24)

gives a small effect (the curvature in the Dingle
plot), and the usual X is not a good indicator of
X(H). A useful measure of the point X may be ob-
tained from the harmonic ratio Ms/Mt at a single
K~~ In the simplest situations

Epm+X/ H
Kpnt+X/H=e

cvI& e

I i I

0.02 0.04 0.06
1/H (kG ')

I I I I

0.02 0.03 0.04
VH (kG ')

Fjo. 12. [111]neck and belly Dingle plots of sample
HCI 812-3.

a group which has large X, ana ihe two bellies form
another group which has smaller X. The CW re-
sults show some similarity, but their values are
much lower at higher N„,which could be attributed
to the random directions of dislocations as well as
to the nonuniformity of dislocation distribution in
their samples. Note also that the belly orbits,
which are most sensitive to mosaic structure, have
the smallest X. This is more evidence that the
effect of mosaic structure is minimized at a sym-
metry direction. The fact that the X of the dog-
bone, rosette, and neck orbits are larger is be-
cause these orbits are in contact with the BZ bound-
ary, and hence have larger fractional changes in
FS cross sections under strai. n than bellies which
are not. Therefore, they experience larger varia-
tions in dHvA phase than the bellies and suffer
larger amplitude reduction.

Our calculation predicts a field-dependent X that
decreases with H, which would produce a small
(concave downward) curvature in the Dingle plot.
[Figure 9, X, (H) corresponds to ease (b) of Fig.
5. ] However, this curvature is usually buried in
the experimental error in the amplitude measure-
ments when only a limited field range is taken. In
order to detect such a curvature of wide field range
has to be covered so that the curvature will be
sizable and yet still be certain to minimize the MI
and skin-depth effects which may lead to a spurious
curvature. We have been able to fulfill all these
requirements in sample RCI 812-3. Because of its
lower value of RRR (-2500) we were able to use a
larger sample and a higher modulation frequency
(100 HE), resulting in a detectable dHvA N„,signal
over a range of 1/H triple that used in most of the
measurements. The Dingle plots of N», and B»,
orbits obtained from this sample are shown in
Fig. 3.2. The results display obvious curvature,
a positive indication that the Dingle temperature
due to dislocations is field dependent, with the sign
of dX/dH predicted by the phase-smearing cal-
culations (Fig. 9) for the neck.

However, a field-dependent Dingle temperature

Therefore in(Ms/M, ) at a single H value can yield
X(H). The results measured on N, ft of sample
BN5P2-4 [whose measured X(111)= 0.35 +0.04 'K]
are shown in Fig. 13 (Xs). Also shown (Xt) are
the results of the phase-smearing calculation which
would yield the observed X. Note that the X are
about a factor of 2 larger than X, demonstrating
that very substantially different measures of scat-
tering can come out of the same experimental data.
The results indicate not only that X and X, have
an opposite field dependence but also that X is
much larger than X, . This contradiction was
caused by assuming Xs =Xt in deriving Eil. (24).
In general, X3 WX, and the measured quantity X
is actually Xst —= 2Xs —Xt = (2p —1)X» where p is
the ratio Xs/Xt and is in general field dependent.
The fact that X &X, is consistent with our calcula-
tion (Fig. 9), which gives p & 1 for the field range
under consideration and hence X~& &X&. The ob-
servation that X is increasing with H is related
to the fact that X~ increases with H and X~&X, in
the field range under consideration. Since the
experimental field range is away from the (over-
estimated) divergence of calculated X~, contrary to
Xs (see Fig. 9), we feel that the calculated values
of X, are more reliable than the X~ values. We '

then use the calculated X, to estimate X~ from X
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FIG. 13. Comparison. of experimental field-dependent
X values [X, obtained from harmonic ratio Mt/M& as in
Eq. (24)] and values (X&) calculated by phase smearing.
The calculated values have been. adjusted to a given a
slope X of 0.35'K, equal to that observed in this crystal.
Values of X& are obtained from the relation X2 = (X +X&)/2.
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and X, by the relation X2 = (X'+ X,)/2. These re-
sults are shown as triangles in Fig. 13. We find
that X2 is greater than X, and increases with II.
Both the relative size and the sign of the slope are
consistent with the theoretical results for Xa
shown in Fig. 9, but the smaller magnitude of the
slope indicates a strong smearing of the divergence
in a real crystal.

These results have demonstrated that (a) the
Dingle temperatures due to dislocations are field
dependent, (b) the second-harmonic Dingle tem-
perature X~ may not be equal to the first-harmonic
Dingle temperature X&, and in such a case Eq.
(24) will not hold, and (c) the traditional slope
Dingle temperature X does not directly measure
the true Dingle temperature X when X is field de-
pendent. Although above conclusions are obtained
from a dislocation problem, it has strong implica-
tions of being applicable to the general scattering
problem, especially when the Dingle temperature
has a field dependence.

2. Relutive phase shift

Our dephasing calculation predicts no relative
phase shift, because the contribution to the sine
part cancels exactly, owing to the antisymmetric
strain field produced by the dislocation. This is
unambiguously confirmed by our experimental re-
sults (e. g. , see Fig. 16, for 80=0) which give a
shift from the I.K value of 0.0'+1'.

B. Mosaic structure
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3.0
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FIG. 14. Effect of mosaic structure on the neck orbit.
Data are shown in circles. Calculated results (over 33
to 48 kG) are shown as solid curves. The horizontal line
is the X due to a dislocation effect measured at [111).
For comparison, a calculation of the (much larger) ef-
fect on the belly orbit is also shown.

Although mosaic structure can be reduced to a
minimum with very careful crystal growth and sam-
ple treatment, sometimes it is unavoidable. It is
then important to be able to separate it from other
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FIG. 15. Curvatures in neck off-symmetry Dingle
plots. (a) Experimental Dingle plots at tilts of 3, 5',
and 6' from [111]; (b) calculated curves shown over same
field range.

effects under investigation. We have studied the
effect of mosaic structure by doing measurements
at off-symmetry directions. The measured re-
sults were compared with the calculation based on
a Gaussian spread of misorientations of half-width
P. The value of P of the sample has been estimated
from several independent measurements. (Note

, that the value of P we determine depends upon the
plane of rotation of H because the deformation we
performed was anisotropic. )

l. Amplitude reduction

The measured slope Dingle temperature X of the
[111]neck orbit of sample BN5P2-4 as a function of
tilt 8O is shown in Fig. 14. The calculated X [from
Eq. (22)] using P=0.05' and 0.1' are also shown.
The horizontal line is the background Dingle tem-
perature due to dislocations measured at the sym-
metry direction. By comparing the measured re-
sults with the calculated curves we. .find P =0.08'
+0.01'. This value is smaller than other esti-
mates to be described later. This is probably be-
cause at off-symmetry directions the Dingle .plots
had curvatures (Fig. 15), which caused an under-
estimation of X. However, these results indicate
that the effect of mosaic structure is minimum at
the symmetry direction and the Dingle temperature
increases very quickly with tilt nearly as 8 0. This
supports the assumed Gaussian spread of mis-
orientations in this sample.

Even with a relative small mosaic structure,
the effect of X away from a symmetry direction
may be large. The calculated Zfor (111)belly
with P=0. 1' is also shown in Fig. 14 to demon-
strate that the effect of even a small amount of
mosaic structure is very serious to an orbit whose
E" is large.

When the amplitude' reduction becomes serious
at large tilt the Dingle plot will show lar„enon-
linearity. In Fig. 15(a) the neck Dingle plots for
810=3', 5', and 6' show increasing curvature.
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where V, and V, are the amplitudes at angular tilt
8, and 8b from the symmetry direction, respec-
tively, and (m*) = (m,*+m~~)/2. The effect of the
pickup-coil tilt was negligible in the range of tilt

TABLE IV. Dingle-temperature increment (oK) as a
function of tilt. Results were extracted from the rotation ~

curve of neck oscillation of sample BN5P2-4 at 42 kQ.
The tilt was measured from [111]along (110) toward [001].
;In the calculation we have used g, =gb=1. 90 and as-
"sumed a parabolic F, i.e. , I" = Fo+ I" &20/2, where E"
=0.78X108 G was determined from the neck rotation
curve,

P-0 12
P =0.13'

0.35

0, 27
0.31

50

0. 83

0.78
0.92

6'

1.16
1.36

~Difficult to measure.

The calculated Dingle plots, with a P=O. I', also
show increasing curvature with tilt [Fig. 15(b)].
However, the root-mean-square deviations (BMSD)
of the I.SF straight lines to those observed curves
are larger by a factor of 2 than those calculated.
Those high values of RMSD might be attributed
partly to experimental error and partly to the
possibility that the mosaic spread of the sample is
not just Gaussian. For example, a bicrystal can
cause such a large curvature which is a portion of
a beat pattern. The emergence of curvature in a
Dingle plot at a sufficiently large tilt can be a use-
ful test for substructure in a sample.

The rotation curve can be used to provide further
information about the mosaic structure of the sam-
ple. Different information may be obtained from
its amplitude variation and from its phase variation.
In a pure and perfect crystal, the amplitude of the
rotation curve varies slowly as a function of orienta-
tion owing to the changing of electron effective mass
and of the g factor as well as the pickup-coil tilt.
In the case of the (111)neck orbit in Cu, it de-
creases slowly to its spin-splitting zero (at about
13' away from (111)along a {110]plane). In a
real crystal, the amplitude will have an additional
variation only if the Dingle temperature is angular
dependent. In the case of mosaic structure, X in-
creases very fast with angular tilt and hence the
amplitude of the rotation curve will decay quickly.
Therefore, one can deduce the increment in X
along a particular plane at off-symmetry directions
using the relation

K ~V ~E cos (vg, mf/2)
IK,(m*) V, I', cos (wg, m f/2) &
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FIG. 16. Relative phase shifts of the [111]neck oscilla-
tion of sample BN5P2-4 as a function of field at &0=0,
3, and 5'. The uncertainty is 1 . The constant phase of
45' for the neck from the LK theory has been subtracted
from the data. The results at symmetry direction (~0= 0')
are the average from three independent measurements,
with slightly different Bessel settings, with a standard
error less than 1' for all fields. The results of 80= 5'
are from two independent measurements as shown. Cal-
culated results are shown as solid curves.

Strong field- and angular-dependent rel.ative
phase shifts, 28& —8~, for the neck orbit were
observed and are plotted in Fig. 16. The cal-
culated [Eq. (23)] relative phase shifts, assuming
P=0. 1' and 0.15', are shown as solid lines. At
the symmetry direction (&o=0') the observed rela-
tive phase shifts were zero as expected. This is
evidence that the magnetic-interaction effect is
negligible, as we mentioned earlier. However,
at off-symmetry directions the observed results
deviated from the calculated curves, especially at
larger tilt. This indicates that the actual mosaic
spread was not a simple Gaussian. X-ray diffrac-
tometry measurements were made on this sample.

] considered here. Results of 4X extracted from
the rotation curve of neck oscillation are listed
in Table IV. The calculated &X are also included
for comparison. Although the measured point 4X
cannot be compared directly with the measured
slope X shown in Fig. 14, it does show some con-
sistency with them. Rotation curves measured at
different fields can provide information about the
field dependence of the X enhancement.

A useful independent measure of the substructure
can be obtained from a rotation diagram of an orbit
such as the belly, where E" is large. The belly
rotation diagram of this sample showed a rapid
decay in amplitude from [ill] and a beat struc-
ture consistent with a mosaic spread of 0. 10
+0.02', both consistent with Fig. 14.

2. Relative phase shift
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The data displayed broadened Bragg peaks of com-
plex structure, confirmming that the substructure
was not pure Gaussian, and with a half-width of
0.1', in good agreement with four independent
dHvA measurements: X(80) (Fig. 14), 4X from the
rotation diagram (Table IV), belly rotation dia-
grams, and relative phase shifts (Fig. 16).

Both experiment and theory for the neck show.
large (-50') phase shifts even with relatively small
(-0.1') substructure. Those results therefore
demonstrate that the relative phase shift is not
only a useful way to estimate P but also can be
used to distinguish mosaic structure from other
amplitude effects because only the phase shifts
due to mosaic structure increase so rapidly as the
field is tilted from a symmetry direction.

The calculation also indicates that the relative
phase shift for the (111)belly grows very quickly
with P even at the symmetry direction. For ex-
ample, 28~ —82 may be as large as 10' at 30 kG
for P=0. 15', dropping to 0.03' for P=0.05' at
the symmetry direction. Therefore a measurement
of the relative phase shift of an orbit which has a
large Il" requires a very high perfection of the
sample with P~0. 05' and orientation to the sym-
metry direction better than 0. 1 .

V. DISCUSSION

We have weakened the core effect in our calcula-
tion by assuming the strain within a cutoff radius
xo be equal to that at ro. This is justified be-
cause the dislocation strain field is long range
(I/x) and the core area occupies a very small
proportion of the average area per dislocation.
As mentioned in Sec. III, the dHvA lifetime v is
very sensitive to small-angle scattering and hence
to the long-range strain field produced by disloca-
tions. It was found that the calculated results
are not sensitive to the choice of xo. Recently
Martin' has calculated the scattering due to the
coze, using a pseudopotential method, and found
that the dHvA contribution is genuinely second or-
der. Thus we are justified in concluding that the
core contributes a negligible fraction.

Our calculation has not been extended to other
orbits than the neck because of the complexity of
the orbital integration for noncircular and large
(r, /d~ 1) orbits. We have chosen the phase-
smearing parameters (Sec. IIIB) a, =15, a2- —16,
and / = 2 for the neck orbit throughout the calcula-
tion after some initial trials of adjusting these
parameters to fit the experimental data. The
chosen value for e~ is larger than that determined
from the hydrostatic-pressure experiments~~'~9 by
a factor of 4, but in good agreement with that found

by CW. They found the n, values to be 15 to 19.
The a2 value agrees very well with that determined
from the uniaxial-tensile-stress experiments

(which give na of —12 to —16), both in magnitude
and in sign; CW did not treat the pure-shear com-
ponent. (This is equivalent to putting u3--0. ) A
variation in n~ or n~ may affect the numerical ratios
Xz/XN(111) but we find X(111)&X(111)&X(111)
&X(111)in all cases.

Since the precise X values depend on a variety
of parameters, we have not attempted to extract
precise a values, being content to demonstrate
that the disl. ocation dephasing results are consis-
tent with the strain results. We doubt that the
state of strain in the dislocation experiment is suf-
ficiently well defined to enable a quantitative com-
parison with parameter values. We note that the
existing strain results are not sufficient to fully
define the parameters needed for the dislocation
case: (i) In calculating the four (111)neck orbits
we have assumed that the values of a, and n~ are
the same for all orbits, which is not known. (ii)
The experimental value of n2 was determined from
uniaxial-tensile-stress measurements in which
the tensile axis is parallel to the orbit normal.
However, the direction of stress in our strained
crystals is parallel to its Burgers vector, i.e. ,
[101], and therefore not directly related to the
uniaxial-stress results. (iii) The strain (-10 ',
easy-glide region) in our crystals is much larger
than the strain (10 4, elastic region) used in those
measurements, and we have no evidence that the
strain phase shift is linear at such large strains.

The lattice model used in our calculation is
rather realistic for our pure crystals, since in
such a crystal dislocations are highly mobile (in
single slip) and rapidly glide to minimum-energy
configuration, which is the array we have adopted.
Although our earlier work" (with less-pure sam-
ples) showed a more random array (due to the
presence of pinning sites), the micrographs of the
present very pure and nearly perfect crystals
clearly exhibit a correlated array [see slip lines
in Fig. 3(b)].

Although the assumption of coherence for the
calculation of a periodic dislocation array will
almost certainly lead to an overestimate of the
net dephasing, the overestimate need not be large.
It is illustrative to compare with the calculation
of Coleridge54, of the strain dephasing due to size
mismatch of an impurity. The original calculation
had a coherent matching of contributions from
different impurities sampled along the electron
orbit. This led to an overestimate' of the de-
phasing compared to a random array, of essentially
N/v N, where N is the number of impurities along
the circumference. This amounts to nearly a fac-
tor of 10 in the situation considered. In the dis-
location case, the overestimate is not likely to be
so large since (i) the array was chosen to corre-
spond with observed dislocation arrays, which are
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far from random; (ii) because the strain field is
antisymmetric, there is a good deal of cancellation
of dephasing zvithin the range of a given dislocation,
whereas the impurity dephasing is always in the
same direction; (iii) the number of dislocations
sampled by a given orbit is small (-1), so that N
and MN do not differ by a large factor

Kaner and Feldman~e have studied the Landau-
level structure in the presence of dislocations,
and conclude that sublevels will appear. No effects
attributable to such sublevels have been observed
in this experiment. However, Kaner and Feldman
used a 5-function potential, with no long-range
strain field. This is equivalent to a core-scattering
calculation only, and we suggest that sublevel ef-
fects are therefore unobservable in this case owing
to the overwhelming dominance of the long-range
strain field. Measurement of cyclotron-resonance
spectra in unstrained and strained tellurium crys-
tals with a dislocation density of 10' and 10' cm
also gave no indication of additional transitions
due to sharp dislocation sublevels up to 10 MeV
above the valence-band edge in magnetic fields up
to 56 kQ. '~

In another attempt, Kaner and Feldman' have
assumed that the interaction of an electron with
dislocations is due to a long-range deformation
potential of the lattice and showed the existence
of additional energy bands —dislocation bands —in
the electron energy spectrum. The width of the
dislocation band is of the order of AbN„'~~, where
A is the deformation-potential constant. Based
on these results Gutnikov and Feldman have de-
rived the Dingle temperature, in the limit r, /d
« 1, and found

2~'~a ~mr'" '

(25)
Hence the Dingle temperature is linearly dependent
on the dislocation density N„and the harmonic index
z and inversely proportional to the magnetic field
H. The scattering anisotropy will depend on the
factor m*A and hence is related to the anisotropy
of the deformation potential. For a free-electron
gas the deformation potential would be isotropic
and equal to 2E~/3, which is 4. 99 eV for copper.

An estimate based on Eq. (25) is of the same
magnitude as the observed results. In noble metals
the deformation potentials for shear strains have
been calculated only at high-symmetry points. 6 '

Using the deformation potential calculated at the
symmetry point I.( —,', —,', —,') under trigonal strain as
the deformation potential for the neck orbit, an esti-
mate of X from Eq. (25) for a N„of10~ cm ~ gives
0.63 'K (30 kG) to 0. 38 'K (50 kG) for X, . These
values have the same order of magnitude as the
experimental results. However, the strong (1/H)
field dependence is against the experimental evi-
dence. This is not surprising since the 1/H field
dependence of X is a consequence of the assumed
random spacing. ' Besides, the angle between the
direction of dislocations and the magnetic field was
not entered in the original derivation by Gutnikov
and Feldman, and the deformation potential used
to estimate X was calculated for a stress direction
differing from that in our strained crystals.
Therefore, more theoretical and experimental
work on the deformation potential for the appropri-
ate shear strain is needed in order to make further
comparisons between Eq. (25) and the detailed ex-

TABLE V. Comparison of the assumptions and steps used in the phase-smearing calculations
of the present work with those used by Watts (jRef. 14).

Present work

Strain fielda

Direction of
dislocations

Strain
distribution

Core

Orbit strain
sensitivity
parameters

{a) volume (6)
(b) rotation (ce)-found negligible

random {all slip systems)

Guassian is assumed

neglected (10 A)

(a) volume Q,) +shear (g)
rotation (~) is neglected

(b) mosaic structure
parallel (single slip)

using strain-field expressions from
elastic theory; periodic array

flat 0.0 A)

u, Z+ o.,e

Orbit averaging

Sample averaging small N&. constant strain
large N„:Gaussian correlation

slip-line model (parameter $)

incoherent (after sample averaging) coherent {before sample averaging)

Only (a) was treated in the main calculation; (b) was treated separately.
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TABLE VI. Comparison of dislocation scattering re-
sults in copper from different experimental methods.
Data shown are for a dislocation density of 10~ cm"2. The
scattering cross sections are given in 5, the magnitude
of a unit Burgers vector.

dHvA

RFSE

Resistivity

Critical angle
8 (deg)

0.01

7' ~ (sec ~)

7x10"
2x 10'

4x10'
Gx 108 ~

Scattering
cross
section

(~)

2000

60

~From Ref. 8.

perimental results presented here.
The other principal dislocation-scattering cal-

culation using a dephasing approach is that due to
Watts. 4 The principal differences between our
two approaches is summarized in Table V. Using
an assumed Gaussian strain distribution, Watts
showed that the X values are consistent with ex-
periment, using the results of pressure measure-
ments as parameters. The present calculation is
an attempt to improve upon that approach, with a
first-principles dephasing calculation. Absent in
our results is certain systematic behavior, which
is a consequence of the Gaussian assumption, and
which so far at least has not shown up in experi-
ment. This includes a strongly field-dependent
scattering, and a strongly nonlinear dependence of
X upon N~. Our calculation shows no simple field
dependence, and a weakly nonlinear dependence
upon N„. The linear array of dislocations used is
close to the experimental array, and allows ex-
ploration of broken-cubic-symmetry effects.

After this work was completed, 39 it came to our
attention that Watts6~ has formulated the dephasing
calculation and independently shown the equivalence
between dephasing and small-angle scattering by a
different approach. We note an error in Ref. 62
which, however, does not affect the fundamental
connection between scattering and dephasing. An
erroneous scaling law relates phase changes for
the various dHvA harmonics. Equations (14),
(19), and (29) of Ref. 62 state

q„(H)= q, (H//r),

leading to

X„(H)=X,(H/r) .
This is in error, since the strain field sampled by
an orbit (and hence the phase change) is field de-
pendent, owing to the change with field of orbit
size. Our calculated results (Fig. 9) demonstrate
clearly X2(H) OX~(H/2).
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FIG. 17. Comparison of dislocation scattering results
in copper from different experimental methods.

One intriguing sidelight of having more than one
way to measure a lifetime is that differences be-
tween the results of different methods can be used
to say something about the angular nature of the
scattering cross section. 63 For example, in the
case of dislocation scattering, there are now three
different measurements that we are aware of:
resistivity, dHvA, and radio-frequency size-effect
(RFSE) results. A comparison of the magnitudes
shows that the cross section is very strongly peaked
in the forward direction; i.e. , most of the scatter-
ing is small angle. The comparison is rough but
the effect is so strong that the result is very strik-
ing. The comparison is given in Table VI, mea-
sured for a dislocation density of 10~ cm 3. We
have chosen the belly-orbit data to represent dHvA
and RFSE results, because belly electrons repre-
sent a greater part of the FS and have a primary
contribution to the electrical resistivity.

In comparing the results of these three measure-
ments, we are comparing techniques in which the
critical angle above which a scattering event is de-
structive is very different. This critical angle
8, is less than 0.01" for belly orbits in dHvA.
Gantmakher notes a critical angle in RFSE of about
1', a factor of 100 larger. In resistivity, if one
argues that the dominant angular factor is 1-cos8,
then only scattering events of larger than about
45' are important. For impurity scattering, or
other event in which the scattering is relatively
isotropic, the distinction is relatively unimportant,
and amounts to at most a factor of 2. In dislocation
scattering, the experimental 1/r results differ by
a total of three orders of magnitude, and the notion
of the critical angle may go part of the way in ex-
plaining it. The large value obtained for the dHvA
scattering cross section suggests that the differ-
ential scattering cross section must be strongly
peaked in the forward direction (Fig. 17), and one
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can infer that in the dHvA effect every scattering
event counts and hence it measures the total scat-
tering cross section, averaged over a selected
part of the FS, in contrast to the resistivity, in
which an electron scattered off its path may still
make contribution to the electron Qux.

The discrepancy between the theoretical and ex-
perimental dislocation resistivity p„still remains,
and amounts to a factor of 10.~'~ Most of these
measurements were done on high dislocation densi-
ties, N~&10 cm 2, produced by tension or rolling.
At such high densities dislocations are correlated
to a large extent. This correlated effect may bring
large cancellation among strain fields and hence
reduce the value of p~/N~ in the work hardening
region. ' Another factor which may contribute to
this discrepancy is the uncertainty inherent in the
sample preparation and defect characterization. 7

Therefore, to study well-defined dislocations mill
be more useful to resolve this controversy. Ob-
served values of p~/N~ on well-defined disloca-
tions ' do show anisotropy and dislocation configura-
tion dependence as we have found in the present
work. Gantmakher et al. have obtained a scat-
tering cross section, from their resistivity mea-
surements on well-defined dislocations, of 13b
compared to 1b obtained from most of the earlier
resistivity measurements. Note that the core of a
dislocation is of order of lb. These results strong-
ly suggest that the dislocation resistivity may as well
be strongly affected by the long-range strain field.

The problem of phase smearing because of
mosaic structure has been discussed previously, '

and can lead to serious errors in any scattering
measurement. Miller et gl. "have illustrated the
importance of the effect of mosaic structure on the
off-symmetry Dingle-temperature measurements
on an AnCu alloy. They corrected the enhance-
ments due to mosaic structure until it achieved a
self-consistency in the electronic lifetime mapping.
In the present work, we have directly measured
the characteristic mosaic-spread half-width p using
several independent measurements and found good
agreement among them. Furthermore, we have been
first to study the relativephase shiftdue to' mosaic
structure both experimentally and theoretically.

VI. SUMMARY

Effects of dislocation strain and mosaic structure
on conduction electrons have been studied using

the dHvA effect. The results have been found to
be in good agreement with the phase-smearing cal-
culation using simple models both in amplitude re-
duction and in relative phase shift. There is a large
Dingle-temperature anisotropy (up to a factor of 2)
among four (111)neck orbits. This is a result of
the plane strain field produced by dislocations. An
even larger anisotropy was observed among dif-
ferent orbits (largest for the dog bone, rosette,
and neck, and smaller for the bellies). This indi-
cates that those orbits, that are in contact with the
BZ boundary suffer large fractional changes in
FS cross sections under stress and hence large
amplitude reductions. It was also demonstrated
that the traditional (slope) Dingle temperature
measured from the H dependence of the amplitude
does not provide a direct measure of point Dingle
temperature when the point Dingle temperature has
a field dependence. The large discrepancy between
the experimental 1/v results measured by dHvA,
HFSE, and resistivity methods is attributed to the
sensitivity of the specific method to small-angle
scattering by the long-range strain field around
dislocations.

The results of this work also indicate the impor-
tance of sample preparation in the dHvA measure-
ments. We have demonstrated several methods to
detect and measure mosaic structure. The strong
angular and field dependence of the relative phase
shift as well as the strong angular dependence of
X due to mosaic structure are useful in determining
the mosaic structure and in separating its inQuence,
which is often unwanted and annoying, from other
effects. It has also been demonstrated that the ro-
tation curve can be used as a quick and reliable
way to measure angular dependence of X enhance-
ment as well as determining the mosaic structure.
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