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Theory of the galvanomagnetic properties of cadmium in the temperature range 10 "O'K
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A simple model that involves the contribution to the relaxation time of an Einstein-like phonon mode is

proposed to explain recently observed puzzling features in the galvanomagnetic properties of cadmium in the
temperature range from 10 to 40 K. Anisotropic scattering effects are also discussed.

I. INTRODUCTION

r(T) = p»(H=O, 273 'K)/p»(H=O, T). (1.2)

(iv) If we define 6pz, as the nonlinear contribu-
tion to the Hall resistivity

The galvanomagnetic properties of cadmium at
low temperatures' are peculiar and complicated.
Basically, the complication arises from the fact
that different scattering mechanisms dominate the
galvanomagnetic properties at different tempera-
tures. The behavior below 4 'K is well under-
stood. ~ In that region, part of the hole trajectories
are changed into electron trajectories because of
the impurity-enhanced intersheet scattering. As
a result, there is a change in the sign of the Hall
coefficient. At higher temperatures, other scat-
tering mechanisms take over and various local
maxima and minima in the Hall coefficient are ob-
served.

In this paper, we are primarily concerned with
the puzzling behavior in the temperature range
10-40 'K. The experiments (and their analysis~)
here referred to can be summarized as follows. '

(i) the zero-field transverse resistivity p» (H =0,
T) is found to be proportional to T 8,(e„/T),
where 45 is the well-known Bloch g 5 function.
However, it is observed that 6~ is approximately
109 'K instead of the Debye temperature 6~ (= 210
'K) as predicted by the simple Bloch theory of re-
sistivity. 4

(ii) For a fixed magnetic field H, p~, (H, T)
reaches a maximum value p~,

" at a temperature
T which lies between 10 and 20 'K.

(iii) The deduced Hall coefficient R(T) has the
following behavior in the temperature range from
4upto40 K:

R(T)/r(T) = 5 exp(- 42. 9/T),

where b is a constant independent of temperature
and r(T) is defined by

[~/r(T)] ~ = c exp(109/T), (l. 4)

where c is a constant independent of T.
It is also worth mentioning that in this tempera-

ture range, cadmium is restored to the state of a
compensated metal in contrast to its behavior be-
low 4 'K.

In Sec. II, we present our theory, discuss the
relevant features of the Fermi surface and phonon
spectrum of Cd, and calculate relaxation times.
The numerical results, based on four adjustable
parameters (two impurity-scattering matrix ele-
ments and two electron-phonon matrix elements)
are presented in Sec. III. Section IV contains our
discussion and conclusions.

II. THEORY

A. General theory

Ee EIt (2. 1)

We calculate the magnetoresistivity p, ~ tensor
under the following assumptions:

(i) The Fermi surface of Cd is topologically
rather involved. Its shape and dimensions are
however very well known. ' For magnetic fields
parallel to the hexagonal axis, the surface behaves
as if it were composed only of closed singly con-
nected sheets. It is important to remark, how-
ever, that Cd is a compensated metal, i.e. , one
in which the number of electron orbits equals the
number of hole orbits. ~ In addition, from experi-
mental measurements' and calculations, 6 it is
known that the linear dimensions of the electron
orbits are typically twice as large as the linear
dimensions of the hole orbits. These features
(and not the sixfold symmetry of the problem) are
the ones which determine the galvanomagnetic
properties. We therefore take a model Fermi sur-
face to be composed of one free-electron-like
pocket and compensated by eight holelike pockets,
that is,

p„=R(T)H+ hp», (l.3)

it is found that bp„=—0 at T=ll 'K, and R(T) is
roughly a maximum at the same temperature
11 K.

(v) Between 10 and 20 K, it is found that

(2.2)

where k~„k» are the Fermi radii for the electron
and hole pockets, respectively, and n is the total
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number of either type of carriers. The 8-to-1
relationship is a simple consequence of (2. 1) and

(2. 2).
(ii) The calculation is handled in a semiclassical

(Boltzmann equation) way and all quantum-mechan-
ical coherence effects are neglected.

(iii) Spatial uniformity of all physical quantities,
such as temperature, electric field, and magnetic
field is assumed.

(iv) The scattering term is treated in the uni-
form relaxation-time approximation.

(v) Only terms linear in the electric field E
(Ohm's law) are retained.

Straightforward calculati ons yield the following
expression for the various components of the re-
sistivity tensor:

ne'b, m, (1+uP v ) m„(1+uP7') '

CO {d

ne'n. m„(l+ (()'T') m (1 (d'7')

1 1
ne' (~,/m, + r„/m„) '

P13 P23 P31 P32

where

(2. 5)

(2.6)

m, (1+ (d', 7',) m„(1+ (u'„7'„)]
2 2

hT h+ m„()+~'„~'„) l,(l+td'. v,')) ' (2. '7)

1 eH (m, m~ (2.10)

po is the zero-field resistivity, and m„mh are the

effective masses for the electron and hole pockets,
respectively. In addition, T„T„are separately the
relaxation times for the two types of carriers, and

~„~h are cyclotron frequencies defined as

~, = ~e~a/m, c, (2. 8)

(u, = ~e~e/m„c. (2. 9)

The above results are formally the same as that of

a simple two-band model. This is because all
eight hole pockets contribute additively as if it
were only a single hole pocket. However, this ap-
parent similarity is quite misleading because the
effective Fermi radius for the present case of
eight hole pockets is only one-half of that for a
simple two-band model. As a consequence, the
effective 7.„'s are different (cf. , Sec. IIB) and

hence the various components p,&
behave different-

ly.
The experiments here discussed have been per-

formed in the high-field limit, i.e. , co,T, »1 and

~„r„»l. Under such conditions, the resistivity
tensor reduces to the following:

p — p — ~ + (2. 11)

S2p mh) p Plh
33 — 0 —

we T T ~ T 7g h) e h)

P13 P23 P31 P32

(2. 12)

(2. 13)

T1 ——const. (2. 14)

b. Longitudinal acoustic Phovons. This gives
rise to the well-known Bloch T' term. 4'3 How-
ever, as the calipers of the electron and hole pock-
ets are much smaller than the size of the Brillouin
zone (within the Debye approximation, the size of
the zone is given by the Debye cutoff qn), those
phonons with wave vector q such that

q„&q, &~q~ &q (2. 15)

are very ineffective in scattering electrons. In
(2. 15), q„q„are, respectively, the calipers of
the electron and hole pockets and are defined by

q, =2k~„

qh =2kZh

(2. 16)

(2. IV)

Physically this is because there are no available

B. Calculation of relaxation times

The relaxation times T, and Th are calculated
from the collision term (sl/Bt)„„of the Boltzmann
equation following the well-known approach of
Wilson. 4' In addition to the usual contribution to
the relaxation time from scattering by impurities
and longitudinal acoustic phonons, we introduce
an additional term due to scattering by a very flat,
almost Einstein-like, phonon mode. This mode is
a peculiar feature of the phonon spectra of Zn and
Cd. " It is a hybrid of the TAand TO modes, of
practically constant frequency (2x10' cps in Zn
and 1.3 x 10'2 cps in Cd). Such a mode is capable
of scattering quasielastically electrons from any
points in the Brillouin zone to any other point. In

particular, it can scatter electrons from any&chere
in the Fermi surface to any other Fermi-surface
point. This flat mode is also the major cause of
the relatively short Debye-like region and the huge
peak just beyond the acoustic region in the phonon
density-of-state distribution curve. The typical
energy of this low-lying Einstein-like mode is
about one-third of the typical energy of the optical
branches. As a result, we expect such mode to be
equally effective in the resistive scattering of
electrons. We present a separate discussion of
the various contributions to the electrical resis-
tivity in the following:

p. Impurities. As is well known, this term de-
pends only on the number of impurities and does
not depend on applied field E and temperature, ' '
so
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states for the electrons to scatter into. Thus, the
upper cutoff is now determined by either q„or q„
instead of q~. On the other hand, the velocity of
sound which comes in through the dispersion rela-
tion is still related to the Debye cutoff q~ and hence
the Debye temperature e~ by the conservation of
the total number of phonons. Thus, assuming con-
stant electron-phonon matrix element C~, we ob-
tain

~Debve (T/6D) ~5(6cutoff/T)s

where eegtpff ep or e„with

6,=Sq,v/ks,

6„-Kq„v/ks,

(2. 1S)

(2. 19)

(a. 20)

Ci gt ra-e Cist ra-h Ce-h int er-h Cg ~

Then, for each case, we obtain

"zi t.~ [exp(6g/T) —1]

where

(a. as)

(2. 22)

(2.23)

and g&~ is the energy of the Einstein-like phonon.
The above result has an immediate physical inter-
pretation as it simply reflects the fact that the
scattering probability is determined by the phonon
distribution. The more phonons there are, the
more electrons they can scatter. On the other
hand, the hole-hole and electron-hole transitions
as caused by acoustic phonons are energetically
unfavorable, because the energy involved is of the
order of k~8&.

The inclusion of all these terms yields

v, ' = C, + A [m, /(k, a) ] (T/0 ) P (8,/ T)

+ B(mph, a+ Sm„k»a)[exp(8s/T) —1] ', (2. 24)

v„' = Ca+A[m„/(kJ, „a) ](T/6n) gq(8„/T)

and v is the velocity of sound, while 5 and ks are
Planck's and Boltzmann's constants, respectively.
In the actual numerical fitting, 8, and e„are es-
timated from the Zn dispersion curve by scaling,
since neutron scattering data for Cd are not avail-
able.
c. Einstein-like phonon. The energy of this mode,

like the energy of any phonon mode, can be ne-
glected as compared with typical electronic ener-
gies (in the order of Fermi energy). Yet, . it can
supply a very large momentum transfer. Thus, it
is not only effective in causing further intraelec-
tron and intrahole scattering, but also capable of
scattering electrons into hole pockets and vice
versa, as well as causing transitions between dif-
ferent hole pockets. The matrix elements for these
PrOCeSSeS Ci,t„~, Cintra-h~ Ce„h& and Ciater-h ar
in general, different. For simplicity, we assume
all four of them to be equal and constant, that is,

+ B(m, kr, a+ Sm„k»a) [exp(8s/ T) —1]-~,
(a. as)

where C„C„are constant impurity terms and a is
the lattice constant. In addition,

A = 9~'(C', /e}(1/k,8,)(1/~)~,
B=(1/v)(C'/k')(1/k O )(1/~)P

(2. 26)

(2. 2V)

with M the ionic mass, n, pare the fractions of
the phonon spectrum corresponding to the Debye and
Einstein modes, respectively, and C~ and C~ are
constant matrix elements involved in the scattering
of electrons by the two modes, respectively. The
constants A, B, C„and C„are taken as adjustable
parameters.

Equations (2. 10)-(2.13) together with (2.24) and
(2. 25) enable us to describe completely the mag-
netoresistivity tensor p, &.

III. NUMERICAL CALCULATION

We calculate the Hall coefficient R(T), zero-
field resistivity, and the ratio R(T)/r(T) for various
contributions of A, B, C„and C„. For conve-
nience, the actual parameters that we have adjusted
in our numerical investigation are multiples of A,
B, C„and C„as defined by

A' =m, [1/(k~,a) ](8,/6~) A, (3.1)

B' = ~', (k„a)B, (3.2)

c,'=m, c„ (3.3)

Ch mhch~ (3.4)

The numerical values of other relevant physical
quantities as used in the present calculation are
summarized as follows: (i) electron and hole
calipers'

(ii) effective masses"

me = 1,amp

mh =0.2mo,

where mo is the mass of a free electron; (iii) cad-
mium ionic mass'

M =112.4 amu',

(iv) average size of unit cell"'"
@=6.36 A;

(v) Debye temperature'~

O~ =210 'K;

(vi) characteristic temperature for the Einstein-
like mode, e~: taken to be either 54 K or 60 K':
and (vii) characteristic cutoff temperature for the
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where D is defined in a similar way to I3.

D = (1/tr)(C„„r r, /K)(1/ke8e)(1/M)P.

%e also define

(3. '7)

D' = 7~„a»aD. (3.3)

Our calculation shows that the behavior of ptt(T)
and R(T)/t (T) are similar to those of the isotropic
case [Figs. 4(b) and 4(c)j. On the other hand, the

agreement of R(T) with the experimental results
improves drastically. The calculated Hall coeffi-
cient now exhibits a local maximum in the temper-
ature range 10-30 K depending on the value of our
parameters. Typical results are shown in Fig.
4(a).
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FIG. 1. Temperature variation of the Hall coefficient
for the isotropic scattering model. Different values of
the parameters C„&z, & ', and & ' are shown on the
graph. In this case, ez is taken to be 54'K.

IV. CONCLUSIONS AND DISCUSSION-
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Our results can be summarized as follows:
(i) Experimental results can be understood qual-

itatively as well as quantitatively by the inclusion
of anisotropic scattering of electrons by a very
flat, almost Einstein-like phonon mode, a hybrid
of TA and TO branches.

(ii) Within the isotropic scattering model, the
combined effect of Debye and Einstein phonons is
to cause a sharp rise in the Hall coefficient in the

Typical results are shown graphically in Figs.
1-3. We can explain basically the rise in R(T)
around 10'K, the behavior of ptt(T) and R(T)/r(T).
However, within the assumptions of isotropic and
constant matrix elements (2.21), we are unable to
account for the drop in R(T) beyond 11 'K. It is
straightforward to generalize our equations to
handle anisotropic cases. For the sake of clarity,
we present here our results of one special limit:
the case in which C„„,„ is constant and much
larger than the other three matrix elements. This
corresponds to a situation where the Einstein-like
phonon mode is only effective in interhole scattering
but quite inefficient in intrahole, intraelectron,
and electron-hole scattering. Equations (2.24)
and (2.25) now take the following forms:

~, =C,+A[m, /(kz, a) j(T/6a) 8,(6, /T), (3.5)
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FIG. 2. Temperature variation of the zero-field re-
sistivity for the isotropic scattering model with the
characteristic temperature of the Einstein-like mode
ez taken to be 54'K.
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neighborhood of 10-20 'K with a line shape which
compares favorably to the experimental one.
Bloch T' terms alone caused too slow a rise and
the Einstein term alone drops too steeply. If the
impurity term is too large so as to be dominant,
the rise is again very slow; in such a case, the

FIG. 3. Semilogarithmic plot of the product of the
Hall coefficient and the zero-field resistivity as a func-
tion of 100/T for the isotropic scattering madel with a
ez equal to 54'K.

Our fully isotropic model, however, cannot explain
the drop in the Hall coefficient beyond 20 K. Our
calculation evidently yieMs a constant plateau in
that range, in disagreement with the experimental
results.

(iii) This phenomenon of a local maximum in the
Hall coefficient can be adequately accounted for if
anisotropic scattering is properly incorporated.
In fact, the experiments here discussed provide a
direct measure of such anisotropy.

(iv) R(T)//r(T) as plotted against 100/T in a
semilog scale also appears to be linear in the tem-
perature range 4-40 K for both the isotropic and
anisotropic scattering models. A plot of 1/r(T)
alone deviates considerably from the straight line
but not as drastically as observed experimentally.
For the values of A', B', C'„and C'„ that we have
used, the same linear behavior is observed and the
slope varies from 42 to 48 'K, which compares
favorably to the observed 43 'K.

(v) The observed deviation of the zero-field
resistivity from that of a simple Bloch model is
due to (a) the existence of both electron and hole
pockets of different sizes which have very different
scattering parameters, (b) the existence of a term
due to the Einstein-like phonon mode, and (c) the
very small value of the mass ratio m, /m, . All
these factors combine to cause an apparent fit to
a single Bloch 8, function with scaling parameters
approximately equal to —,'8~ as observed experi-
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mentally.
(vi) Because of the other approximations em-

ployed in this calculation, we feel that a more
realistic treatment of the Fermi surface is some-
what meaningless. A much more sensible ap-
proach would be the use of a variational technique. '

(vii) In spite of the shortcomings of the present
approach, our calculation does confirm the im-

portance of the Einstein-like phonon mode which
has always been overlooked.
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