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A recently developed method involving self-consistent pseudopotentials has been used to calculate the

electronic structure of several Si (111)surface models. The results for (1)&1)unreconstructed, relaxed and

unrelaxed surfaces are compared with earlier calculations and discussed in terms of density-of-states curves

and charge-density distributions. A fully self-consistent calculation has been carried out for Haneman's (2)&1)
reconstructed surface model. It is found that the important experimental results can be understood using this

model, and changes in the electronic structure occurring after reconstruction are rationalized on chemical

grounds. In particular infrared-absorption measurements, photoemission measurements, and recent angular-

dependent photoemission measurements find consistent explanations.

I. INTRODUCTION

In this paper, self-consistent calculations of the
electronic structure of several Si (111) surface
models are described. The electronic structure
of Si (111) surfaces has been investigated in a large
number of experimental studies. '- Most of the ex-
periments have been done on surfaces having either
(2x 1) or (7x 7) superlattice structures which are the
metastable and stable surface arrangements of Si(111),
respectively. Very useful results, however, have
been obtained from theoretical studies on unrecon-
structed (1x 1) surface models. '0 '~ In spite of the
usefulness of these calculations, only results ob-
tained from realistic reconstructed surface models
are consistent with all the experimental data. In
the present paper two unreconstructed (1x 1) sur-
face models (unrelaxed and relaxed) are investi-
gated before studying (for the first time by a self-
consistent method) a realistic (2x1) reconstructed
surface model. We note that self-consistency in
the present context means the self-consistent elec-
tronic response to a given structural model. Even
though calculations of this kind can and have been
carried out for several structural models [unre-
laxed, and (2x 1) reconstructed in our casej it is
extremely difficult, if not impossible, to compare
total energies to determine the most favorable sur-
face structural arrangement. The reasons for this
are twofold. First, it is known experimentally
that the surface geometry is strongly temperature
dependent, therefore free energies involving en-
tropies must be compared. Second, the total sur-
face energies are large quantities which differ only
slightly for the different geometries. With the
present techniques they cannot be calculated with
sufficient precision to yield reliable results for the
energy differences. The present calculations as
well as all previously existing self-consistent cal-
culations are therefore restricted to the self-con-

sistent determination of the electronic structure in
response to a given structural model.

The only other self-consistent approach to the
(111) surface of Si has been presented by Appel-
baum and Hamann" (AH), and like our approach,
it is based on the pseudopotential scheme. For
metal surfaces, pseudopotential calculations by
AH for ~4 Na and by Alldredge and Kleinman (AK)
for Al and 6 Li have been carried out very suc-
cessfully. In addition to the specific problems
connected with a self-consistent treatment, the
main difficulty arises from the absence of period-
icity in treating the surface case.

AH solve this problem by expanding the electron
wave function in a mixed representation, i.e. , two-
dimensional plane waves to account for the periodi-
city parallel to the surface, multiplied by functions
that depend on the remaining spatial coordinate s
perpendicular to the surface. In this mixed repre-
sentation, the Schrodinger equation becomes a set
of coupled differential equations in the spatial co-
ordinate z which can be integrated stepwise nu-
merically, obeying appropriate boundary conditions.
between the vacuum and a matching plane some-
where in the cyrstal. Numerical problems and in-
stabilities, however, turn this physically appealing
concept into a rather involved procedure.

AK also start with a mixed representation; how-
ever, they use a series of analytic trigonometric
functions describing the s variation of the wave
function perpendicular to the surface. Retaining a
finite number of these periodic functions is equiva-
lent to periodically repeating the surface (or better,
the thin film). If these films are spaced sufficient-
ly far enough apart from each other, and if they
are sufficiently thick, their surfaces can be re-
garded as noninteracting and representative of the
true crystal surface. More precisely, AK expand
the s variation of the wave function in a truncated
set of trigonometric sine and cosine functions, all
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of which individually vanish half-way between the
films. We believe that these specific boundary con-
ditions, which are not strictly imposed by the phys-
ics of the system, may result in slow convergence
behavior since they add an artificial symmetry to
the problem.

Our method in contrast to AK's approach uses a
set of periodic, trigonometric functions with arbi-
trary rather than fixed phases.

Using this basis set, our procedure is then com-
pletely equivalent to placing the film in a periodic
array and expanding the wave function in plane
waves in the usual form as for bulk calculations.
The most appealing feature of the approach is that
the empirical pseudopotential method'~ (EPM) in
its simple standard form can now be applied. In
particular, non-local potentials can easily be in-
corporated (which is not evident in AH's method),
and experience, e.g. , about convergence of wave
functions, gained in calculations of bulk layer
crystals can be used. The method that is adopted
for the present study of the electronic structure
of Si (111}surfaces, however, goes beyond the
standard EPM through the requirement of self-con-
sistency. As reported in earlier papers"'" the
method may be applied to various kinds of local
configurations like atoms, molecules, impurities,
vacancies, one-dimensional chains, two-dimen-
sional layers, surfaces, or interfaces. The dis-
advantages, and also the ultimate limitations, of
the method in dealing with complicated systems is
connected to the large number of plane waves re-
quired to describe the systems' wave functions.
The use of symmetry-adapted combinations of
plane waves is a helpful tool in dealing with this
problem.

The remainder of this paper will be organized as
follows. In Sec. II the various steps in the self-
consistent calculations are discussed in detail.
The results for the electronic structure of unre-
constructed, relaxed, and unrelaxed Si (111) sur-
faces are presented in Sec. DI. Section IV contains
the discussion of results obtained for a (2x 1) re-
constructed surface model. In Sec. V the main
results are summarized and some concluding re-
marks are given.

II. CALCULATIONS

In this section a detailed description of the self-
eonsistent calculations is given, carried out on
several Si (111) surface models. The method has
been described briefly before, '3'9 and was men-
tioned in Sec. I. The essence of our method of cal-
culation is to retain (artificial) periodicity perpen-
dicular to the surface. In other words, a large
elongated unit cell is defined which, in two dimen-
sions, is spanned by the shortest lattice vectors
parallel to the surface, i.e. , for the unrecon-

structed surface, hexagonal lattice vectors with the
length of ~~ M2a„where a, = 5. 43 A is the lattice
constant of bulk Si (the 2x 1 reconstructed case will
be discussed later), and by a long c axis extending
over M atomic layers and N layers of empty space.
The numbers M and N have to be chosen such that
(a) the film oi' material is thick enough to effective-
ly decouple the two surfaces on each side of the
film and (b) the film surface potential can decay into
the "vacuum" without perturbation arising from
other periodically displaced films. Various test
calculations showed that films of M = 12 atomic
layers separated by N- 4 layers of empty space
resulting in a lattice constant c = —', v 3 a, fulfill these
requirements well for Si. The problem thus con-
sists of self-consistently solving the electronic
structure of the "periodic" system whose hexagonal
unit cell, with the above-mentioned dimensions,
contains 12 Si atoms (for the unreconstructed sur-
face}. Proceeding in the standard manner, we ex-
pand the electron wave function in plane waves with
reciprocal-lattice vectors 6:

g(r) = ~Q~{G)84tk4G)~f'

In order to account well for the "structure" in the
large unit cell (i.e. , the individual atoms or bonds),
this expansion has to be carried to sufficiently large

2G vectors. A kinetic-energy cutoff E, = )G ~i
=2. f Ry, which is independent of the size of the
unit cell, was chosen in accordance with earlier
bulk calculations on layer crystals. This cutoff,
which corresponds to a cutoff close to (2, 2, 0) in
cubic bulk Si, yields about ].60-180 plane waves up
to (0, 0, 12), which allow sufficient variations of the
wave functions inside the unit cell and at the sur-
face. The variations of the calculated total charge
inside the film can be compared to bulk charge
densities of Si calculated with much larger cutoff
energies. Typical differences are of the order of
20% in the peak values of the charge distribution.
To improve the energy convergence another 340
plane waves are included via Lowdin's perturba-
tion scheme, ~ which corresponds to a second cut-
off at E, =6.0 By. Wewouldliketomention that the

decay of the wave function into the "vacuum"
does not represent a particular problem m
this context. In fact„ the wave functions at the
surface decay into the vacuum over about the same
length as do wave functions in the bulk of very-
covalent crystals (e.g. , bulk Si or layer compounds)
decay along certain (no-bond) directions. This can,
e.g. , be inferred from the results of AH which,
because they are obtained by real space integration
at the surface, should be fully converged.

No group-theoretical simylifications were incor-
porated into the present calculations, since it was
desirable to solve Schrodinger's equation for gener-
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S(G) =—Es-""' (5)M

is the structure factor describing the atomic posi-
tions in the "large" unit cell, and where V~(( G))
are form-factor values derived from a continuous
curve of the form

a&(q -a, )
exp[a, (q' —a4)]+ 1 (6)

The four parameters a, in Eq. (6), which are given
in Table I, were determined by fitting V(q) to three
form-factor values for bulk Si: V(1,1,1) = —0.2241
Ry, V(2, 0, 0) = 0.0551 Ry, V(3, 1, 1) =0.0724 Ry,
and renormalizing it for the different unit-cell vol-
ume. Some continuous extrapolation of the kind of
Eq. (6) is necessary to obtain form factors for the
"new" G vectors of the surface problem. While
the shortest G vector in bulk Si(111)has the length
of 1.06 a.u. , in the surface problem G vectors as
short as 0. 14 a.u. are needed. The empirical po-
tential Eq. (6) is very uncertain at these small
G vectors, and large changes are expected in the

TABLE I. Parameters entering Eqs. (6) and (13) to
define the empirical and ionic Si pseudopotentials.

8(
C2

C3

84

0, 279
2.214
0.863
1.535

-0.992
0. 791

—0.352
—0. 018

al % points in the two-dimensional (hexagonal)
Brillouin zone. The only remaining symmetry
operation which would leave these % points invariant
would be a reQection parallel to the surface plane
which, however, is not present in the D3~ group of
the Si (111) films.

The expansion of the wave function leads to a ma-
trix eigenvalue equation of the usual kind:

~ (Z.-.-. E5.-.-.).,(G) =0, (2)
Go

which is solved by standard methods. '~ The Hamil-
tonian matrix elements are of the form

2
~

p
ffo o~ = lk+ Gl 5o' or +Vpl(G G )

where VPI(G, G ) represents a general pseudopo-
tential matrix element.

The present calculations are restricted to the
use of loca/ pseudopotentials which are known to
yield very satisfactory results for bulk Si. The
self-consistency loop was entered with an empiri-
cal potential

V-.(G) = S(G)V-.(I G I) (4)

where

course of self-consistency. The long-range poten-
tial fluctuations corresponding to these small G
vectors are absent in a bulk Si crystal. In the sur-
face case, they are important as they form the
surface potential barrier and strongly determine
work functions and ionization potentials. The solu-
tions of the eigenvalue problem, Eq. (2), are the
energies E„(k) and the pseudo wave functions de-
fined by Eq. (1). These quantities were evaluated
at 28 % points in the irreducible part ($) of the two-
dimensional hexagonal Brillouin zone. This rela-
tively large number of sampling points was chosen,
rather than one or several "special" k points, to
precisely determine the Fermi level and the total
valence charge. The unreconstnccted Si (111) sur-
face is metallic since the Fermi level falls within
the "dangling bond" surface band. In this surface
band, occupied and unoccupied states differ in their
electronic charge distributions, which justifies the
"fine sampling of the Brillouin zone. In the case
of "true semiconducting surfaces, as unrecon-
structed (110) zinc-blende surfaces or (2x1) re-
constructed (111)Si surfaces, we believe calcula-
tions based on a few special k points will yield good
self-consistent results. To determine the Fermi
level, the density of states, D(E), was evaluated
using the method of Gilat and Dolling, ~o with the
necessary energy gradients derived by k ~ p tech-
niques. Once the Fermi level EF was known, the
total valence (pseudo) charge density p(r) could be
evaluated.

Once the valence charge p(r) is known in terms
of its Fourier components p(G), the Hartree-Fock-
type screening potentials V» and Vx can easily be
evaluated. V~ is the repulsive Coulomb potential
seen by an electron and generated by all the va-
lence electrons. It is defined by Poisson's equa-
tion:

V Vs(~) = —4ve p(r),
and it can be written as a Fourier series

V„(r) = +V„(G)e' ',

(7)

(8)

with

V„(G) = 4we'p(G)/'I G I' ~

The divergence of Vs(G) for ( G ) -0 is physically
irrelevant, since it is exactly cancelled by the ionic
potential generated by the positive Si', ion cores
(over all charge n-eutrality). We can therefore ar-
bitrarily set Vs(G= 0) = V«~(G= 0) = 0. Numerically,
however, the divergent character of V„(G) [and
V„,(G)] for small G values poses stability problems,
as we shall discuss later. The nonlocal Hartree-
Fock exchange potential ~V(r, r ), which if added to
the Hartree potential V„(r) cancels the electron
self-energy contained in Vs(r), has been approxi-
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The exchange potential is an absolute potential which
approacheszerointhevacuum as the charge goes to
zero. P~ ~(G= 0) has a finite value and is essential
in determining the absolute value of the potential.
The sum of the two potentials Vz(r) and Vx(r) yields
the electronic screening potential

V. . (r)= [V (G)+V (G)]s' " (12)

and is at each step in the self-consistent loop
evaluated from the total valence charge.

After initiating the calculations with an empirical
potential V, r [Eq. (4)], the self-consistent loop
is continued by adding the screening potential

Vo~, ~ to an ionic potential V,o, generated by the
Si~ ionic cores. This ion pseudopotential contains,
in addition to the exchange z, the only parameters
of the self-consistent calculation. First, there are
.the atomic positions in the surface which enter
V«, via a structure factor given by Eq. (5). In ad-
dition to the structure model, the individual atomic
ionic potential is also based on a parametrized

mated using the statistical exchange model of Sla-
ter. Only the valence charge is included in cal-
culating V„. Core-valence cross terms are lo-
calized in the core region and are believed to have
little effect on the self-consistent valence electron
structure of Si. It thus has the local form

Vr(r) =-/Ss~(3/6v) ~ [p(r)] ~s .
In the present calculations the value ~.= 0.79 is used
in accordance with AH, which brings Slater's ex-
change in agreement with Wigner's~ interpolation
formula at the average valence charge density of
Si. In addition, bulk calculations with 0. = 0. 79 have
yielded satisfactory results. The function [p(r)]' '
has been obtained by evaluating

p(r)= rp(G)e' '
at a three-dimensional grid of N™10000 r points
sampling the real space unit cell. The cube root
has then been taken at each individual r point, and
the resulting function [p(r)]'~' hasbeentransformed
back into Fourier space according to

p' '(G) =~ Z[p(r, )]"'8-"'~ . (10)

The precision of this procedure can easily be tested
by omitting the step at which the cube root of p(r, )
is taken. The final p(G) should then be identical to
the initial values. The exchange potential then has
the form

V„(r) = —n(3/2v)ea(Sm~)' '
W I

P1/3(G)8 so r

model. Assuming that, to first order, the ion
cores do not change in the free ion, in the bulk
crystal, or in the surface, an atomic model poten-
tial which was fitted to atomic-term values (as
done by Heine and Abarenkov ~} has been used in
our calculation. One important (but not sufficient}
check on the quality of this potential is to use it to
perform a self-consistent Si bulk calculation. This
test is not sufficient, since bulk calculations do not
probe the long-range Coulomb tail of ionic poten-
tials. In the case of surfaces, however, this tail
is of importance. On the other hand, the Coulomb
tail is model independent and results in a 1/q be-
havior of the Fourier-transformed potential for
small wave vectors.

The repulsive cores of the ionic model potentials
fitted by Heine and Abarenkov to atomic term values
are nonlocal of / - dependent. In the present calcu-
lation, a local, "on Fermi sphere" approximation
was used in deriving the Fourier transform. This
Fourier transform was fitted to a four-parameter
curve of the form

V,",,(q) = (a,/q )[cos(a~) +a,]e'4' (13)

The values of these four parameters are given in
Table I. The potentials are normalized to an atomic
volume of 169 in atomic units (a. u), and the units ar e
Hy if q is entered in a. u. Equation(13) behaves like
1/q 'for small q, representing the Coulomb tail,
and decreases exponentially for large q, allowing
a definition of a reasonable cutoff q, = 3 a.u. for

As mentioned above, self-consistent Si bulk
calculations based on this ionic pseudoyotential,
yield a band structure that is in excellent agreement
with the most recent empirical calculations. 4

The most important electronic transition energies
are reproduced to within a 0. 1 eV. The total bulk
valence charge derived from this self-consistent
bulk calculation compares very favorably with the
empirical charge densities of Walter and Cohen.
The values of charge densities in the bonds change
from 25. 5 to 25. 8 electrons per unit cell, and at
the atomic sites from 7 to 5. 5, which results from
a more repulsive self-consistent potential at the
atoms.

The input potentials for steps n= 1 and 2 of the
self-consistent loop then become

(14)
V~~~(r) = V,„(r)+V~o~~„,(r) .

Note that, while V, r(r) and V„,(r) are linear su-
perpositions of atomic potentials, all other poten-
tials V,'~, and V,',""'

(N a 1) are of a more general
form and can no longer be factorized into structure
factor times form factor. This fact accounts for
the nonlinear nature of the dielectric screening and
results in the existence of "forbidden" reQections
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FIG. 1. Perspective view of the Si crystal structure
projected on a {110)plane. [111]direction is vertical.
{111)surface is obtained by cutting the vertical bonds in

a horizontal plane.

in the self- consistent potential.
Since the potential V,„~(r) was determined em-

pirically for Si bulk crystals, it is not expected to
yield a very good screening charge for a surface
described by the ionic cores V„,(r). In fact, V,', '(r)
results in a very different eigenvalue spectrum
and charge than does VI~~(r), and any further steps
in the self-consistent loop based on a straightfor-
ward extension of Eq. (14) would be unreasonable
and would not converge. This very unstable behav-
ior of the self-consistent potentials in particular,
for the small Q vectors, has already been described
by Lang and Kohn and by AK, 6 In agreement
with these authors we also find that relaxed, modi-
fied versions of Eqs. (14) which compute the input
potential of stage (n+ 1) from a linear mixture of in-
put and output potentials of stage (n) does not result
in a convenient method to attain rapid convergence
for the surface problem. In the present calcula-
tions, these instabilities were dealt with by com-
puting adjusted input potentials V„" (G) for n& 2
from preceding input and output potentials individ-
ually for each small Q- vector. This can best be
done by inspecting V,„, vs V&, separately for each
small Q and by interpolating graphically between
the calculated values. Even though the various
Fourier components are not independent, this
procedure helps to reach convergence fairly rapid-
ly. Mathematically, the instabilities are reflected
in rather steep curves (with negative slopes) of
V,«vs V«, i.e. , very small changes in V«result
in large overshoots in V,«. For higher Q vectors,
) Q) ~1 a.u. , no instabilities occur and convergence
is easily reached. Because of the above-mentioned
instabilities and difficulties in determining long-
range potential fluctuations, work functions and

ionization potentials are difficult to obtain correct-
ly by our method.

m. RESULTS FOR UNRECONSTRUCTED Si (111)SURFACES

Clean unreconstructed Si (11&) surfaces are
known to be thermodynamically unstable below
900 'C. ' Stability can be reached at lower tempera-
tures by adsorption of adatoms. Nevertheless, the
clean unreconstructed surface presents an excel-
lent model for the theoretical study of surface ef-
fects, '~'~ and results obtained for it can be corn-
pared to subsequent more elaborate (reconstructed)
surface calculations. Our study of the Si (111) sur-
face therefore starts with the clean, unrelaxed,
unreconstructed surface, in which all surface atoms
remain at their exact "bulk" positions. In a second
("relaxed" ) model the outermost atomic layer was
rigidly relaxed inwards by an amount of & = 0. 33 A
as proposed by AH. ' In Fig. 1, the crystal struc-
ture of Si is viewed in perspective along with the
[110]direction. The [111]direction is vertical.
A horizontal (111) surface is obtained by cutting all
vertical bonds in a plane.

An excellent over-all impression of the behavior
of the electronic states at the Si (111) surface can
be obtained by considering the total, self-consis-
tent valence charge distribution, as presented in
Fig. 2, for the unrelaxed surface model. The fig-
ure shows charge density contours in a (110) plane
cutting the (111) surface at right angles (see Fig. 1).
The plotting area starts midway between two
films and extends about 4~ atomic layers into the
bulk. The atomic (unrelaxed) positions are indi-
cated by dots. Moving deeper into the crystal, the
charge distribution closely resembles the Si bulk
charge densities; near the surface, it decays rapid-
ly into the "vacuum. This rapid decay assures
the required "vacuum" and hence the decoupling of
the films. No surface states can be recognized
on this plot, since only a small number of them
exists in a continuum of decaying bulklike states.
It is instructive to compare the charge distribution
deeper inside the crystal to the standard, highly
convergent Si bulk charge densities of Walter and
Cohen. ' These bulk charge densities which were
derived from wave functions including about 90 plane
waves up to G= (2, 2, 1)2v/a, have values of 25. 5,
7, and 11 electrons per bulk unit-cell volume 0
=-,'a, for the bonding site, the atomic site, and the
antibonding site, respectively. Owing to the lower
degree of convergence in the present surface cal-
culations, the charge density reaches values of
20, 9, and 12 at the respective sites. This lack
of charge "modulations, which amounts to about
25% at the bonding sites, results in an error in
the exchange potential (-p'~3) of at most 8% at the
bonding sites. We believe that this range of un-
certainty in the potential or charge is acceptable
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Si (ill) SURFACE, UNRELAXED
TOTAL VALENCE CHARGE

ic site, and —1.6 (-1.0) at the antibonding site,
respectively. The self-consistent potential at the
bonding sites differs slightly for the different bonds,
thus causing some asymmetries in the bond charge
distributions. Note the more repulsive core of the
self-consistent potential resulting from the model
ion potential used. As mentioned earlier, both po-
tentials lead to very similar bulk energy spectra
and bulk charge densities. The self-consistent
potential of AH for a relaxed surface model reaches
values around -2.2, &0.2, and -1.6 at the bonding

Si (ill) SURFACE, UNRELAXED

Vemp (RY)

FIG. 2. Total valence charge distribution for an un-
relaxed Si (111) surface. Charge is plotted as contours
in a (110) plane intersecting the (111) surface at right
angles. Plotting area starts in the vacuum and extends
about 42 atomic layers into the crystal. Atomic positions
and bond directions are indicated by dots and heavy lines,
respectively. Contours are normalized to electrons per
Si bulk unit-cell volume Q0=4a, .

' —18 J
/

and does not influence the results more than other
conceptual uncertainties, like the choice of the
factor ~ scaling Slater's exchange potential. The
total charge density can also be compared with re-
sults obtained by AH for a relaxed Si (111)sur-
face. '0 (The outermost atomic layer has been re-
laxed inwards by 0.33 A.) Scaling their charge contour
plot by the volume 0, the values 20, 3, and 10 (a 2)
are obtained for the respective sites. Their par-
ticularly low value at the atomic site might result
from a stronger repulsive core potential.

In Fig. 3, contour plots are presented of the
self-consistent pseudopotential giving rise to the
valence charge discussed above and of the empirical
starting potential. The potentials are displayed
in the same plane as the charge in Fig. 2, with
values given in rydbergs. Self- consistency was
reached after 5-7 steps within 0. 01 Ry, except for
the long-wavelength components of the potential
which merely determine the vacuum level and the
ionization potential. Normalized to approach zero
in the vacuum, the potential values for the self-
consistent and empirical potentiaLs are —1.8
(-1.8) at the bonding site, +0.8 (+0. 1) at the atom-

Si (ill) SURFACE, UNRELAXED

FIG. 3. Contour plots of the empirical starting poten-
tial V,m~ (top) and the final self-consistent potential V«
(bottom). Plotting areas are identical to Fig. 2. Poten-
tial values are given in rydbergs normalized to zero in
the vacuum.
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(b) SI) )SI Sl) )Sl )s;
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0 2 4 6 8 10 12

DlSTANCE {X)
FIG. 4. {a) Empirical (Ve~) and self-consistent (V«)

potentials averaged parallel to the (111) surface, plotted
as a function of the coordinate z perpendicular to the sur-
face. (b) Individual potential contributions adding up to
the self-consistent potential V„of Fig. 4(a).

site, atomic site, and antibonding site, respec-
tively. This is in good agreement with our self-
consistent potential except possibly at the atomic
site where the AH value is not explicitly given in
Ref. 10.

To illustrate the various contributions to the total
self-consistent potential in Fig. 4(b), the potentials
V„,(z), V„'(z), and Vx(z) averaged parallel to the sur-
face are plotted as a function of the coordinate s
perpendicular to the surface. Owing to their strong
long-range Coulomb character, V„, and V~ show
only small short-range fluctuations compared to
their absolute values. V„, rises about 30 Ry over
the last six atomic layers and forms a strong sur-
face barrier. It is very delicately balanced by the
screening potential V~ leaving a weak attractive net
potential with Quctuations on the scale of inter-
atomic distances of the order of 0. 5 Ry. Strictly
speaking, only the sum of V„and V„, is physically
meaningful; the individual potentials diverge as
I Gl 'g, .

The sum is added to the exchange potential V~,
which is of comparable strength and modulation.
The resulting total self-consistent potential is in-
dicated in Fig. 4(a). In this figure, the original
empirical starting potential is superimposed to
demonstrate the change in the potential that occurs
because of the self-consistency procedure. While

inside the crystal the two potentials V, ,(z) and

V„(s) are almost identical (the potential differences
visiMe in Fig. 3 cancel almost exactly after aver-
aging parallel to the surface), the self-consistent
potential V„(z) is somewhat deeper at the outer-
most atomic layer and exhibits a higher surface
barrier of about 0. 2 Ry. These changes localize
the charge more in the surface, stabilize the sur-
face states, and increase the ionization potential.
In fact, using the empirical starting potential,
charge originating from states at the top of the
valence bands was leaking out into the "vacuum.
This charge was confined back to the surface by the
stronger potential obtained in course of self-con-
sistency. Though the differences between the em-
pirical and self-consistent surface potentials seem
to be relatively small, they are essential to sta-
bilize the surface. An ionization potential of about
4. 0 eV has been calculated. As mentioned earlier,
this quantity is difficult to determine precisely with
our method and the calculated value is only ap-
proximate (a 1 eV).

Figure 5 displays the two-dimensional band
structure of a twelve-layer Si (111)film based on
the self-consistent potential for the relaxed sur-
face model. The band structure is presented for sur-
face k vectors, k„, between I'(0, 0), M(—

2, 0), K(—'„—,)
and I'(0, 0). The 24 valence bands can be roughly
divided into three bulk groups, representing the six
low-lyings-likebands, six bands of mixed s and p
character, 11p-like bands, and one separate p-like
dangling-bond band in the fundamental gap. The three
groups of bands would, with increasing film thick-
ness, approach continua separated by several gaps
in which most of the surface states appear.
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FIG. 5. Two-dimensional band structure of a 12-layer
Si(&&1) film (relaxed surface model). The energy is
plotted as a function of ki, in the two-dimensional hexag-
onal Brillouin zone. Various surface states or strong
surface resonances at high-symmetry points are indicated
by dots and labeled according to the description in the text.
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Let us first discuss the dangling-bond bands in the
fundamental gap. Suppose a Si bulk crystal is cut
even 12 layers, parallel to the (111)plane, and the
pieces are gradually separated from each other.
%'ith increasing distance, one state each would
split away from both the valence bands and the con-

,
duction bands to meet about at half-gap to form the
twofold-degenerate dangling-bond surface band
corresponding to the broken bonds on either side
of the Si films. In Fig. 5, the two bands are not
exactly degenerate, corresponding to some weak
interaction (-0.2 eV) still present between opposite
surfaces of the 12-layer films. If the surfaces are
unrelaxed and unreconstructed, the two dangling-
bond bands show almost no dispersion parallel to
the surface, i.e. , they would appear extremely
Qat in the band-structure plot. If the outermost
atomic layer is relaxed inward, the dangling-bond
band shows an increased dispersion parallel to the
surface together with a slight over-all shift of the
bands (see Fig. 5). This effect shall be discussed
later in more detail in relation to charge densities
and densities of states. In contrast to the dangling-
bond surface band which exists throughout the two-
dimensional Brillouin zone independent of relaxa-
tion, other surface states show up only in parts of
the two-dimensional Brillouin zone, and some de-
pend on relaxation. They are indicated by dots in
Fig. 5 at the high-symmetry points I", E, and M.
A region of particular interest is around the point
K. Strongly localized surface states exist in the

gap between —7 and —9 eV, independent of surface
relaxation. These states merge into the continuum
at M and become strong surface resonances. A

similar behavior is found around E between —2 and
—4 eV. Even though the existence of these surface
states does not depend upon relaxation, their exact
energy position is a function of relaxation. Other
surface states appear only after relaxation, like
the splitting away of the lowest valence-band pair
between —9. 5 and —12. 5 eV throughout the zone.
All these findings have qualitatively also been ob-
tained in a recent analytical model calculation by
Falicov and Yndurain. ~

Compaiison with a tight-binding surface band

structure calculated by Pandey and Phillips'
(PP} shows qualitative agreement, though quan-
titative differences exist in energy and num-
ber of surface states. In particular, five sur-
face states are found in our calculations at K which
agrees with the calculations of Falicov and Yndu-
rain, whereas PP only report four surface states.
The existence of more than four surface states at
a given vector k „ indicates that bonds deeper in
the crystal, not connected to the outermost layer, .

are strongly affected by the surface. The charac-
ter of the various surface states will be discussed
later in terms of charge density distributions.
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FIG. 6. Density-of-states curves for the self-consis-
tent results on 12-layer films for the relaxed (broken
line) and unrelaxed (solid line) surface geometry. Sur-
face states are indicated by arrows and labeled accord-
ing to Fig. 5. Inserted is the density of states inthe
vicinity of the fundamental gap for a 6-layer (2 x 1) re-
constructed surface model.

Density-of-states curves for the self-consistent
results for the unrelaxed and relaxed surface model
are presented in Fig. 6. Since these curves repre-
sent the total density of states for a 12-layer slab,
their over-all features strongly resemble those of
the Si bulk density of states. The results for the
(2X 1) reconstructed surface (insert) are obtained

. for a 6-layer slab. They shall be discussed in Sec.
IV together with 12-layer (2x 1) reconstructed sur-
face calculations. To locate structures associated
with surface states (no distinction is made in the
present case between bona fide surface states and
strong surface resonances}, we investigated the
charge-density distributions for small energy in-
tervals scanning the entire width of the valence
bands. One problem which arises, when stimulating
surfaces by finite slabs of atoms periodically re-
peated, is spurious structure in the density of
states due to the "unreal" periodicity of isolated
slabs perpendicular to the surfaces. Spurious two-
dimensional singularities occur. Their number
increases with the number of atomic layers per
slab. For the "true" surface case these singulari-
ties become "dense" and disappear. For finite-
slab calculations, all structures in the density of
states have to be investigated in this spirit. Simi-
lar problems are encountered when simulating an
amorphous material by large unit cells periodically
repeated. 28 The locations of surface states and
strong surface resonances (for the relaxed case)
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TABLE II. Calculated energies of surface states and strong surface resonances
of the relaxed Si (111) surface at I' (center), K (corner), and M (edge midpoint) of
the two-dimensional Brillouin zone. Also indicated are experimental ultraviolet
photoemission spectroscopy (UPS) results for (2 x1) and (7x7) reconstructed surfaces.
The energy zero is taken at the bulk valence-band edge Ez.

SCLC AH
(1 x1) Relaxed surface

Experiment
(2 x 1) (7 x 7)

1.2
—1.5(2x)

—12.7

0. 5

—2. 0
-4.2
—8. 5
—9.8

o. 5
—2. 6
—3.1
—8. 1
—8.7

—10.7

rd
~tb
I'rb

Kd

1b'
Ktb
K)b
Kgb t

Md

Mtb

M~b g

0. 88
—1.95 (2x)

—12.87

O. 04

—3.55

1.04
—1.71(2x)

—12.9

0.11

—5. 65
—8. 35
—9.6

0.17

—3.78

-—1.0
—11.7'

-o.5'
—o.45"
—0.6

—1.5~
—12.3'

O. 1'

—7, 5

-3.6'

preference 6.
~Reference 2.
'Reference 3.

Reference 9.
'Beference 10.

Reference 12.
This work.

are indicated by arrows in Fig. 6. Their labeling
corresponds to the regions around high-symmetry
k points in the two-dimensional Brillouin zone from
which they originate (see dots and labeling in Fig.
5). The surface state energies are given in Table
II and compared to experimental data obtained from
ultraviolet photoemission spectroscopy (UPS) mea-
surements on (2x 1) and (7x 7) reconstructed sur-
faces. Also indicated in Table II are the results
of the self-consistent pseudopotential calculation
of AH and of the empirical tight-binding calcula-
tion of PP on unreconstructed relaxed Si(111) sur-
faces.

Let us now examine the various surface bands
in more detail. When relaxing the outermost atom-
ic layer rigidly inwards by an amount of 4 = 0.33 A,
a surface band (twofold quasidegenerate in our
model originating from the two surfaces of the slab)
throughout the entire zone splits off between —11
and —13 eV. It essentially corresponds to s-like
states with some P, admixture (centered on the tsvo
outermost atomic layers) which decay into the
crystal Atypic. al charge-density plot of these
surface states near I' (F») at about —12.7 eV is
shown in Fig. 7 (top). As one follows this surface
band from I' to M to E the charge center moves
somewhat back into the crystal, e.g. , the charge
distribution of the state K, b& at about —9.8 eV is
mostly s-like on the see0nd atomic layer with
charge extending considerably into the "longitudin-

al" bond between second and third atomic layer.
A similar situation is found at M for the state M».
at about —10.7 eV. At these two points (K and M)
the predominant s-like charge on the outermost
layer is transferred to the surface states K» and
M f b at somewhat higher ene rgie s around —8 ~ 5 eV.
These states (in particular, K») are strongly lo-
calized on the outermost layer [see Fig. 8 (bottom)]
and decay into the crystal being localized at every
other layer (1, 2, 5, etc. ). Roughly, it can there-
fore be said that at K the state K». at —9.8 eV has
s-like charge on the second, fourth, etc. , atomic
layer, decaying into the bulk, whereas the state
K» at —8. 5 eV has decaying s-like charge at the
first, third, etc. , atomic layer.

The next surface states of strong surface reso-
nances appear only at considerably higher energy,
and they correspond to mostly p-like states with some
s admixture. Starting at I' at —1.5 eV (I',~), a two-
fold-degenerate (fourfold in our ease of two sur-
faces) surface band appears corresponding to the
transverse back bonds between first and second
atomic layer; its charge distribution is shown in
Fig. 7 (bottom). This band merges into the con-
tinuum as one goes from 1" to M, where it appears
as a strong resonance. Again a region of special
interest is at K. A very similariarrangement to
the low-lying s states is found for the energies of
the P states. The bulklike states merge into two
narrow groups of bands separated by a - 2-eV gap
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Si (ill) SURFACE, RELAXED

STATES NEAR BOTTOM OF
VALENCE BAND AT —12.7 eV (Pg&)

p states at K. This kind of dehybridization de-
creases band dispersion, localizes states, and
favors the formation of the surface states. In fact,
it is the special form of the structure factor at K
which allows separation into s states centered on
even- or odd-numbered layers, longitudinal p
states, and transverse p states. ~ To support this
statement further we note that the charge distribu-
tion for the state Z, ~ at —4. 2 eV is almost identical
to the charge of the states F„at —l. 5 eV, [see
Fig. T (bottom)] and therefore has strong trans-
verse character appearing between the first and

Si (ill) SURFACE, RELAXED

STATES AT —2 eV (Kfi, )

Si (ill) SURFACE, RELAXED

STATES AT —1.5 eV (I qb)

Si (ill) SURFACE, RELAXED
STATES AT —8.5 eV (Kfb)

FIG. 7. Charge-density contour plots for two surface
states at I'. States (I'fQ) at —12.7 eV form the bottom of
the valence bands (top figure), the transverse back bonds
I'

t& (bottomfigure), are located -1.5 eV below the valence-
band maximum. Indicated charge values are only for
comparison.

(see Fig. 5). One surface state (K».) is found in-
side this gap at about —2 eV. In contrast to the s-
like surface state E» at —8.5 eV, this state doesnot
appear midgap; a small potential perturbation might
have moved this more sensitive p-like state slightly
up, towards the upper group of bulklike bands. An-
other surface state (K„) splits off below the lower
group of bulklike bands at —4.-2 eV. The resem-
blance between the s- and p-like band structure at
E, and an inspection of the corresponding charge
densities, suggest very strong decoupling of s and

FIG. 8. Charge-density contour plots for two surface
states at K. Longitudinal p-like back-bond orbital s Z&&.
(top figure) are located at —2 eV, while the s-like charge

K&& locali2'ed on the outermost, third, etc. , atomic layers
(bottom figure) has an energy of —8. 5 eV.
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second, third and fourth, etc. , layer. The state
K,ei at —2. 0 eV [see Fig. 8 (top)] is of longitudinal
character, the charge appears in the longitudinal
bonds between the second and third, fourth and
fifth, etc. , layer, decaying into the crystal. We
would like to note that the behavior of surface states
being localized at alternating atomic layers is not
an artifact connected with the finite-slab approxi-
mation; it has analytically bien confirmed for
semi-infinite surface models. ~

In contrast to X' where two transverse back bond
states exist, at E only one such surface state ap-
pears, the other having merged into the continuum.
Again the situation at M is similar to that at K, with
smaller gaps, however, and surface states merging
into the continuum. The preceding analysis showed
clearly that surface states can "penetrate" deeply
into the longitudinal bond between second and third
layer, which puts severe restrictions on the size
of model clusters representing the surface, and
which has to be considered in positioning a match-
ing plane as used by AH separating the surface re-
gion from the bulk. It can be inferred from Fig. 6
that inward relaxation strengthens the transverse
back bonds and therefore lowers the energies of the
states 1',~ and E,~. It weakens the longitudinal back
bonds and raises the energy of states like E»..
These effects are also reflected in the total charge
density. They shall be discussed again in connec-
tion with the (2x 1) reconstructed surface.

The most prominent surface states are the dan-
gling-bond states in the fundamental gap. In both
the unrelaxed and relaxed cases, the surface bands
are half occupied leaving the surface metallic with
a Fermi level positioned as indicated in Figs. 5 and
6. A charge-density plot for the occupied part of
this band is presented in Fig. 9. The charge origi-
nates from states around M and X and exhibits the
very pronounced dangling-bond character. The un-
occupied states originate from a region around I'
and show some stronger mixing withbackbond states.
Though the comparative study of the unrelaxed and re-
laxed surface yields very useful information about
the existence energy positions and energy shifts of
surface states, these two surface models cannot
satisfactorily explain a number of experiments.
These experiments include various photoemission
measurements, ~9 surface mobility studies, ' and
photoconductivityt and infrared-absorption measure-
ments on freshly cleaved Si (ill} surfaces, ex-
hibiting a (2x 1) reconstruction. The most impor-
tant experimental facts which cannot be explained
involve the surface states in and close to the funda-
mental gap. To gain some understanding of the be-
havior of these states after (2x 1) reconstruction,
and to find explanations for the various experimen-
tal results, we have done fully self-consistent cal-
culations on a (2x 1) reconstructed surface model.

A detailed discussion of this surface model and the
results obtained is given in Sec. IV.

IV. RESULTS FOR (2 $ 1) RECONSTRUCTED Si (111)
SURFACE MODEL

Carefully cleaved clean Si (111) surfaces exhibit
a (2x 1) superstructure, as seen from low-energy-
electron diffraction (LEED) patterns. At the pres-
ent time, unfortunately, there does not exist a
satisfactory analysis of the LEED intensities which
would unitluely determine the (2x 1} surface geome-
try. Any calculation of the electronic structure of
the (2x 1) surface is therefore necessarily based
on empirical structural models. The situation is
complicated by the fact that the (2x 1) reconstructed
surface is metastable. It transforms into a more
complex (Vx 7) structure upon annealing, which is
the thermodynamically stable Si (111) surface ge-
ometry, or it transforms into the simple (lx 1)
structure after adsorption of adatoms. Once an-
nealed or contaminated the (2x 1) structure cannot
be recovered. Because of this fact, models for
the metastable (2x 1) surface cannot easily be es-
tablished on thermodynamical grounds. Various
different reconstruction models have thus been sug-
gested. Most recent discussions seem to favor the
formation of the (2x 1) superstructure by periodical-
ly raising and-lowering rows of surface atoms leav-
ing a buckled surface. This model for recon-
structed surfaces was first suggested in 1961 by

Si (ll'I) surface, relaxed
states at + 0.5 eV (Ks)

(g))

FIG. 9. Charge-density contour plot of the dangling-
bond state Ez at 0. 5 eV around the points I and K in the
Brillouin zone.
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FIG. 10. Schematic representation of the ideal and

(2x1) reconstructed Si (111) surface. Reconstruction is
done according to Haneman's model (Ref. 29) and leaves
the surface buckled as indicated by arrows. Slight lateral
shifts of second-layer atoms are also indicated by ar-
rows,

Haneman~9 and later developed by Taloni and Hane-
man. ' In addition to the periodic raising and low-
ering of rows of surface atoms, in Haneman's mod-
el, the second-layer atoms are slightly shifted la-
terally to approximately conserve the individual
bond lengths of the transverse back bonds between
first and second layer. The situation is schemati-
cally indicated in Fig. 10. Without the lateral shift
of second-layer atoms transverse back bonds of
different lengths would exist. This modified Hane-
man model has recently been proposed by AH. '
In their model calculations done on two differently
relaxed (inward and outward} (1x 1}surfaces, the
main emphasis has been put on the existence of
stretched and compressed back bonds. The. subse-
quent discussion of our results obtained for a (2x 1)
Haneman model, however, will show that all es-
sential experimental findings can be understood even
if the lengths of the transverse back bonds are ap-
proximately conserved.

The structural parameters entering our (2x 1) re-
constructed surface model are the following: al-
ternating rows of atoms have been raised by 0. 18
A and lowered by 0. 11 A, and second-layer atoms
have been shifted laterally, as indicated by the
arrows in Fig. 10, such as to approximately pre-
serve the length of the back bonds. This choice
of parameters may not represent an optimum
choice. In particular, since these parameters
represent an overall outzoard relaxation of the outer-
most atomic layer, some surface states which de-
pend on inward relaxation like the states X'» at the
bottom of the valence bands will become delocalized.
Our main interest in this study, however, is the

behavior of the electronic state. m the vicinity of
the gap and their dependence on the character of
the reconstruction (buckling with preserving the
length of back bonds) . The planar unit cell now
contains four atoms. First, preliminary calcula-
tions have been done on six-layer slabs separated
by three bond lengths of empty space. The corre-
sponding density of states in the vicinity of the va-
lence band edge, obtained from 72 % points in the
two-dimensional Brillouin zone, is shown as an in-
sert in Fig. 6. As expected, qualitative changes
compared to the unreconstructed (1x 1}case occur.
Doubling the real space unit cell in one dimension
corresponds to folding back the Brillouin zone in
certain directions. Thus two surface bands appear,
separated by a gap resulting from the potential
perturbation of the reconstruction. This behavior
is reflected by the density of states in Fig. 6 show-

ing two peaks which now correspond to two different
bands. In Fig. 6, the density of states does not
vanish between the two peaks, thus leaving the sur-
face semimetallic. In fact, the gap between the two
surface bands is comparable or smaller than their
dispersion. We believe that this behavior is an
artifact of only including six layers per slab. The
surface states on opposite surfaces of the slab show
too much interaction, consequently causing the
semimetallic behavior.

To obtain more quantitative results (2x 1) calcu-
lations with 12 layers per slab have been performed.
Because of the large matrix size (about 320 plane
waves were included to obtain the same convergence
as for the unreconstructed cases), the self-consis-
tent calculations were based on a two-point scheme
[(0, 0)I' and (-'„—', )E']. For the final self-consistent
potential, several k„points along high-symmetry
directions have also been included. A band struc-
ture showing the bands in the vicinity of the iunda-
mental gap is presented in Fig. 11. The two dan-
gling-bond surface bands are split by a gap of
~0.2V eV throughout the zone. They show some
dispersion of only about 0.2 eV. The Fermi level
falls between the two bands, thus creating a semi-
conducting surface. To obtain a density-of-states
curve for these bands a Tour-term Fourier expan-
sion for the band energy E(kI) has been fitted to
the calculated band structure at the four %D points
I', M, M, and K, and subsequently evaluated over
a fine grid of k„points of the two-dimensional.
Brillouin zone. The results are shown in Fig. 1P.

(bottom). Two structures are found separated by
about 0.4 eV, corresponding to the two surface
bands. The lower surface band, which ovexlaps
with states arising from bulk and other surface
bands, is centered at about E = E„=0. Experimental
photoemission dataa&3 show structure at somewhat
lower energy (E= —0. 5 eV). Further lowering of
the calculate surface band, and bettex agreement
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FIG. 11. Two-dimensional band structure around the
fundamental gap for a (2X1) reconstructed Si(111)12-
layer film. Folded-back Brillouin zone is indicated in.

the insert.

with experiment, can probably be obtained by using
a different choice of atomic displacement param-
eters. Our results, however, show the definite
trend of splitting the dangling-bond surface bands
combined with an over-all lowering because of the
buckling structure.

Also indicated in Fig. 12 (top) is a joint density
of states (JDS) for optical transitions between the
lower and the upper surface bands. Matrix-element
effects have not been considered in this plot. The

Lw

(b) Si (ill) SURFACE, (2&1) RECONSTRUCTED
STATES AT 0.35 eV (d

]2 layer slab
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FIG. 12. Calculated joint density-of-states curve
for low-energy transitions between dangling-bond bands
of (2 &&1) Si(111) (top). Also indicated is the experimental
absorption &2(~) as obtained in Ref, 4. Bottom figure
shows the regular density of states for the two dangling-
bond bands (d~, and d,„t) of (2 &&1) Si.(111).

FIG. 13. Charge-density contour plots for the dan-
gling-bond states d«t (top) and d„(bottom) of (2 && 1) Si(111).
Charge is plotted in a (210) plane of (2 ~1) Si which cor-
responds to the (110) plane of (1 xl) Si. The raised and
lowered atoms are marked by arrows.

JDS curve can be qualitatively compared to infra-:
red-absorption measurements4 (broken line). A
quantiative comparison is not reasonable because
of the ad hoc choice of atomic displacement param-
eters, and because of probable strong excitonic ef-
fects. It is also instructive to calculate the charge-
density distributions for states inside the two peaks
in the density of states of Fig. 12 (bottom). The
corresponding charge (or hypothetical charge for the
unoccupied upper band) is displayed in Fig. 13 in a
(210) plane intersecting the surface at right angle.
This plane corresponds to the (110) plane of the un-
reconstructed surface. The buckling raises the
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surface atom on the left-hand side and lowers the
surface atom on the right-hand side. Qwing to la-
teral shifts, the second-layer atoms are slightly
moved out of the (210) plane. The states show very
interesting real space behavior. Electrons in
states originating from the lower peak labeled d,
are located predominantly on those atoms which
have been raised and avoid those atoms which have
been lowered. Conversely, the wave functions for
unoccupied states of the peak labeled d„are con-
centrated around those atoms which have been low-
ered. The surface thus exhibits a (2x 1) pattern
of nearly twofold occupied dangling-bond states
centered at every second row of atoms. Roughly
speaking, the unpaired dangling electron of every
second-surface atom (in) is transferred to its
neighboring atom (out) where it pairs up with an-
other electron, thus creating an ionic semiconduct-
ing surface. In view of this picture infrared transi-
tions are expected to have a very weak oscillator
strength because of the small wave-function over-
lap. Jn fact, the calculated dipole matrix elements
are of the order of 0.05x 2v ja, and about one order
of magnitude smaller than average bulk matrix ele-
ments. However, the net charge transfer obtained
in our calculation is presumably too large and would
be decreased by correlation effects. These effects
can be considerable for bands of 0.3 eV width; since
they are not included in our calculations, the re-
sults are of a more qualitative nature. It can be
seen from Fig. 13 that the charge distribution of the
lower peak (d,„,}extends somewhat into the back
bonds. This mixing of states happens around the
X' point where the lower dangling-bond band actually
overlaps with lower-lying back-bond states. In
fact, some of the transverse back-bond states (I'„)
found at —1.5 eV for the unreconstructed surface
rise in energy upon reconstructed and fall between 0
and- 0.8 eV. At k„pointsfurther awayfrom the I"

point (K, M, M) the dangling-bond surface bands
have very pure dangling-bond character and do not
show any noticeable mixing with the back bonds
which decrease in energy to about —3. 5 eV. The
existence of transverse back-bonding surface states
(or strong surface resonances) close to the valence-
band maximum may explain angular photoemission
results involving states between 0 and —1.4 eV.
These results show a threefold rotational pattern,
as do the transverse back bonding states, but the
pure longitudinal dangling-bond states do not. The
results we obtained for the (2x 1) reconstructed
surface can be understood on the basis of simple
chemical arguments. Since our calculations were
based on Haneman's model, which- excludes bond
length variations (such as AH propose in their mod-

el), the various changes in the electronic structure
must, in first order, be caused by bond angle varia-
tions. This concept is not new; in fact, Haneman's

original model was designed on this basis.
The following discussion includes three different

bonds and their respective energies, i.e. , the en-
ergies of a state whose changes are primarily con-
centrated in one of these bonds: the (longitudinal)
dangling bonds d with energy c~, the transverse
back bonds b~(c~} between first and second atomic
layer, and the longitudinal back bonds b, (s, ) between
second and third atomic layer.

Let us consider the case of the mised outermost
atom. In this case, the bond angles between the
longitudinal orbitals and the transverse orbitals
are increased whereas the bond angles among the
transverse orbitals are decreased .The ideal sP
hybridization is consequently changed in such a way
as to increase the amount of s-like character in the
longitudinal orbitals and of p-like character in the
transverse orbitals. As a consequence, the energy
c~ of the dangling bonds d is lowered owing to an in-
creased s admixture. The transverse back bonds
b, now contain more p character which raises their
energy c, and weakens the bonds. The longitudinal
back bonds, like the dangling bonds, contain more
s character which lowers their energy a, and
strengthens them. The inclusion of bond-length
variations (AH model) would result in an additional
stretching of the transverse back bonds 5, and a
further weakening. In the case of the lowered out-
ermost atom, the bond angles change the opposite
way causing a decrease of s character in the longi-
tudinal orbitals and an increase of p character in
the transverse orbitals. The energy a~ of the dan-
gling bonds d is raised, the energy c, of the trans-
verse back bonds b~ is lowered, combined with a
strengthening of the bonds (an additional bond-
length contraction would increase this effect), and
the energy &, of the longitudinal back bonds 5, is
increased, combined with a weakening of the bonds.
Raising and lowering of alternating rows of atoms
leads in first order to a combination of the above
effects. The net effect on the longitudinal back
bonds cannot be anticipated in this simple picture.
The simple picture apparently underlies our self-
consistent pseudopotential results. It accounts for
the following facts: (a) The strengthening of the
transverse back bonds and the weakening of the
longitudinal back bonds in the relaxed (lx 1) geome-
try (here the transverse back bonds have also been
contracted); (b) the raising of the dangling-bond
energy c~ at I' in the relaxed (1&& 1) geometry; (c)
the more s-like character of the lower dangling-
bond band in the (2x 1) geometry as compared to the
upper more P,-like dangling-bond band [this can be~

recognized from the dangling-bond charge having a
different asvmmetry around the outermost atoms in
Fig. 13 (top and bottom)]; (d) the localization of the
lower occupied dangling-bond orbitals on the raised
atoms and of the higher unoccupied dangling-bond
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orbitals on the lowered atoms in the (2x 1) geome-
try; and (e) the raising of the transverse back-bond
energies E, up to about —0. 5 eV at I' and —3.5 eV
at E' for back bonds connected to raised outermost
atoms in the (2x1) geometry.

V. CONCLUSIONS

A recently developed extension' of the empirical
pseudopotential method for the self-consistent treat-
ment of local "nonperiodic" configurations has been
applied to several Si (111) surface models. Three
different surface models have been studied including
unreconstructed, relaxed, and unrelaxed (lx 1) sur-
faces which also have been investigated by Appel-
baum and Hamann' in the only previously existing
self-consistent calculation. Their results are ba-
sically consistent with our calculations. In addi-
tion, new types of surface states corresponding to
the longitudinal back bonds between the second and
third atomic layer are found, and complete density
of states curves are presented. A buckled (2x 1)
surface model such as proposed by Haneman (with
preserved back bond lengths) has been used to
study the (2x 1) reconstructed surface. The salient
experimental results on (2x 1) Si (111) surfaces can
be understood on the basis of this model. Upon
reconstruction, the dangling-bond band is split and

lowered considerably in energy. - The surface is
found to be semiconducting producing an infrared ab-
sorption peak at low energies. Transverse back-
bonding surface states are found to be raised in en-
ergy and appear between 0 and —0. 5 eV below the
valence-band edge at I' and above —3. 5 eV at E .
These states may be the origin of the angular-de-
pendent photoemission results.

The various effects are discussed on chemical
grounds in terms of bond angle variations occurring
with reconstruction. Changes in back-bond lengths,
such as claimed by AH in a recent paper" to be es-
sentiaE, are thus not necessa~ for a satisfactory
explanation of spectroscopic data. The existence
of bond-length changes, however, cannot be ruled
out on the basis of the existing results since both
bond-angle and bond-length variations seem to alter
the electronic structure at the surface in a similar
manner.
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