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Energy gaps in disordered alloys
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The existence of an electronic energy gap is demonstrated for a three-dimensional model of a disordered
binary alloy, assuming that one exists in both the pure materials. To do this, multiple scattering theory is
applied to a model which has only s-wave scattering at each atomic site. A generalization to p-wave
scattering is presented.

I. INTRODUCTION

The disordered binary alloy considered here is a
crystal having X atomic sites, each of which can be
occupied by either an A. atom or a B atom. Thus 2"
cases are considered together. The extreme cases
are the pure A crystal and the pure B crystal. To
compute the electronic energy levels in these al-
loys, I assume that each electron moves in a po-
tential which is the sum of contributions from each
atom. If the potential wells centered at different
atoms do not overlap, this model becomes a muffin-
tin model. For such a model, Lloyd has given a
formal calculation of the electronic density of
states; Lloyd and Smith give a much more com-
plete account. In the simplest form of this multiple
scattering formalism, each atom is represented as
a spherically symmetric scattering center, charac-
terized by its phase shifts for each partial wave.
Analytic treatment of the energy gaps in this muf-
fin-tin alloy is difficult, but Taylor and John have
given criteria for energy gaps. The present paper
deals with a simplified model, having only s-wave
scattering by each atom. Finitely many atoms are
contained in a finite box of volume 0, and periodic
boundary conditions are used to avoid any appear-
ance of surface states. Also, I assume that the
atomic sites form a Bravais lattice. A theorem
of Weyl5 can be combined with the calculations of
Lloyd and Smith, to produce the following result:
If the energy E lies inside an energy gap in both
the pure A crystal and the pure 8 crystal, then it
does so in all 2" cases. This result is proved be-
low; it is a three-dimensional version of the early
work of Saxon and Hutner and Luttinger. The
same result is proved below for a model with P-
wave scattering only and with atomic sites arranged
in a simple cubic, body-centered cubic, or face-
centered cubic lattice. Further generalization ap-
pears to be possible, and to be needed before these
calculations can be compared with experiment.

The electronic energy levels appear as eigen-
values of a Hamiltonian

H= —V +V(r),
where 5= 1 and the electronic maes is —,'. The po-

tential V(r) is a sum of contributions from all N
atoms:

V(r) = Z~~(lr-R~ )+ Z~s(P-Rs~)

Here the first sum is a sum over the A atoms, with
centers at 8„, and the second sum is a sum over
the B atoms. The muffin-tin condition says that,
for fixed r, no more than one term in (1) is non-
vanishing. Furthermore, the energy E is measured
upward from the muffin-tin zero. Qreen's function
is

G=(E —H) '.
It depends on the numbers and arrangement of A
and S atoms, as well as on E. Since N and 0 are
finite, 6 is a meromorphic function of E. It can
be exhibited in a rather explicit form if the poten-
tial V(r) is turned off and the position representa-
tion is used. The free Green's function is

~0
gk o-t')

(3)

Here the allowed values of k are determined by the
periodic boundary conditions. The infinitesimal
imaginary quantity in the denominator serves to
make this the retarded Green's function, and the
advanced Green's function could be obtained by a
change of sign. This free Qreen's function appears
in the Born series for (2) ~ When terms of this
series are to be evaluated for a muffin-tin model,
it is useful to expand (3) in terms of spherical har-
monics and spherical Bessel functions. The details
need not be shown here; rather I shall use the nota-
tion of Lloyd and Smith. Thus

B~~.(R, R„s) (4)

is the propagator connecting atomic site ~ to atomic
site 0 . Note that I stands for both I and m, the
two angular momentum quantum numbers„Scatter-
ing of waves at each atom is conveniently descr1bed
by the single-site t matrix. This matrix is diagonal
in L and e, with diagonal elements Ezo, there is a
requirement that (4) vanishes when c, = o, '. Summa-
tion of an infinite series gives Eq. (97) of Lloyd and
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This section treats the simple problem of s-wave
scattering with E&0, before considering the case
of p waves. In the simple problem, t~ =0 if /00;
hence L = 0 in all spherical harmonics. Every
spherical harmonic reduces to (4v)-'~o, and (4)
becomes

W at

~ gee (R@~RN g )

goo(R~, R .) = —~
k

(5)

The single-sit'e t matrix reduces to too, a number
depending on o, . Both (5) and to are real because
E& 0, and the ic is not needed in the denominator in
(5). The poles of (2) are the zeros of the deter-
minant of an NxN Hermitian matrix. Assuming
that to never vanishes, I may divide the ~th row
by to . The 00. element of the resulting matrix is

/to —Boo(R R ) (6)

where 5~ ~ is the Kronecker g function. I note in
passing that all eigenvalues of this matrix are non-
zero if }to } is sufficiently small; the gap theorem
of Beeby and Edwards can be proved in this way.
In the present problem, the atomic sites form a
Bravais lattice. Consequently, the matrix with
elements (5) can be diagonalized by a Fourier
transformation that removes the exponential func-
tion. If to is independent of ~, this transformation

Smith, in which a matrix inversion appears explic-
itly. The matrix can be inverted if its determinant
is not zero. Clearly zeros of the determinant
are poles of (2). An interval on the real E axis in
which no poles can occur, for any N, lies inside an
energy gap; this criterion enables me to dispense
with the limit N- ~. If 8&0, the determinant of
a finite Hermitian matrix is needed. I obtain the
determinant by multiplying the eigenvalues togeth-
er. Weyl's theorem gives an inequality for eigen-
values of a Hermitian matrix; see the Appendix.
When all the eigenvalues are nonzero, the deter-
minant does not vanish, and (2) cannot have a pole.
This leads to an energy gap; the details of this ar-
gument are given in Sec. II.

If E ~0, the argument has to be modified some-
what. Instead of (3), the average of the advanced
and retarded Green's functions is used. This aver-
age is expanded in spherical harmonics and spher-
ical Bessel functions. G~o~. (R„R .) is the propa-
gator connecting site o. and site g; it vanishes
when ~ = n . The properties of an atom are now
described by a single-site reaction matrix, whose
diagonal elements are k~ . Summation of the Born
series gives Eq. (118) of Lloyd and Smith, in which
a matrix inversion appears. The determinant of a
Hermitian matrix is needed, and Acyl's theorem
can again be applied. The details of this argument
are given in Sec. III.

II. NEGATIVE ENERGIES

diagonalizes the matrix with elements (6), and each
diagonal element is a lx 1 Korringa determinant.
In the present alloy problem to is not independent
of a, and the two terms in (6) represent matrices
which cannot be diagonalized simultaneously. The
first matrix has eigenvalues I/t~" ~ and 1/t s, cor-
responding to ~ and B atoms. The matrix with ele-
ments (5) has eigenvalues ranging fromg „tog ~;
below I prove that no part of this interval is free of
eigenvalues. If the energy E lies in an energy gap
of the pure A crystal,

1/t(k) g & 1/t 4) g & O

or

1/t'"'-g „&1/t'"'-g & O.

Himilarly, there are two alternative inequalities in-
volving 1/t's'. These inequalities canbe combined
with the inequalities in the Appendix, to show that all
eigenvalues of the matrix with elements (6) are non-
zero. Hence its determinant is not zero. If the ener-
gy interval considered lies in a gap in both the pure

A. and pure 8 cases, then the determinant must be
nonzero throughout the interval, although (5) and

to, depend on the energy. Therefore (2) cannot have
any poles, .and the energy gap exists in all 2"cases.

This result depends on the eigenvalues of the ma-
trix with elements (5). They range from g „to
g ~, because they are bounded for all ¹ They
effectively fill the interval fromg &, tog ~ when
N and 0 are large. To show this, I write the eigen-
values of (5) as

4n'N Q 1 4ir Q 1
a "„s-(r X)' a „-, z-I,'

where k labels the eigenvalue and K is a reciprocal-
lattice vector. This difference of two divergent sums
isdefinedas a limit of the difference; I require }El
&K ~ and }k I &K ~, and I ask for the limit as
K ~ ~. This method of summation assures that
(7) is a periodic function of k. The sum converges
uniformly in the first Brillouin zone, and it is
bounded because E & 0. I now consider continuous
variation of k, but not k . Then (7) becomes a
bounded continuous periodic function of k. It must
take on all values from g &, to g ~. In reality, k.
is limited to certain values because of the periodic
boundary conditions; but when N and Q are large,
(7) comes close to every point in the interval from
g f, to g ~. This complete s the proof, and corn-
pletes the treatment of s-wave scattering.

The case of P-wave scattering only, when E&0,
can be treated by a similar method. Since tJ. = 0
when/41, one keeps only terms with l = 1; and each
sum over I. reduces to a sum over m, the magnetic
quantum number. Note that tl, is independent of
m; it is equal to t'"~ or t' ~. I need the determinant
of a 3Nx 3N Hermitian matrix, with elements
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Gooo(R, R .). (8)

The single-site reaction matrix is ko, which is
real and equal to either k'"' or k'3'. The poles of
(2) are the zeros of the determinant of an NxN ma-
trix. Assuming that ko never vanishes, I divide
the ~th row by ko . The result is a Hermitian ma-
trix with elements

5, , /no. -G',,(R, R, , ) . (9)

If ko is independent of ~, this matrix can be diag-
onalized by Fourier transformation, and the kth di-
agonal element is a 1&&1 Kohn-Rostoker determi-
nant. In the alloy case, at least the matrix with ele-
ments (8) can be diagonalized; and its eigenvalues must
be studied. Since (8) is equal to the right-hand side
of (5), the eigenvalues are given by (7). The de-
nominators are strictly real, but vanishing denom-
inators are quite possible.

However, the vanishing denominators in (7) cause
no trouble. The periodic boundary conditions limit
the possible values of (k+ K)o and k o. As E ap-
proaches one of these possible values, (7) approaeh-

i~ —g .(R, R.) .
LN

This matrix is the sum of two Hermitian matrices.
If the eigenvalues of the second matrix fill the range
from I f, to g ~, the theorem on energy gaps in
alloys can be proved just as for s waves. Fourier
transformation of the second matrix gives a 3~ 3
Hermitian matrix, in place of (7). If k is allowed
to vary continuously, the three eigenvalues are
bounded and continuous throughout the first Bril-
louin zone. The proof that they occupy only one
interval along the real axis is straightforward for
a simple cubic, body-centered cubic, or face-cen-
tered cubic Bravais lattice. Consider the case of
k= 0. Each element of the 3x 3 matrix is simply
a sum over the lattice. Since E & 0, there is a
bound for this sum which is independent of Q. Ac-
cording to Eqs. (92) and (93) of Lloyd and Smith,
the sum involves spherical harmonics of the zeroth
and second degree. The second-degree harmonics
vanish when the sum over the lattice is performed;
and the 3x 3 matrix reduces to a multiple of the
unit matrix. Therefore the three eigenvalues come
together at%=0. They must fill the interval from
g „to I ~ as% varies continuously through the
first Brillouin zone, which was to be proven.

III. NON-NEGATIVE ENERGIES

This section treats the case of s-wave scattering
only, before going on to p-wave scattering. The
energy satisfies E ~0, and each Green's function
is the average of advanced and retarded solutions.
This prescription does not affect the location of
poles of (2). In the case of s waves, the propagator
from site to site is

es a ~; only the ambiguous sign ean depend on R.
Since I/O'"~ and I/O ' are bounded, all the eigen-
values of the matrix with elements (9} approach

The determinant cannot vanish, and these
special values of E (which include E= 0) need not be
considered further.

The expression (7) can now be summed as above,
and the sum is a periodic function of k. The de-
nominator

E —(k+ K) (lo)

can become very small, but not when )K) is suffi-
ciently large. If ) K) ~E „, then (10}cannot vanish
at any of the energies to be considered below when
Tr is in the first Brillouin zone. The eigenvalue (7)
can now be written

~~—,+B(k), (11)0 gE —k+

where the sum is restricted by the condition ) K(
&K „. The remainder R(k) is defined as the dif-
ference of two divergent sums, as in (7). It con-
verges as E ~ ~, and the convergence is uniform
through the first Brillouin zone. If continuous
variations of k are considered, R(k) is a bounded
continuous periodic function of %, but the first term
in (ll) has a denominator which passes through
zero. As k varies through the first Brillouin zone,
(11) can approach +~ or —~, but it does not neces-
sarily assume all real values. I want to prove that
(ll) has no more than one gap in its range of values.
If this can be proved, then (11) is less than g ~ or
greater thang „. In this notation, g &g &,.
Because of the periodic boundary conditions, k is
limited to certain values and (11) is finite; but,
when 0 is large, (11) can be much larger in abso-
lute value than [I/O'"~I. If the energy E lies in
the gap of the pure A crystal, then

I/a'"'-g „&o& ],/u~'-g
must hold. If it also lies in the energy gap of the
pure & crystal, then k ' satisfies a similar in-
equality. These two inequalities can be combined
with the inequalities of the Appendix, to show that
the matrix with elements (9) does not have zero
eigenvalues. Therefore the determinant of this ma-
trix cannot vanish. This result applies to all en-
ergies which lie in a gap for both pure A and pure
B crystals, and it shows that these energies lie
in a gap in all the 2" alloy cases.

To complete the treatment of s-wave scattering,
I have to show that the gap in the range of (11) is
unique, if it exists. In this problem, k varies con-
tinuously through the first Brillouin zone, but the
variation will be broken into small pieces. Con-
sider a fixed straight path from the center to the
edge of the first Brillouin zone, corresponding to
a fixed direction for k. The first term m (11)
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gives rise to poles as k is varied. Each denomina-
tor in (11) is a quadratic function of k, with 0, 1,
or 2 positive real zeros. These zeros give simple
and double poles on the positive real k axis. Since
the sum in (11) is finite, a finite number of poles
mill occur betmeen the center and the edge of the
first Brillouin zone, along the direction considered.
Suppose that k, and ka are two consecutive poles.
Then (11) is continuous for

k, &k&k2,

and it approaches t ~ as k- k~, or k- kz. If (11}
varies from a~ to w~, respectively, then it takes
on all real values, there is no gap in its range,
and there is nothing to prove. If (11) varies from
+ ~ to + ~ in the interval (12), then it reaches a
minimum value, and does not assume values from
this minimum down to —~. Similarly, if (11)
varies from —~ to —~ in the interval (12}, then it
does not assume values from its maximum up to + .
In either case, (11) does not assume values lying
in a semi-infinite interval. If k, = 0 or if ka corre-
sponds to the edge of the first Brillouin zone, then
the claim that (11) is unbounded at both k~ and k~
is not justified; but the conclusion about the inter-
val (12) is unchanged. Consider now the whole path
from center of edge of the first Brillouin zone.
The set of values that (11) does not assume is the
intersection of some semi-infinite intervals. More
generally, consider all the straight paths from the
center to the edge of the first Brillouin zone. They
cover the whole Brillouin zone, and the gap in the
range of (11) is the intersection of many semi-in-
finite intervals. This intersection may be the emp-
ty set, but it cannot consist of disjoint parts. This
proves that the gap in the range of (11) is unique.

The problem of P-mave scattering at positive en-
ergies can be treated by an extension of this argu-
ment. In this problem, / = 1 everywhere, and the
propagator Grz. (R„,H, } appears in place of (8).
This number is an element of a SNx SN Hermitian
matrix, whose eigenvalues must be studied. Fouri-
er transformation gives a Sx S Hermitian matrix
that depends on k, a vector which I allom to vary
continuously though the first Brillouin zone. In the
simple cubic, body-centered cubic, and face-cen-
tered cubic lattices, a proof that each diagonal

element of the S~ S matrix is unbounded can be
constructed, by adding together its values at the
48 different k's that are connected by the cubic sym-
metry. This result implies that at least one of the
three eigenvalues is unbounded. If the three eigen-
values do not range over the entire real axis as %

varies through the first Brillouin zone, I have to
shorn that they leave only one gap. The variation of
each eigenvalue as k varies can be followed, as in
the previous paragraph. One of the eigenvalues is
unbounded, and the real values which it does not
assume, if any, constitute a single interval. The
three eigenvalues come together at k= 0; the proof
of this is similar to that in Sec. II. Therefore the
real values not assumed by any of the three eigen-
values make up a single interval, from g ~ to g &,.
The gap theorem for alloys follows from this re-

~ suit, just as for s-wave scattering.

&PPENMX

Weyl' gives an inequality for the eigenvalues of
Hermitian matrices, which is stated belom. The
inequality appears as Satz I in Weyl's paper, and
is proved there.

Suppose that A and B are Hermitian matrices.
Let the eigenvalues of A be

and the eigenvalues of 8 be

p&&p o p

If the eigenvalues of A+8 are

y Wy ~y

then, for any positive integers m and n,

&men i —& m+Sn ~

Furthermore, lomer bounds for each eigenvalue of
A. +S are obtained by reversing all the inequality
signs that appear in this paragraph.
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