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Densities of states and spectral functions are obtained for large (-8000 atoms) three-dimensional alloy models
with cell localized disorder and are compared with the single-site coherent-potential approximation (CPA).
We find that the CPA agrees remarkably well with the exact numerical results. In particular, the overall
structure of the electronic spectrum and the transition from one- to two-band behavior are well described.
There is, however, some substructure which is not reproduced by the single-site approximation.

There ha, s been considerable interest over the
last years in the electronic properties of substi-
tutional disordered alloys and in the development
of theoreticaL techniques for their description. '
Of the various methods available, it is generally
agreed that the most reliable is the eoherent-
potential approximation (CPA).' ' The CPA, in
addition to being conceptually elegant, exhibits
eorx eet behavior in both the weak scattering and
dilute limits and eoIQpa, x'68 well with exact results
on the limits of the allowed energy spectrum and
the values of its leading moments. Nevertheless,
the CPA is a single-site approximation and is
thus incapable of describing effects due to multi-
site correlations. In the case of one-dimensional
models these effects have been shown to lead to
serious discrepRncies when comparisons Rx'e DlRde
to exact numerical calculations. ' It is of interest
to clarify the extent to which such discrepancies
persist in three-dimensional systems, but accurate
numeric@3. solutions for large three-dimensional
models have not been previously available. '

In this paper we present results for three-dim-
ensional periodic models with about 8000 sites.
By comparison, the three-dimensional models
treated in Ref. 6 contain on the order of 1000 sites.
The present models are simple cubic structures
with a. repeat distance of approximately 20 sites
along the three Cartesian directions. %e consider
only site diagonal disorder, since this is the case
in which the CPA is most easily implemented. The
one-electron Hamiltonian may be written

EI =uQ (i)(jj +g ~i) ~,(i~,

where the prime indicates that only nearest-neigh-
bor pairs are included in the summation, v is the
nearest-neighbor transfer integral, and e& is a

jtte energy which takes t:h.e value —z& or a~ d
pending on whether the site i is occupied by a, Q or
an A atom. In the present calculations, a fraction
c of the sites are specified at the outset to be of
tJJpeA. We then solve the time-dependent Schro-
dinger equation numerically for a. time interval
determined by our desired energy resolution. The
choice of initial conditions depends on whether we
wish to calculate densities of States or spectral
functions (see the Appendix). The resulting time
behavior is then Fouriex' analyzed to give the final
results. In ea.ch ease we obtain exactly the spec-
trum of the finite model, broadened with a reso-
lution function whose width is predetermined. '
This method is extremely efficient since it does
not require the use of large matrices as, for
example, in the procedure of Bell and Dean' (see
also Ref. 9).

In F1gs. 1 Rnd 2 the CPA ls compRx'ed with nu-
merical results for the density of states in a peri-
odic model with 7980 sites (that is, 19&&20X 21).
The size of the model was chosen to provide a
statistically significant number of different con-
figurations (including the effects of rather long-
range correlations) without consuming extravagant
quantities of computer time and storage. The di-
mensions were purposely made asymmetrical to
minimize degeneracies introduced by cubic sym-
metry. In each case, computations were carried
out for foux statistica3. ly independent distributions
of impurities. We show sepRx'Rtely the averRges of
pairs of runs and the grand average of all four
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runs. Structure which is common to both pair av-
erages is almost certainly characteristic of a typ-
ical alloy model of this size. Except for the
oscillations in the majority (B) band for low c (see
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below} this common structure may be assumed to
describe the spectrum of an. infinite alloy sample.

The results shown in Fig. 1 correspond to
5=0.8 and the impurity concentrations c =0.50,
0,16, 0.05, and 0.0. The value 5=0.8 is of in-
terest because the CPA results predict that in
this case the alloy spectrum is on the verge of
splitting into two distinct bands. The pre-
sent machine computations indicate that this is
indeed the case and show, further, that the CPA
accounts quite well for the over-all band shape.
On the other hand, the exact spectrum is seen to
be spread over a slightly larger range of energies
than that predicted by the CPA. This discrepancy
is expected, since the states near the limits of the
allowed spectrum are associated with large single
component clusters and, as such, are beyond the
scope of any single-site approximation. In addition
we note that there is some substructure in the
present result which does not appear in the CPA
curves. (In connection with this final point we

emphasize that the oscillations which develop in
the majority band as c 0 are due to the nonuniform
distribution of eigenvalues in the pure 7980-site
crystal and are thus a finite size effect. )

In Fig. 2(a) we show the density of states for
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FIG. 1. Density of states for four concentrations c,
of atoms of type A . Solid curves give the numerical
results for 7980-site models; broken curves give cor-
responding CPA results. Case c =0 corresponds to a
pure material for which the CPA result is exact. Finite-
model result for the pure case is a simple histogram
of the modes of the model. For c & 0, the density of
states was obtained as described in the Appendix. Full
width at half-maximum of the resolution function is
0.03 energy units, the same as the bar width of the his-
togram for the c =0 case. Upper two cuxves for each
concentration are each averages of results for two
stBLtistically uncorrelated phases and distributions of
impurities, and the lower curve is the average of the
upper cuxves,
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FIG. 2. (a) Density of states for 5 =1.5 and c =0.1.
Solid curves are for 7980-site models; broken curves
are CPA results. Lower curve is the average of the
results, shown in the upper curves, for different im-
purity distributions and phases. (b) Minority component
of the density of states for 6 =1.5 and c =0.1. Energy
resolution is 0.03 energy units. Small magnitude of the
minority component in the region of the majority sub-
band is quite accurately given by the CPA.
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5=1.5 and c=0.1. In this case theA and B sub-
bands are well separated, and there is a three-
peaked structure (with some substructure) evident
in the minority band. Physically, the central peak
in the minority band is due to isolated impurities,
while the two satellite peaks arise from the bonding
and antibonding levels of a nearest-neighbor im-
purity pair cluster. " This three-peaked behavior
is also apparent in Fig. 2(b), where we show the.
minority component of the density of states. Al-
though the single-site CPA cannot reproduce the
detailed structure with the A. subband, it does
describe properly the over-all features of the
spectrum.

We consider next the separate contributions to
the alloy density of states associated with each
vector k of the Brillouin zone. The contributions
are given by the spectral function A(k, .E):

and to the bonding states of pair clusters. (The
antibonding states Icf. Fig. 2(b)J do not contribute
at k =O.J As in the case of the total density of
states, there is again good qualitative agreement
between the CPA and the numerical results.

In summary, the present calculations indicate

6

p(E) =N 'QA(k, E), (2)
k

where N is the total number of atoms in the model.
In Fig. 3 machine calculations of A(k, E) are com-
pared with their CPA counterparts. Results are
shown for 6=0.75, c =0.10, and four values of k
corresponding to three points along the A line and
one point along the Q line in the Brillouin zone.
Within the CPA, A (k, E) depends on k only through
the simple cubic energy-band function:

LIJ

LIJ

6-

s(R) =3 (cosk„a +cosk, a + cask, a), (3)

where a is the lattice constant. The curves in Fig.
3 correspond to s(R) = -I, s (%) =0 (two k vectors),
and s(Q= -l. It is particularly interesting to com-
pare the two s(R) = 0 curves and note that desyite
the fact that the first seven of the moments

6.

(4)

[ i.e., M,(%)-M,$)] are the same, ' and are given
correctly by the CPA, there are significant dif-
ferences between the two curves and between them
and the CPA results.

The case 5=0.75, c =0.10 is on the borderline
between one- and two-band behavior, as may best
be seen from the spectral function for 0 =0. Here
the weight is primarily at the upper limit of the
spectrum, with just a small contribution at the edge
of the majority subband. By contrast, in Fig. 4
we show a case corresponding to clear two-band
behavior. Here 5 =1.5, and the minority subband is
split off. For P =0 the principal peak is at the upper
edge of the majority band. We note also that the
minority subband is split into two peaks. These
correspond, respectively, to isolated impurities

-2.0 -1.2 -0.4 0.4 1.2 2.0

FIG. 3. Spectral function A(k, E) for 6 =0.75 and
c =0.10. Solid curves are for models; broken curves are
CPA results. (a) k= (0, 0, 0), s(k) =1, model dimensions:
20x20x 20; {b) k=(2, 2+2)(m/a), s(k) =0, model dimen-
sions; 20&20&&20; (c) k= (3,3, 0)(n/a), s(k) =0, model
dimensions: 21&& 21' 18, and {d) k=(1,1,1)(vr/a),
s(k) = —1, model dimensions: 20X 20&&20. For cases
(b) and (c), the results in the region of the peak agree to
within the energy resolution of the numerical results.
For case (d}, the peak is considerably broader for the
model spectrum than for the CPA for which the intensity
rises very sharply at the CPA-computed band edge.
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that the CPA does describe properly the essential
features of the alloy's electronic spectrum. That
the agreement between the machine calculations
and the CPA results is much better in three- than
in one-dimensional systems is not surprising,
since the CPA is a mean-field theory and correc-
tions to it are expected to scale as Z ' (where Z
is the lattice coordination number). "

APPENDIX: OUTLINE OF THE EQUATION-OF-MOTION

PROCEDURE

We consider the N-site system defined by the
Hamiltonian (1}and introduce the retarded Green's
functions

G,, (t) =- -i ( 0
~ c; (t)c~t(0) ~

0), t ~ 0, (Al)

where c
& (0} creates an electron at site j at time

zero, c, (f) destroys an electron at site i at time
t, and (0

~
is the state with all orbitals empty. We

next write N Green's functions which refer to the
amplitudes at each site associated with an initial
excitation of wave vector k:

terms corresponding to an integration time T.
Typically, T= 2505. The principal effect of this
approximation is to produce a broadening of the
spectrum. (The value of X is chosen to effectively
suppress termination oscillations without adding
unnecessarily to the broadening. ) For the results
reported here the broadening corresponds to a
resolution full width at half-maximum of 0.03
energy units. The calculation of A. (k, E) for one
wave vector as a function of energy at this reso-
lution takes 20 sec on a CDC 7600 computer for
8000-site models. Approximately 5 & 8000 storage
locations are required.

The density of states was obtained from a spec-
tral function for "incoherent scattering. " That is,
the phase % R, in Eqs. (A2), (A4), and (A6) were

{a).

G, k(t) = —Q e'" ' "g G,~ (&) (i =1, H), (A2) 2-

where 8; is the position vector of site j.
The Cg's can be conveniently calculated from

their equations of motion:

8
ih —Gg(t) = v Gg), (f) +e; G(),(t),

J
with initial conditions

G ~(0) ~ e()( ' R~

(AS)

(A4)

QJ

2-

where the primed sum in (AS) is over nearest
neighbors of i. Equation (AS) can be accurately
replaced by the difference equations

0

6-

G, ) (i+5) = G, ), (t —5)

25
+ ~ "z (si( )+%Gran((t)),zk (A5)

(A6)

In our procedure, we replace (A6) by a sum of

where 5 is the time step for each iteration cycle. "
We have found that 5~ 2+ of the shortest time period
for the system gives an accuracy better than 1$
in our final spectra. (The shortest time period is
Planck's constant divided the maximum absolute
value of the energy. )

The spectral function for wave vector k is
written

QJ 4-

2-
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FIG. 4. Spectral function A (0,E) for 6 =1.5 and
c =0.10. Solid curves are for 20&& 20&& 20 models;
broken curves are CPA results. Curves are cut off at
six units for ease of presentation. (a) k = {0,0, 0),
s(k) =1; (b) k=(2, 2, 2)(m/a), s(k) =0; and (c) k=(1,1,1)
(~/a), s(k) =-1. For case (b), the results in the region
of the peak agree to within the energy resolution of the
numerical results. For case {c), the peak is consider-
ably broader for the model spectrum than for the CPA.
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replaced by random phases Q». With this replace-
ment the spectral function p' ((P), E) for a particu-
lar set of phases [Qj is

istl&- agd~

(A7)

%e next average p' for a number M of independent
sets L Qj. This amounts to averaging the phase
factors e»»~» ~»~ in (A7), since no other terms de-
pend on (g). For i', the averaged phase factor
is a random variable with a mean value of zero
and a standard deviation which behaves as M ' '
for large M. From this it is straightforward to

prove that when M is large, the terms in the
double sum in (A7) referring to different sites will
average to zero. This leaves a single sum of the
site diagonal Green's functions which gives the
true density of states. Averaging over a finite
number of (»t)'s leads to an approximate density
of states in which the weighting of each mode var-
ies about unity with a standard deviation which is
about M '~'. (The deviation is somewhat less for
highly localized states. ) In practice, the statisti-
cal uncertainty associated with taking a single p'
is quite comparable to that associated with differ-
ent randomly occurring distributions of impurities.
As may be seen from Figs. 1 and 2, the total un-
certainty due to both of the above variations is
quite small, and acceptable results may be obtain-
ed from averaging just a few calculations with in-
dependently chosen impurity distributions and
phases.
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