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Long-wavelength soft modes, central peaks, and the Lyddane-Sachs-Teller relation
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A derivation of the I.yddane-Sachs-Teller relation is presented which depends only on the broad requirements
of statistical mechanics. Mode frequencies are introduced as peaks in the dielectric response to avoid the
introduction of a Hamiltonian. Using this approach the modes may be very anharmonic, may be coupled, and
may have a central-peak character and yet be precisely entered into the Lyddane-Sachs-Teller relation. The
number of such modes need not conform to the number predicted by the usual group-theoretic methods
applied to the symmetry of the solid. Examples are given of several types of spectra and the requirements of
mode softening are discussed.

I. INTRODUCTION

Lyddane et al.' were the first to derive the rela-
tionship between the dielectric constants of a crys-
tal &(0) (the dielectric constant at low frequencies)
and z(~) (the dielectric constant at high frequen-
cies), and the long-wavelength lattice vibration fre-
quencies &, and ~,:

They derived Eq. (1) by a fairly detailed argument
which involved introduction of a microscopic charge
in each unit cell and a consideration of the differ-
ence between the macroscopic field and the local
field and the use of a Lorentz cavity. After some
manipulations, they obtained the surpising result
given by Eq. (1). It is surprising in the sense that
the reduced mass of the ions, the effective charge,
and the cell parameter which mere introduced have
all disappeared in the final result. %e note that
e(0) and e(~) are macroscopic quantities, unlike
the microscopic parameters effective charge, force
constant, etc. %e also regard the vibrational fre-
quencies co, and ~, as macroscopic quantities fol-
lowing the discussion by Born and Huang. '

Kurosawa' and Cochran and Cowley' have derived
Eq. (1) by using a specific model for the lattice
vibrations at long wavelengths. They set up an en-
ergy expression which is harmonic and mhich de-
pends on macroscopic ion displacement and electric
fields. Using this approach there is considerable
algebra necessary concerning the mass density,
force constant, and charge matrices, which param-
eters all vanish in the final result which is written
in the form.(o)

(2)e (~)

The product on the right-hand side of Eq. (2) ex-
tends over all the optically active modes allowed
by group theory, but omits the three low-frequency

modes which have acoustic character. '
It is our viewpoint that the Lyddane-Sachs- Teller

(LST) relation is a macroscopic relation which can
be derived from the general principles of statisti-
cal mechanics. The introduction of a harmonic
Hamiltonian or energy expression is unnecessary.
The use of force constants and masses, etc. , in
the theories described above was only necessary
so that some quantity related to the square root of
a (force constant)/mass could be called a frequency.
If we give up the introduction of a harmonic Hamil-
tonian, we will have to define macroscopic lattice
frequencies in a different way. At the same time
we note that we will not be restricted to the product
j =4, N for the number of modes to be included in
Eq. (2). Because of this it will be possible for
wha, t are commonly known as combination bands
and also for central peaks to enter the LST rela-
tion, as we intuitively feel they must.

Barker derived an extended LST relation which
held for many modes and included damping. This
was accomplished by introducing equations of mo-
tion which had damping terms and hence were not
derived from a conservative Hamiltonian. That
work stressed thai the parameters on the right-
hand side of Eq. (2) are the poles and zeros7 of the
dielectric constant. Once this was recognized, the
derivation became an exercise in polynomial alge-
bra with no need to introduce masses, force con-
stants, or charges which are later eliminated. The
same approach was extended to cover the very
broad mode found in some ferroelectrics at low
frequencies with the Debye dispersion form. 8 Lax
and Nelson have derived a slightly more-general
form of the LST relation for an anisotropic dielec-
tric which shows that only zeros of a certain func-
tion of the dielectric tensor determine the ratio on
the left-hand side of (2) for arbitrary mode propa-
gation directions. '

Since anharmonicity is extremely important in
ferroelectric crystals, and appears to be important
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in theories which attempt to predict a central peak
in the fluctuation spectra, it appears reasonable to
develop an approa, ch which does not start from a
harmonic Hamiltonian. We develop such an ap-
proach below and give pictorial examples of specific
spectra to show various kinds of modes and how

they enter the LST relation. We then show how the
macroscopic theory of phase transitions requires
mode softening (i.e. , &o, -0) at a ferroelectric
transition.

II. IMPLICATIONS OF STATISTICAL MECHANICS

E=E +2& e*=e' —ie", e"&0.
(4)

(6)

In addition, the real and imaginary parts of & de-
noted by &' and &" must obey the Kramers-Kronig
relations. These integral relations follow from
causality arguments. m The Kramers-Kronig rela-
tion we will need below is

p( ) ( )
2

t
x«(x)dx

7I' ~p X —Q7

where the variable of integration x is taken along

In this section we follow the notation and much
of the treatment given by Landau and Lifshitz in
their discussion of Quctuations. A solid is pic-
tured as possessing macroscopic coordinates
Q„Q~, . . . . For a theory of dielectrics we take
these to correspond to optically active long-wave-
length lattice vibrations. If one of these coordi-
nates is set vibrating, there are present in the
crystal frictional processes which gradually bring
the motion to a halt. The kinetic energy connected
with Q has been dissipated in the form of heat. We
next introduce an external force E which acts on
the coordinates. The time dependence of E can be
expanded by a Fourier integral to a set of compo-
nents with time dependence e '"'. Using the lan-
guage of dielectrics, ' we take the external force to
be the macroscopic electric field so that the per-
turbation which results from E is the electric dis-
placement D,

D(ar) = «(&o)E(co) .
Since the time dependence of the coordinates Qz
must be real functions, it follows that «(~) is the
Fourier transform of a real function of time.
Since the power dissipation must be positive defi-
nite and is connected with the imaginary part of
«(m), we find that the latter is always positive for
positive co. These fairly general statements are, in
fact, all we need to derive our resu1ts. Specifical-
ly, they are enough to show that «(~) is a complex
function of frequency whose imaginary part is pos-
itive and approaches zero as frequency approaches
infinity, and that

the real frequency axis. Note that since e" van-
ishes at infinite frequency, a prime is not neces-
sary on «(~).

2 ""x«"(x)dx
'll ~p X —CO)

(8)

Finally, use is made of the fact that the spectrum
of &" is sharply peaked near , . If the spectrum
is strongly peaked, the integral in Fq. (8) may be
approximated in the following way:

«"(x) dx
(9)

Note that this approximation, bringing out some of
the frequency dependence in front of the integral
sign, is exact and trivial in the case that a" has a
5-function spectrum centered at the frequency cot.

The integral which appears in Eqs. (7) and (9)
may be eliminated between these equations to ob-
tain

(10)

This is the desired result. "' This LST relation
contains the starting information, that is, the di-

III. LST RELATION FROM KRAMERS-KRONIG INTEGRAL

The LST relation may be obtained by examining
the Kramers-Kronig integral given in Eq. (6) at
two special frequencies. We must first specify a
certain minimum amount of information about &".
If we specify nothing, a priori then we know only
that &" falls off at high frequencies as required by
statistical mechanics. By not specifying any in-
formation we are essentially not specifying any
mode structure (peaks) in «" and it is natural that
we would not be able to obtain any information to
fill in the right-hand side of Eq. (1).

We will start with the simplest possible assump-
tion, namely that &" goes to zero at zero frequency
and has a peak at a frequency &,. The special case
where &" does not go to zero at low-frequencies
must from physical reasoning correspond to a
metal or a material with free carriers. This case
is treated in a subsection below. To summarize,
we specify that the spectrum of &" has one peak
located at a frequency &u, . Equation (6) is first
evaluated at low frequencies

p( ) ( )
2 «(x)dx

~Jp X

Equation (7) tells us essentially how much the peak
in &" contributes to the low-frequency dielectric
constant. Next, Eq. (6) is evaluated at a special
frequency to which we will give the name w„and
which we will provisionally call the longitudinal
mode frequency. The special characteristic of
&u, is that here «'(&o) is zero. ' 2Evaluating Eq. (6)
at &„we obtain
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+, = transverse-optic-mode frequency

= frequency where &" peaked, (11a)

&, = longitudinal-optic-mode frequency

electric constant at high and low frequencies; it
contains the frequency +, which we specified as a
region where the absorption was peaked; and it
contains a frequency &, which was defined as the
frequency where the dielectric constant is zero.
For the discussion in this section only, we will con-
tent ourselves with the definitions~3

A. Classical oscillator modes

Assume the spectrum of &" is given by the
fol mula

&"((o) = &us(u', y/[((o', —(o')'+ (o'y '] . (12)

This is the form of a classical oscillator mode of
strength 8 and damping y. The dielectric response
of a solid is completely specified by Eq. (12) and
the additional parameter a(~) in the frequency range
of interest here. By Kramers-Kronig analysis of
Eq. (12) (or by inspection) we find that the complete
dielectric function is

= frequency where &' =0. (lib)
~((o) = ~(~)+ suP, /(uP, —uP —i(uy) . (13)

The reader who wishes to assure himself that these
are reasonable definitions is referred to the dis-
cussion of response functions by Barker and I.ou-
don. '4 The reader who is unhappy with these defi-
nitions and would like to see &, related, for exam-
ple, to the time dependence of some actual coordi-
nate as it oscillates after being given an initial im-
pulse must realize that the definitions of Eq. (11)
are the price we pay for having given up the detailed
and restrictive harmonic Hamiltonian approach.
The. system we envisage here may have any amount
of anharmonicity. If a single coordinate is given
an impulse at t =0, the energy may couple very
strongly to some or all other modes, and individual
motions need not be even approximately sinusoidal.

One problem remains in regarding Eqs. (7)-(11)
as a general derivation of the LST relation.
was introduced as the frequency where the real
part of the dielectric constant was zero, allowing
Eq. (8) to be written. For very broad modes, &'

may not be zero anywhere on the real frequency
axis. We will find that the longitudinal mode reso-
nance is properly regarded as a complex frequency
and that the I ST relation still exists, but the abso-
lute value of this complex number is required. In
the remainder of this paper, we consider such
cases using algebraic methods, which have intui-
tive appeal and more significance for spectro-
scopists. Integral methods could be used as was
done in the above equations, but these become tedi-
ous for paths of integration in the complex frequency
plane other than along the real frequency axis.

IV. LST RELATION FOR SOME SPECIFIC SPECTRAL
FUNCTIONS

In this section we will examine some specific
dielectric functions including classical oscillators,
Debye dispersion, frequency-dependent damping,
coupled modes, and central peaks. We also ex-
amine the problems mentioned earlier of free car-
riers which lead to &" having a nonvanishing value
as the frequency approaches zero.

At this stage we have a spectrum defined by four
parameters including &(~). ur, is the frequency
where &" is peaked, as long as yis not too large.
We therefore have all the ingredients of Sec. III
except (o,.

The equation

e((o) =0 (14)

must now be solved. We denote the roots of Eq.
(14) by v, . There are two roots given by

=+[ ' (0)/ (") '7']'-"-- '(-'7). (15)

We define &, given by Eq. (15) to be the longitudi-
nal-optic-mode frequency. This &, is not identical
to the &o, appearing in Eq. (8), which was a real
number. The present &o, is complex. Eq. (14) is
the exact definition of the longitudinal-optic-mode
frequency we wiO use for the remainder of this
paper. If y is not too large (compared with &o,),
then the entire derivation given in Sec. III goes
through for the classical oscillator dispersion of
Eq. (13). To derive the I ST relation directly from
Eq. (13) we merely consider the absolute value
squared of &, given above

~
(o,

~

' = (o',e (0)/~ (~) . (16)

This is the LST relation for the classical oscillator.
Figure 1 shows interrelation of frequencies and the
peaks in the dielectric spectrum. At the top of the
figure the &" spectrum is displayed; it possesses
a peak near the frequency &,. The poles and zeros
of &(~) [Eq. (13)]are plotted in the lower part of
the figure. Since the absolute value of a complex
number is just the distance from the origin to that
number, we are able to label this distance in Fig.

A separate calculation of the location of the
poles of e(v) shows that in fact the parameter &u,

is really similar to &„ i.e. , it is also the distance
from the origin to, in this case, the pole. There-
fore, it is also the absolute value of some complex
number. It is only an accident that the standard
way of writing the classical oscillator, Eq. (13),
uses this parameter rather than the separate real
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on a solid (or l.iquid or gas). The thermal fluctua-
tions of the polarization are also completely deter-
mined by these spectra~4 so that a scattering ex-
periment can, under certain conditions, also yield
the spectra. The spectra completely determine
the dielectric function; once determined, they can
be manipulated to check that they fit Eq. (13), and
if tjhey do, the parameters &, and &, may be pui in
Eq. (16) to determine the ratio of dielectric con-
stants. If the spectra do not fit the form of Eq.
(13), we then have a problem. We hope to clarify
this situation in the following sections. However,
we note here that there has been a tendency by
some writers in that situation to immediately state
that the LST relation has "broken down. " Since
our arguments have shown that the LST relation
breaks down only when statistical mechanics or
causal behavior breaks down, we reject such a
vie wp oint.

The extension of the LST relation to the case of
a sum of classical oscillator modes for Eq. (12)
uses the same methods and has been presented
earlier. '8 The result is

I'IG. 1. Classical oscillator dispersion. (a) Dielectric
spectrum Im(&) plotted for real frequency. (b) Dielectric
spectrum Im(-1/&) plotted for real frequency; ~& is
chosen to be l. 0 here. (c) Location of poles and zeros
in the complex frequency plane. Note that the peaks in
(a) and (b) lie near the projections of the poles and zeros
on the real frequency axis. Poles and zeros occur in
pairs mirrored in the imaginary frequency axis.

and lmaglnary paris Qf the pole frequencyo For
reasonably low damping the poles and zeros occur
in pairs which are reQections in the imaginary
frequency axis. This is guaranteed by Eq. (4).
For much larger damping the poles and then the
zeros approach the imaginary frequency axis a,nd

finally lose their real part entirely. This behavior
has been discussed before in Ref. 8.

Parts a and b of Fig. i show the spectra which
contain the usual information that is available to
an experimentalist concerning these poles and
zeros lurking in the imaginary frequency plane.
The &" spectrum contains information on long-wave-
lengtll flue'tuRtiolls of the polarxzat1on wlucll llRve
transverse character. '4 Note that the peak comes
near the projection of the pole on the real frequency
axis. The Im(- I/&) spectrum contains the details
of polarization Quctuations of longltudlrlal charac-
ter. We note that the peak in this spectrum comes
near the projection of w, on the real frequency
axis. Both Im(a) and Im(- I/&) are odd functions
of frequency along the real frequency axis. This
is another result following from Eq. (4). The sig-
nificance of the two spectra shown in Fig. I is that
they may be obtained from infrared experiments

where the product is taken over all the poles and
zeros, i.e. , peaks in the spectral functions which
occur in the spectrum. Note that since we have
not set up a harmonic Hamiltonian or system of
equations with a definite number of coordinates, we
cannot say how many terms there should be in the
product. For a simple well-behaved solid like
NRCI, group theory predicts one long-wavelength
optic mode. It seems reasonable, in that case,
that the product in Eq. (17) should have only one
transverse and one longitudinal frequency on the
right-hand side. This in fact holds to an accuracy
[in e(0)] of about 2% at 300 K. To higher accuracy
more terms must be multiplied together on the
right-band side. These terms would be classical
oscillator modes used to represent low-frequency
combination bands, for example, which are known
to exist in the c" spectrum of NaCl. The LST re-
lation has not broken down and is exact as long as
we include all modes on the right-hand side of Eq.
(IV) in the sense of accounting for all peaks in the
spectrum of &". This is because our derivation
(Sec. III) depends on the spectrum of &" and on all
the peaks it contains. It does not depend on any
kind of mode-counting scheme which arises from a
harmonic Hamiltonian and the application of group
theory.

To summarize this section, we obtained the LST
relation [Eq. (1V)] for a material whose c" spec-
trum can be represented by a sum of classical
oscillators. The mode frequencies which appear
on the right-hand side are precisely defined in
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B. Debye dispersion

988 B85'v8 ssod8. The dielectric spectrum for
a single Debye mode is given by

c(&o) = e(~)+ (S/1 —i(or), (18)

where 8 is the strength of the mode and y is the
relaxation time a,ssoeiated with the mode. The
time dependence of a system which has the spec-
trum given by Eq. (18) will be discussed below,

XIYI (s)
1 - IQJ T
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(c) I~
Irn(cu)
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FIG. 2. Debye dispersion. In {a) and {b) the tvro pri-
mary {transverse and longitudinal) dielectric spectra are
plotted as in Fig. l. v has been chosen to be 1.0. {c)
846ws thLe 1ocat)Lon Gf the po1e MK3 z,eI'o o'i tO.e 1MagMRI"y

ir~tj.ency axis.

terms of the poles and zeros associated with the
two primary spectra which determine the trans-
verse- and longitudinal-optic fluctuations and which
can be measured experimentally. Since any spec-
trum can be decomposed into a sum of classical
oscillator terms, it would appear that Eq. (1,7)
would be a good place to stop. However, the ap-
pearance of other types of simple spectra, for ex-
ample, the Debye dispersion, show that we must
investigate these forms separately. A Debye dis-
persion can be represented quite accurately by a
sum of, say, ten classical oscillators. Such a
procedure would yield an LST relation involving
20 frequencies. In fact, we will find that we can
fit this dispersion with two frequencies exactly.

together with the time dependence of classical os-
cillator systems and frequency-dependent damping
systems. Materials which exhibit the Debye spec-
trum are discussed in standard textbooks on dielee-
trics. The right-band side of Eq. (18) may be col-
lected over a common denominator to give the form

&(~) = e(")((~i—~)/(- i~~ —~)] ~

, =- - 'te(")+ S)/~(")~.

The definitions given by Eq. (20) parallel those for
the classical oscillator. ~, is the complex fre-
quency where the zero of a(ur) occurs, and up, is
the absolute value of the frequency where the pole
occurs. By writing the dielectric spectrum to ex-
hibit explicitly the poles and zeros, we may obtain
the LST relation by taking the zero frequency limit
of Eq. (19). The LST relation is therefore

.(0)/. (-)= I,I/, . (21)

The pole and zero frequencies enter the LST rela-
tion linearly rather than quadratically for the
Debye spectrum, Figure 2 shows an example of a
Debye spectrum illustrating the two spectral func-
tions and the locations of the poles and zeros.

Tom Debye modes. If the current in a material
is carried by two separate mechanisms which each
obey the Debye dispersion, we have the spectrum

&((o) =e(~)+ S,/(1 -iu)vq)+ S~/(1 -i(ox~) . (22)

The poles and zeros of such a function are easily
obtained. Note that they no longer occur as pairs
mirror-ima, ged in the real frequency axis, but all
lie on the pure imaginary frequency axis. Using
algebraic methods like those of Ref. 6 we find the
LST relation

e(»/~(") =
I ~nl I ~u I/~~i~~a

The poles are located at —i/v, and —i/7'3 The.
zeros are obtained by solving a simple quadratic.
Figure 3 shows the spectra and the locations of the
poles and zeros. Note that the poles and zeros al-
ternate along the imaginary frequency axis. For
some purposes the spectra shown in Fig. 3 couM
be approximated by a, single Debye mode. How-

ever, for exact results, two modes are necessary,
and the LST relation must contain the four frequen-
cies of Eq. (23).

Debye mode PER@ cles~icef oscillator mode. In
the above paragraphs we have seen how Debye
modes are characterized by poles and zeros on ihe
imaginary frequency axis. Such modes enter ihe
LST relation linearly rather than quadratically.
Some solids are kn.own to possess both sharp pho-
non modes and Debye dispersion. The latex' is
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sometimes associated with hindered rotation of a
chemical subgroup in each unit cell. Figure 4
shows the spectra for such a case. Equations (13)
and (18) have been added and «(~) has been set
equal to 2.0. The actual parameters are listed in
the figure. We find three poles and three zeros.
Two of each are mirror images, as was seen in
Fig. I, and these are obviously to be associated
with the classical oscillator mode M Note that the
Debye mode has had some effect on the oscillator.
The zero is pushed down compared with the pole.
The I ST relation is

I

—2— 20

(b)
1m(-1/e)

0.1—

2a=2+, -+
1 —

I 4JV 15~—GJ ~ —
I 0)y'

iI,
T.m(e)6—

~(0)/~(-) =
I ~l1 I I ~l2 I'/~~~~la, (24)

10 20 (d
where &» and ~„are the zero and pole on the
imaginary frequency axis. These enter linearly,
as was found above. To find the zeros, a cubic
equation must be solved in this case. For the pa-
rameters used in Fig. 4, e(0) is 5.0. If a spec-
troscopist can measure only in the frequency range
10-25, and can determine the spectra to 10% ac-
curacy, he might assume that the oscillator peak
describes all the dispersion in this material. He

(c)

I

-5

~~
Zm(u)

0.5—

—1.0—
X

—15—

I I

15 20 Re(m)

Xrn(6)

(a)

0.8
0.6
0.4
0.2

6= 3+ ——+
) —

I G)T1

10 QJ

FIG. 4. Debye mode plus classical oscillator mode.
(a) and (b) show the spectra for real frequency. As in
preceding figures these are odd functions of frequency.
They show the broad Debye mode and the higher-frequen-
cy oscillator peak. v is 0. 833 and y is 0.2 in the units
used here. (c) shows the pole zero pair on the imaginary
frequency axis and the other poles and zeros which lie
in the plane and have mirror images off the figure to the
left.

xm(-1/e)

(,) (( rrn(u) )

I

10 Q)

10 Re(u)

would conclude e(0)=3, approximately, from the
LST relation Eq. (1). Low-frequency capacitor
measurements would show e(0) = 5. 0. The results
are brought into agreement only by including the
extra linear frequency factors in the LST associ-
ated with the Debye dispersion. The I.ST relation
has not broken down, ' rather, the spectra were not
completely determined.

C. Central peaks

The polarization fluctuations of transverse char-
acter at long wavelength are given by

( )„=(ke T/K(o) im[c((u)], (25)

while those of longitudinal character are given, by

(P') „=(@sr/n~) Im[- I/e((u)], (25)

FIG. 3. Sum of two Debye modes. (R) and (b) show
the transverse Rnd longitudinal spectra plotted RgRinst
real frequency as in the preceding figures. rg «d v'2

have been chosen as l. 0 and 0.5, respectively. The
spectra suggest that a single Debye mode with v= 0. 6V

would be a reasonable approx!. mation. In (c) the two poles
Rnd zeros are shown on the '.-.maginary frequency Rxis.

where k~ is Boltzman's constant and classical sta-
tistics have been employed. ~ The weighting fac-
tor I/~ in these spectra can cause a pronounced
"central'" (zero frequency) peak for dielectric spec-
tra with sufficient weight at low frequencies. Fig-
ure 5 shows the polarization fluctuation spectrum
for the sate d'l. electr'LC response used ZQ Flg. 4,.
The presence of the low-lying poke and zrxo w~~cv
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enter the LST relation are emphasized in this type
of spectra. The occurrence of a central peak does
not imply Debye-type dispersion. Any dielectric
spectrum with suitable low-frequency form can
show a central peak when Eqs. (25) and (26) are
evaluated. It is clear from the Debye example,
however, that a central peak will have associated
with it low frequency poles and zeros which must
be included in the LST relation. The contribution
of the central peak alone to e(0) may be evaluated
in two ways. Equation (7) may be used with the up-
per limit of integration replaced by some frequen-
cy well above the central peak but well below all
other resonances. The second (and equivalent)
method involves evaluation of the LST relation both
with and without the lowest frequency modes in-
cluded, and comparing the results. We will com-
ment on the importance of such central peaks in a
paraelectric material near a ferroelectric transi-
tion in a section below.

D. Free carriers

I

-02

(b)

-0.2

(c)

-0.2

j~ Im(&)
8—
6—

2—

0.2 0.4 0.6 0.8

1i Xm (-1/~)1—

0.2 0.4 0.6 0.8

J)gm {m)

I

0.2

-02—

I I I

0.4 0.6 0.8

1.0 (d

I

1.0 Re@4

(a)

Jk lm(E')

Equation (4) shows that for real frequencies &"
must be an odd function of frequency. In the above
sections we have discussed dielectrics which have
e"proportional to frequency at low frequency. The
simplest and probably only significant case where

-0.4 x

FIG. 6. Dielectric spectra for quasifree carriers.
(a) and (b) show the spectral functions for real frequency
for the formula given in the figure. ~~ =0.4 and the plas-
ma frequency is I co& l =0.707. (c) shows the two poles
of & on the imaginary frequency axis and one zero. Sec-
ond (mirror-image) zero is off the figure to the left.

—20 -15 -10 -5 5 10 15 20

&"does not vanish at zero frequency is the case of
free carriers where e" is proportional to l/ar. The
dielectric spectrum for quasifree carriers is given
by

E((d) = 6(~ ) + (d„/(- (d —f(d(0~) ~ (27)

I ) Irn (-1/E) Here +, is the carrier collision frequency and +„ is
related to the carrier density by the relationship

~'„=4one'/m, (2S)

-20 -15 -10 -5

(c)

5 10 15 20
lk lm(u)

0.5—
l I I I

-20 -15 -10 -5
-05—
-1 0—

X
-1.5—

I I I I

5 10 15 20 Re{~)

FIG. 5. Fluctuation spectra corresponding to Fig. 4.
(a) Spectrum of transverse fluctuations. (b) Spectrum of
longitudinal fluctuations. Poles and zeros are shown
again here in (c) for convenience. Note that (a) and (b)
are even functions and show a large central peak feature.

+(~ ) 3/(4 2) 1/8
(29)

Figure 6 shows the location of the poles and zeros.
By using the absolute value of the frequency of the

where n is the carrier density and the m the effec-
tive mass (cgs units are being used). For this type
of spectrum the dielectric constant at low frequen-
cies does not reach a limiting value. The imagi-
nary part increases without limit, while the real
part levels off at a negative value. There are two
poles for this spectrum which occur at zero and
i(d,. That is, they are both on the imaginary fre-
quency axis, The zeros for reasonably small co,
occur a.s a pair of reflections in the imaginary fre-
quency axis. ' The zeros are located at
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zero, we may establish two different relations,
either one of which is comparable to the LST rela-
tion of a dielectric. These relations are

1/~( )= ~~, ~'/~'„ (30)

1

~ (QJ)2
Im(6) 6

e '(0)/e ( ) =
i
(u,

i
/(u, . (31) 10 20 QJ

Note that the low-frequency dielectric constant
must now have a prime to make clea,r that we mean
the real part. The longitudinal fluctuation spec-
trum which is related to part b of Fig. 6 has a peak
near ~, . In metals this longitudinal resonance is
called the plasma frequency.

E. Frequency-dependent damping

Frequency dePendence and L8T xeEation. %e wiU.
start with a particular form of frequency-dependent
damping and justify this form and indeed the con-
cept of frequency-dependent damping somewhat la-
ter. Consider the dielectric function

)~ ItYl{-I/s)
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Sh) g~(~)=~(")+ a a '. a-.
(u, —e&u,/(1 —i&us) —e (32) -1.0,'(

S is a dimensionless mode strength and ~, is a re-
storing force, as usual [cf., Eq. (13)]. Tbe sec-
ond term in the denominator, which has the fre-
quency-dependence characteristic of Debye disper-
sion, can be thought as a correction to the restor-
ing force or first term. At very high frequencies
it approaches zero, but at low frequencies it has
significant real and imagina, ry parts which affect
the total denominator. These modifications are
caused by interactions of the primary oscillator
(whose strength is given by S) with other phonons.
In this case the interactions have significant fre-
quency dependence and cause damping and force
constant shifts. A fourth term can be added to the
denominator of the form inly [cf., Eq. (13)]to pro-
vide a constant damping term in addition to the fre-
quency-dependent damping, without affecting any
of the conclusions of this section, The parameter
c is used to suggest a coupling coefficient which
governs this strength of the interaction of the pri-
mary phonon with the other phonons which contrib-
ute to the damping. Figure 7 shows the spectra
for a particular choice of parameters. Note that
the form of the spectra and the location of the poles
are rather similar to Fig. 4. However, there are
significant differences and the spectra are not
equivalent. There are three poles and three zeros
as shown in part c of Fig. 7. The LST relation
must include all three; it has the form of Eq. (24).
This form is easily derived using the same alge-
braic methods as had been used before to find the
roots of e(&u). Thus we find that Eq. (32), which
appears to have one degree of freedom [one term
besides e(~)j, actually simulates a system with

-2.0—

FIG. 7. Dielectric spectra for a mode with frequency-
dependent damping. Equation is given in the figure and
corresponds to ~& =15, v =0.38, and coupling c = 0.667
in Eq. (32). (a) and (b) show the spectra for real fre-
quency. (c) shows the locations of the poles and zeros.

two degrees of freedom such as was considered for
Fig. 4. The peak near 15 in Fig. V(a) corresponds
to a resonance near +„while the broad peak at low
frequencies corresponds to driving all the coupled
phonons via the effective charge of the principle
mode (i. e. , the effective charge that enters the pa-
rameter S). Essentially, S is spread over both
peaks and the parameter c controls the fraction of
S which appears in each. ff Eq. (32) describes a
soft-mode peraelectric material, and if the spec-
tra are examined only in the region of the high-
frequency peak, it is quite easy to miss the true
soft-mode behavior. The divergence of e(0) near
a ferroelectric phase transition may consist en-
tirely of the low-frequency pole on the imaginary
axis of Fig. V(c) moving towards the origin, that
is, the high-frequency peak in the spectrum may
not soften.

Time dePendence. In this section we briefly con-
sider the origin of the frequency-dependent damp-
ing such as given by Eq. (32). Lax~~ has consid-
ered the problem of the motion of a selected lattice
vibration coordinate when it is coupled to a reser-
voir consisting of all the remaining lattice vibra-
tions. The general result is thai the classical os-
cillator form of Eq. (3) is appropriate, but with
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the damping i~y replaced by a frequency-dependent
term which depends on various anharmonic coef-
ficients. This term has real and imaginary parts
which must obey the Kramers-Kronig relations.
The form used in Eg. (32) was chosen to satisfy
this general requirement and to have a" positive.
Therefore this dispersion spectrum is satisfactory
from the viewpoint of obeying the general require-
ments of statistical mechanics.

To gain a little more insight we may consider
the equations of motion

m, x, = —k,x, —k,~(x, —x,) —y,x, +z,E, (33)

m, ',=-~,x2-u»(; —.,) -»', .
The particles described by m& and m& are coupled,
vibrate in one dimension, and have restoring force
k~ and k2 and damping y, and y2. Only particle 1 is
coupled to the electric field E via the effective
charge z&. The equations are now specialized to
the case of particular interest here by setting mz
and y~ equal to zero to obtain simpler forms. The
motion of particle 1 is given by

(b)

(c)

X«)

e(u) = + &()

0

q(~) = + g(~)

Lltr'Q J jgv '

z~E
Xg

k&+ k~z —m&v —k~q/(k2+ kq2 —iu&yq)
'

The dispersion form given by Eq. (32) is immedi-
ately obtained by evaluating first the polarization
and then the dielectric constant in the usual way,
and by redefining some groups of constants. This
simple model suggests that frequency-dependent
damping of the form of Eq. (32) arises when the
electric field couples to an optic mode (the particle
x&) which in turn is coupled to an optically inactive
mode or group of modes, described in this case by
the single coordinate xz. In a real solid the group
of modes described by Eg. (34) may be a two-pho-
non band. The coupling coefficient k,~ may there-
fore be temperature dependent. Cowley has con-
sidered a specific model of a paraelectric material
and derived Eg. (32) by considering the anharmonic
phonon processes in detail. ~ With this amount of
motivation for the frequency-dependent damping
equation we now turn to the time dependence. Fig-
ure 8 shows the time dependence of a coordinate x
for a particle corresponding to the optic mode co-
ordinate described by various dielectric constants.
A 6 -function impulse of electric field is applied at
t=0. In Fig. 8(a), the response corresponding to
the Debye mode is shown with its characteristic ex-
ponential decay from the initial position which was
achieved by infinite velocity at the time the impulse
was applied. In part b the characteristic time de-
pendence for a classical oscillator is shown follow-
ing the same impulse at t= 0. In part c we have
taken the Fourier transform of the frequency-de-
pendent damping spectrum [Eq. (32)] to obtain the
time dependence of this particular type of response

Rnnnn~vvVU~»"
FIG. 8. Time dependence of an optic-mode coordinate

after an electric field impulse. Three mode types are
considered, with the dielectric constant formulas dis-
played in the figure; (a) Debye mode, (b) classical oscil-
lator mode, and (c) mode with frequencyMependent damp-
ing. Note the separate decay of the amplitude of oscilla-
tion and of the mean value of the coordinate.

function. Note that in contrast to parts a and b of
the figure, in part c there are two characteristic
decay times. One has to do with the decrease in
amplitude of the oscillations similar to part b while
the other is connected with the approach of the
mean position of oscillation to the origin, which is
reminiscent of part a. Note that part c is not ob-
tained by the addition of parts a and b, although it
appears to approximately follow the sum of these
two time dependences. This result correspond ex-
actly to the point made earlier that Fig. 7 is not
exactly the result of adding two oscillators as was
done in Fig. 4, although the result is roughly the
same in some respects. Silverman~~ and others
have derived frequency-dependent damping by con-
sidering the time response as a memory function.
It might be pointed out for those unfamiliar with
frequency-dependent damping that since the 1930's
most automobiles have had so-called variable-
rate-damping shock absorbers to improve the re-
sponse of the automobile after a sudden impulse.
The use of frequency-dependent damping is there-
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fore not entirely academic, nor is it restricted to
unusual and rare circumstances.

To summarize the results of the present section,
the LST relation has been derived for a particular
form of frequency-dependent damping. For suffi-
cient coupling strength c the spectrum of Fig. 7
will show a central peak when plotted as a fluctua-
tion spectrum, as was done in Fig. 5. A strong
central peak here is associated with low-lying poles
and zeros on the imaginary axis close to the origin,
which must be included in the LST relation. Equa-
tions (33) and (34) represent one form of mode cou-
pling of the type discussed by Barker and Hop-
field. In all cases of mode coupling even a mode
with zero effective charge in an uncoupled repre-
sentation must be included in the LST relation if it
couples significantly to an active mode.

F. Band-gap absorption

(a)

2

J iIol (6')

io"

J ~
IfA(" I /6)
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In the preceding sections response functions
have been examined which contained simple poles
and zeros. We now consider a case with a differ-
ent type of singularity, the branch cut. Standard
works on semiconductors show that interband ab-
sorption across a direct gay has the functional
form

A a A A IA A ~

V V V Vl
) A A A A A A A A A A A R A A A A A AYg. &vvvvVVVY+vvvvvvh~

& 2 4 6 8 IO Re(~)
BRANCH CUTS

e(0)/~( ) =(o', i'/&u,'i' . (37)

Since the integral of Eq. (7) yields a ~ power de-
pendence on &~, it is reasonable that such a rela-
tion exists. For the spectra of Fig. 9, (d, =1.V2.
Unfortunately, ~, is not simply related to the spec-

where &g, is the frequency associated with the en-
ergy gap, and where the positive sign on this
square root is associated with positive frequencies
and the negative sign is taken for negative frequen-
cies. Equation (36) can be shown to hold near the
band gap for parabolic bands; however, some mod-
ifications set in at higher frequencies. We neglect
such effects here. Figure 9(a) shows the dielec-
tric spectrum with the characteristic square-root
threshold at v, . Fluctuations of a transverse char-
acter follow the form of Fig. 9(a) [modified by the
factor given in Eq. (25)]. Figure 9(b) shows the
spectrum which corresponds to longitudinal fluctua-
tions, and in part c the singularities are indicated.
The electronic excitations contribute to e(0) just as
the optic yhonon excitations do. The problem in
obtaining an LST relation consists of yicking suit-
able frequencies to be used in the expression. The
branch cut shown in Fig. 9(c) has one natural fre-
quency associated with it, namely u~. It is diffi-
cult to find a second frequency because the analytic
forms of &(+) and of I/e(&u) are extremely cumber-
some. A possible form to expect for the LST rela-
tion would be

ATOR APPROXIMATION
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6(0)R I2.6I
~() =6.O
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FIG. 9. Dielectric spectra for band-gap excitations.
Form of &" is given in the figure. cuz is l.0 and co& I.Eq.
(37) t is 1.72. (a) and (b) show the spectra for real fre-
quency and {c) shows the location of the singularity in the
complex frequency plane. {d) Four-oscillator approxi-
mation to the spectrum of (a}. (e) Po1.es and zeros in the
complex frequency plane for the four oscillators of part
(d).
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tra of Fig. 9. f This means that the LST relation
becomes merely a definition of m, rather than an
independent usable relationship. The reason for
the difficulty in obtaining &, from the spectra is
directly related to the type of singularity involved.
The pole and zero singularities, even with consid-
erable damping, could be associated with damped
simple harmonic time dependence and thus thought
of as elementary excitations. The time dependence
is much more complicated here; the spectra in-
volve a series of excitations, and part of the shape
comes from the density of states near the band
edges. We conclude that there is an LST relation
for this case, but it has little direct use. The in-
troduction of a longitudinal mode frequency can be
avoided by avoiding the ratio of dielectric constants
used in the LST relation. Taking this approach,
the more useful relation

o)i R 6(t e+&) im

O. I—

I I I iu tt
-Io 10" 106

fi Im(-lie)

j( Im(E)
Qd) +0,01 l&l(vi&10

e() 2,0
0.02-

O.OI—

t ) l

104 106 108

~(0) = ~(-)+A/4~,"' (as)
.008-
.004-

is obtained by using Eq. ('7).
Finally, it is instructive to examine an approxi-

mation to the band-gap absorption of Eq. (as).
Figure 9(d) shows an approximation consisting of
the use of four classical oscillators. There is a
sharp rise in absorption near co=1; however, a
finite number of oscillators can never exactly re-
produce the sharp edge shown in Fig. 9(a). Figure
9(e) shows the location of the four poles and zeros
used in this approximation. To obtain a better ap-
proximation even more poles and zeros are added,
and individual damping terms may be decreased so
that the poles and zeros move closer to the real
frequency axis. In the limit of an infinitely dense
cluster of poles and zeros they of course move
right up to the location of the branch cut shown in
Fig. 9(c). The LST relation for this four-oscilla-
tor approximation has four transverse frequencies
and four longitudinal frequencies as described in
Sec. IV A. The actual value of e(0) obtained is
12.61, as opposed to the correct value of 13.5
shown in Fig. 9(a).

The approximate representation by four (or some
other number of) oscillators can be useful in situa-
tions where a simple analytic form for e(e) is re-
quired. We recognize, however, that the poles and
zeros shown in Fig. 9(e) have little significance in-
dividually. Their combined weight, when entered
on the right-hand side of the LST relation, will,
however, give an approximation to the dielectric-
constant ratio.

G. Flat absorption band

In this section we consider briefly the case of a
wide frequency region consisting of featureless or
flat absorption. Figure 10(a) shows an example of
s»ch a. spectrum which 'stretches over six decades
in frequency. As with the band-gap absorption, we

(c)
I I I I tl It I s

l/ Il
-.002-

I I I I

I04 106 10

FIG. 10. (a} Imaginary part of the dielectric constant
plotted against real frequency for a flat absorption band.
(b) Real part of the dielectric constant corresponding to
(a). (c) Imaginary part of the reciprocal dielectric con-
stant corresponding to the spectrum in (a).

find that this absorption is not described by simple
poles and zeros, and we find no unique frequency
or mode to associate with the longitudinal spectrum
[shown in Fig. 10(c)]. Just as we did above, we
can avoid the introduction of a longitudinal mode
frequency by assessing the contribution of the mode
structure to «(0). The result for a spectrum
stretching from frequency ~~ to ~~2 of strength
e "=A is given by Eq. (I)

e(0) = ~(")+(2/~)»n(~ /~ ) . (a9)

Note that the result depends only on the ratio of
~2 to ~f. This exact result obtains for a spectrum
that turns on sharply with a step function at &f Rnd

similarly drops to zero with a step function at ~&.
Such sharp steps cause logarithmic singularities '

~

In the physical situations we have in mind w~

expect no such sharp steps and have shown rounded
edges on the spectra in Fig. 10. Equation (a9) is
still correct; however, (df and ~~ are less well de-
fined. For suitably shaped edges on the spectrum,
these frequencies correspond to the midway point
with value —,'A. A spectrum with &"=Const. corre-
sponds to the situation where the real part of the
conductivity varies linearly with frequency. Such
spectra can arise from the hopping of a charged
particle Rs discussed by Mott Rnd Davis.
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We consider here the case where the spectrum is
weak in the sense that the second term of Eq. (39)
is much smaller than the first term. Such spectra
are important in certain semiconductors at low
temperatures, and in certain disordered solids.
Such spectra may also be important in almost any
solid if it is measured with sensitivity sufficient to
detect the presence of rather minor impurities
which move in a hindered fashion. We believe such
spectra to be important also in certain ferroelec-
trics. Note that the fluctuation spectrum given by
Eq. (25) will have a central peak which rises as
I/&u for frequencies approaching &o, from above.
The exact behavior at v = 0 depends, of course, on
the shape of the tail of c"at (d = 0.

Figure 10(b) shows the behavior of e'. It falls
smoothly in a logarithmic fashion over the entire
spectral region where the absorption occurs. For
the case we consider where c(~) is very large, the
longitudinal spectrum shown in Fig. 10(c) mimics
the transverse spectrum shown in Fig. 10(a).

In the case of a solid which has an infrared active
mode at frequency ~, which can be approximated by
a classical oscillator, Eq. (39) must be altered.
As a concrete example, we might imagine a para-
electric with a soft mode at &o, which lies above the
spectral region shown in Fig. 10(a). Equation (39)
must have e(~) replaced by the contribution of this
soft mode. The relation becomes

e (0) = (2/v) A. In((ua/los) + e ( ) I
(v ) I / (o (40)

Devonshire was the first to construct a detaQed
phenomenological theory of the phase transition in
ferroelectrics. This was a thermodynamic theory
which dealt only with the static or low-frequency
properties of ferroelectrics. Devonshire did not
discuss oytic modes; however, his result that the
dielectric constant must diverge at the ferroelec-
tric transition in certain materials is directly con-
nected with mode softening through the LST rela-
tion. Devonshire expanded the free energy in the
form

F(T, P) =F0(T)+AP~+ BP +CPS,

where I' is the polarization, '1' is the temperature,
and A, B, and C are phenomenological coefficients
to be determined by general principles or by fitting
to a particular compound. For a second-order
phase transition, Devonshire found that B and C are

where c(~) is, of course, the dielectric constant at
frequencies well above both the flat absorption and
the soft-mode frequencies, and +, corresponds to
the zero in the dielectric constant. For the pres-
ent example of a soft mode well above the flat spec-
trum, u, may be calculated by ignoring the flat
spectrum contribution to I/e(~).

V. MODE SOFTENING

positive while A is temperature dependent and goes
to zero at the phase transition. Landau and Lif-
shitz obtain exactly the same result in their dis-
cussion of second-order phase transitions. By
taking derivatives of the free energy it is easily
established that

(42)

The vanishing of A at a second-order phase transi-
tion causes therefore a divergence in e(0) at the
phase transition. Using reasonable models, Devon-
onshire established that even for a first-order
transition A is temperature dependent and de-
creases to a considerable extent, though not to
zero. The usual assumption is that A varies lin-
early with temperature near the phase transi-
tion, that is

A=a(r -r, ) . (43)

Scott has briefly reviewed the thermodynamic the-
ories and commented on the expected temperature
dependence for A. The concept of e(0) becoming
infinitely large near a phase transition may now be
applied to our various LST relations. First, in
Eq. (1) we note that the left-hand side will increase
as «(0) increases, since &(~) consists of tempera-
ture-independent polarizations, i.m. , polarization
which is not included in the Devonshire expression,
Eq. (41). Looking at the right-hand side of Eq.
(1), we note that the equation is satisfied if there is
mode softening of +„ i.e. , if u, approaches zero.
The other obvious possibility, of co, approaching
infinity, must be rejected by arguments outside the
general thermodynamic approach. We may follow
Cochran's discussion, which considers a specific
lattice-dynamic model. Briefly, the result is that
mode frequencies cannot approach infinity since
masses cannot approach zero nor force constants
ayproach infinity. It is easy, however, to con-
struct situations in which a frequency can approach
zero, since there is no reason that force constants
cannot be zero due to cancellations of long- and
short-range components or harmonic and anhar-
monic components. With this somewhat sketchy
background we conclude that Eq. (43) predicts a
mode softening of ~z, in Eq. (1). Using the same
reasoning we find that one or more transverse
modes must approach zero in the situation covered
by Eq. (2) as the ferroelectric transition is ap-
proached. Following the discussion which lead to
Eq. (17), we conclude that this result holds with the
interpretation (see Fig. 1) that the pole of the di-
electric constant approaches the origin. The meth-
od of approach is immaterial as long as the dis-
tance from the origin continues to decrease as the
temperature approaches the phase transition tem-
perature. Considering next the Debye mode dis-
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persion [Eqs. (21) and (23)j, we conclude that again
a pole xnust approa, ch the origin as T- To, but in
this case along the imaginary frequency axis. For
the central peak shown in Fig. 5, regardless of
whether it arises from frequency-dependent damp-
ing or the sum of two independent modes, the LST
relation Eq. (24) was obtained. The divergence in
«(0) near the phase transition may now be caused
by either the central peak or the higher-frequency
peak approaching zero. The most likely situation
mould be for the high-frequency peak to decrease
in frequency to some extent, but for this effect to
increase the coupling c in Eq. (32), so that the
lom-frequency mode mhich contributes to the cen-
tral peak takes over and dominates the spectrum as
the temperature approaches the transition temper-
ature. From Eq. (38) for the case of band-gap ab-
sorption we note that the divergence of «(0) can be
associated with the band gap ~z going to zero.

Finally, for the case of the flat absorption spec-
trum with «(0) given by Eqs. (39) or (40), we have
the possibility of co~ approaching zero or the spec-
tral density A approaching infinity at the phase
transition. As was mentioned above, R weak flat-
band spectrum may be present in many solids ow-
ing to a small contamination by impurities. If the
spectrum arises from Debye-type hopping over a
distribution of barriers which are governed by
short-range forces, me might expect this distribu-
tion to be rather temperature independent. If the
hopping takes place in a region of large local elee-
trie field which is connected with the polarization
of a higher-lying soft mode, there can be consid-
erable enhancement of the hopping polarization. A
simple model of such local field enhancement shoms
that the parameter A in Eq. (40), which is related
to the number of hopping centers and their effective
charge, varies as 1/uP, . Such a model predicts
therefol 6 that 1f (d g 18 soft, both terms in the di-
electric constant [Eq. (40)] diverge together. More
subtle considerations might of course cause one of
the diverging terms to win out over the other as T
approaches the transition temperature. For all of
these types of dispersion therefore the LST rela-
tion predicts that a, mode softens as the ferroelec-
trie transition temperature is approached. For the
xnodel of flat-band absorption mentioned above, the
parameter m~ may not soften, but the divergence in
the dielectric constant mill cause a, divergence in
the strength of the central peak associated with the
absorption.

VI. CONCLUSION;~

In the above sections me have derived the LST
relation for several kinds of dielectric response
functions. Some of the response functions con-
tained a central peak when plotted in the appropri-
ate may and comments were made on other re-
sponse functions which contained mode coupling.
The general result obtained mas that when the di-
electric constant diverges near a phase transition,
the mode frequencies must change according to the
LST relation. Using a fairly general lattice-dy-
namical model it can be established that in many
cases the longitudinal-mode frequency is relatively
stable, and it is the transverse-mode frequency
which softens or approaches zero near the phase
transition. It was stressed that the number of
modes need not agree with the group-theory result
for the ideal crystal.

Mode softening may occur in a central-peak type
mode which may or may not correspond to any of
the modes obtained in the harmonic approxixnation
of lattice dynamics. The central peak ca,n be in-
trinsic to the material, resulting from coupling of
allomed and forbidden modes„or it may be due to
impurities. An example has been given of a broad
flat absorptionband arising from an impurity with adis-
tribution of barrier heights in its hopping dynamics.

The derivation of the LST relation depended only
on the principles of macroscopic physics, that is,
statistical mechanics and the principle of causality.
Using this viewpoint one is seMom justified in
checking whether the I.ST relation holds. %hat one
is checking is whether all of the modes which con-
tribute to «(0) have been found, or perhaps whether
«(0) has been measured correctly. We note finally
that even one part of the requirements for an LST
relation can be abandoned if one wishes to discuss
modes with negative oscillator strength. For ex-
ample, in the classical oscillator equation (13) 8
can be negative. Such negative oscillator strengths
result from transitions which are being puxnped by
some outside agency. In this situa. tion there is
still an LST relation, however, nom && lies at low-
er frequencies than m, in the case of, for example,
a single oscillator mode. As the pumping is in-
creased so that 8 becomes even more negative, we
can have the longitudinal-mode frequency approach
zero mhile the transverse-mode frequency remains
fixed. As with the eases described above, the ba-
sic LST relation here results directly from the ap-
plication of the Kramers-Kronig integral.
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