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EPR of Ho'+ in SrCl~ under uniaxial stress: A parametrixation of the orbit-lattice
coupling

J. C. V181 Mld R. 8ulssoIl
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The uniaxial induced shifts of the EPR lines of the ground doublet and of the first-excited doublet of
Ho + in SrC12 have been measured for various applied stress directions. Although the strong hyperfine
structure of Ho'+ complicates considerably the calculation, it was possible to show that the results are
consistent within the description by a dynamic spin Hamiltonian adapted to each doublet. From these

results and from the lifetime of the excited doublet states deduced from the EPR linewidths, five bits

of experimental information on the orbit-lattice coupling have been obtained. Various models proposed
for a parametrization of this coupling are tested with these results, Beside the validity of the
approximations made for the building up of these models, other possibilities can explain their

incompatibility with the experiments: (i) local changes in the elastic constants; (ii) existence of
. displacernents in the strained crystal which are not predicted by the elasticity but are due to the

particularity of the crystal structure. Relaxation-time measurements have also been made and some

comments on their correlation with uniaxial-stress results and lifetimes are given.

I. INTRODUCTION

Crystal-field theory has been a very powerful
method for spectroscopists essentially because it
leads to an effective Hamiltonian with few "to de-
termine" parameters. One of the best successes
of this theory was the interpretation of the optical
spectra of lanthanides for which the parameters
were considerably overdetermined by the experi-
mental results. On the other hand, ab initio cal-
culations have not been as conclusive as one could
hope. However, a recent model developed by New-
man and his co-workers seems to lead to better
results (see the review given by Newman' ).

The dynamic coupling between an ion and its sur-
roundings can also be analyzed within the crystal-
field theory. But the number of the parameters
needed for a complete description depends on the
Rssumptions. For instance, with O„point symme-
try, this number is 7 (].1 if the coupling with F,~
and I"4, modes is included) if one supposes either
that the interaction is only with the ligands or that
the strain i'8 uniform around the ion. ' Newman
and his colleagues~ supposing that the mR'Jol pRrt
of the interaction is due to overlap and covalency
with the ligands, reduce this number to 4 (see Baker
and Van Ormondt for more details). Buisson and
Borg, using an electrostatic model and the long-
wavelength approximation show that three parame-
ters would be sufficient.

Baker and Van Ormondt4 have recently tried to
test these various models with their uniaxial-stress
experiments on Tm" and Yb3' in CRF~, SrF~,
BRF&. However, the Dumber of bits of experimen-
tal information is only 2 for each system, Rnd it
seems difficult to relate the results obtained with

different systems. Baker and Currel have studied,
also by uniaxial-stress experiments, the I"8 qua-
drupletof By' in CaF2 and of Er' in MgO. The
amount of independent experimental information
is larger in these cases and the analysis of these
results will be very interesting. Ho ' in SrClz
i.s also an attractive system with O„symmetry.
After the EPR studies of Sabisky' and the optical
measurements of Weakliem and Kiss, we know
that the three lower crystal-field multiplets are
only split by 30 cm ', EPR experiments being pos-
sible within the two lower doublets. Thus EPR
under uniaxial static stress on these doublets,
measurements of direct and Qrbach relaxation
rates for the ground doublet, and lifetime broaden-
ing of the various lines will give a great number of
independent experiInental results. The frequency
of the phonons involved, even for the Qrbach pro-
cess, is sufficiently low to permit the use of the
long- wavelength approximation. While this system
has the advantage of having narrow EPR lines, it
presents two difficulties: (i) the high hygroscopy
of the crystals and tii) the strong hypertine coupling
of Ho '. The former was only an experimental
problem. The consequence of the latter was a
strong complication in the calculations. It was
possible to overcome this complication in calculat-
ing th& shifts induced by UniRxiRl stRtic stress bUt
not in evaluating the relaxation rates.

In Sec. II, we give the theoretical evaluation of
the line shifts induced by uniaxial static stress
Using RD effective dynamic Hamiltonian. The ex-
perimental results of EPR under static stress, of
relaxation- time measurements, and of some com-
plementary spectroscopy measurements are given
in Sec. III, and Sec. IV is devoted to a discussion
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of the results.

II. THEORETICAL CONSIDERATIONS

We shall use the orbit-lattice Hamiltonian ob-
tained in previous work' which supposes a uniform
distortion of the lattice around the paramagnetic
ion. In the case of O„point symmetry, this Hamil-
tonian can be written

Ro„- Q V(/, I „)s,O~(/, I ",P)o(I', P) . (1)

O~(/, I'„,P) is the J operator associated with the
normalized linear combination Y(/, I', P) of spheri-
cal harmonics belonging to the P component of the

representation I" of the O„group II' = I"&, I",~,
I &, I",,), s, are the secularization constants of
Stevens, o(1,P) the normalized linear combina-
tions of the Cartesian components of the tensor
o„„=-B(&x)„/Br„ fw hic hcan also be defined by (&x)„
= r„—r„=g„o„„r„]describing the lattice distortion
(see Appendix A), and V(/, I' ), the parameters
specific to each situation. There are 11 parame-
ters in Eq. (1) but, as discussed in Sec. IV they

can be expressed in terms of a few independent
quantities, the number of which depends on the

model. The o(I'„,P) components are either re-
lated to the static uniaxial stress applied to the
crystal for the calculation of the induced shifts or
expressed in terms of phonon operators for relax-
ation studies.

The system studied in this work is a Kramers
system having levels associated with cubic doublet~
I"

6 and I'7 and cubic quadruplets I'8 . As Ko„ is
even by time reversal, its matrix elements inside
doublets are zero. However, the Zeeman interac-
tion mixes the states of the doublets with those of

the quadruplets, making these matrix elements
nonzero. The hyperfine coupling can also mix the

states. Abragam et al. have studied this last ef-
fect when the hyperfine coupling is small compared
to the Zeeman interaction. We shall obtain more
general results which will be applied to the case of

Ho ', which has a strong hyperfine coupling.

The Zeeman and hyperfine Hamiltonians are
written as

g;/g~=&;/a=2(r;+ ~&.
~

I';+&,

II";+& being the state ~S, = —,'& written in terms of
mz. I.et tel'&, m, M) (m=m, =+ —,', M =mz) be the
eigenstates of (3) and [I';,m~, m, &, abbreviated by

I I";,n), the basis in which 3C, is diagonal within
each cubic multiplet I", . This last basis, which
corresponds to the states llr', , m, M) for the dou-

blets, is the best for second-order calculations.
At this order, KoL must be included, and we get
for the shift of the level l I";,n&,

«(r, , n) = P (~ (r, , n~X,
~

I"„n'&
~j,n'

+ &r, , nix, ir „n') &r, , n'ix„i r, , n).(1„[~«(I „n'& &
I.„n"[Z, )

I, , n&

+
(

(I', , n (Xo„)I"„n )
) )

i
(4)

The first term gives the spectroscopic corrections
and will be discussed in Sec. III. As Ko~ is even

by time reversal, the shift given by the last term
is the same for all levels of each cubic doublet and

cannot be observed in our experiments. The only
terms to be retained are thus the central ones.
Except when the magnetic field is in a special di-
rection, the calculation is tedious and it is prefer-
able to use an effective Hamiltonian appropriate to
each cubic doublet.

The general form for such an effective Hamiltonian
is well known. It does not depend on the doublet,
although the values of the coefficients do. We

shall write it as

&.n =a ~ &s Q &.C.,s(H, S)«I, I-'I)

+a Q A„C„q(I, S)cr(I"„,P),

egwhere C, z(U, V) =g, & X,"& U, V& is the bilinear com-
bination of the components U; V; which belong to
the P component of I' . They are, for the O„group,
when one uses the standard real form for the repre-
senta, tions 1"4 and I'5~

=..g p, H ~ J+ aI ~ J, 1
Cs ~= ~ (SUg Vg —U ~ V), C3, = —(U„V„—U, V, ),

1

where the Zeeman nuclear term g„p.„H I, although

of great importance for the spectroscopist, has not

been included. Our problem is then to calculate
the combined effect of K, and K«on the cubic
states. At the first order in perturbation theory,
only K, has to be considered. As usual, the result
can be expressed, for the doublet I'&, with the spin
Ham iltonian

Ks; =g( peH'S+A)I'S (3)

with 8=-,',

C4,„= --
(U~ Vg —U, V ),

1
C4, ~

= —(U, V„—U„V,),
1

C4, = (U„V, —U, V„),
1

4yg
2

X y y X C5„,= —(U, V, + U, V, ),
1

(U, V„+ U„V,), C, „,= ——(U„V„~U, V„).1 1

The number A„, the same in the two terms be-
cause the mixing is produced by g J H ~ J and uI -J,
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can be found by equating for some simple cases the

results obtained by direct calculation with those
obtained using this effective Hamiltonian, i.e. ,
writing

(~;,nI& IF/, n'&(1/, n I&o I 1, n&+(1;, neo Il/, n'&(1'/, n I& Il",n& (1, MII~„,II~ M)
r, , n E(f'&) —E(1'/) eff

(7)

IIm, M)) = Q C i~. ~m, M ),
m', M~

where the only nonzero C ."„.coefficients are those
for which rn + M = m '+ M'. The index i, referring
to a specific doublet, is not indicated hereafter to
simplify the notation. If the magnetic field is
rotated from the z direction by a rotation S, the
eigenstates become

IImM) =-

m~ m~~ M~ M~'t

C~t M I d' I ~ ~ (6()X) sf I ~l

x ((R)~m", M "&,

where d((R) and X)($) are the usual transformation
matrices of electron and nuclear states under the
rotation (R. The matrix elements of X,«are
(m „M,II Z,«

imam,

M &

I

= Qc~ g (C '„)"(mIM~ ~d 5) R,~~5)4~m M')

= g C,~ (C s.')*(m~M,
~
K,« ~

m'M'),

where X,« is the effective Hamiltonian "rotated" by
This Hamiltonian can be written in terms of the

components of S and I whose matrix elements are
simple in the basis I m, M ) . This transf ormation
is given in Appendix 8 and leads to

&6«=g'r&sII Z +.&~"S~&(~.~ &)

+a g 4 T;;~I;8 v/(1'„P),
N, g

ftj

where the matrices B ~ and T ~, which depend only
on the rotation S are given in Appendix B.

Equation (9) is a generalization of the results ob-

where X,"„' is the effective Hamiltonian appropriate
to the doublet I'; .

The difficulty in the calculation lies in the fact
that the states ilI"&, m, M) depend on the magnetic
field orientation. We shall see that the knowledge
of the eigenstates for H parallel to [001], which we

shall denote by !~I';,m, M)), is sufficient. These
states can easily be obtained by solving Eq. (3),
and they can be written in terms of the basis I m, M)
= Im)IM)

I

tained by Abragam et a/. in the case of a hyper-
fine interaction small compared to the Zeeman ef-
fect. From this equation one can calculate the shifts
induced by uniaxial stress or the transition prob-
abilities due to the phonons. We begin with the
shifts which involve only the diagonal matrix ele-
ments

(m, M II X.«II m, M)

=+C,"„,(C","„,)*(m IM I ~
X,« ~

m'M'& .

In this equation, we keep only the I',~ and I'5g parts
of K ff since a uniaxial stre ss cannot induce the I
". rotations" .

As the C ".M. are nonzero only if rn+M = m + M,
the number of matrix elements we have to calculate
is not too large. For the first part; of 3C,«, which
originates in the Zeeman term, M, =M and ~,=m;
thus on1.y the S,J, terms have to be considered. The
second part of K,« involves two sorts of terms: (i)
those with m =m', and M'=M„(ii) those with m'
0 m

&
and M 0M» but with I + M =I,+ M, . The

former are calculated as the Zeemap terms, while
the expression of the latter needs the calculation of

I,S„and I S, terms of 3C,«. The final result is

b,E„=X(m,M)(A, [(3cos 8 —1)cr(I'„, 8)

+ v 3 sin~8cos2$o(1"„, e)]

+ —,
'

v 2 A, (sin28 [a(1",~, yz) sing

+ o(&,~, xz) cospI+ sin'8 sin2$ o(I"„,xy) )),
(10)

with

SC(m, M) = ,'g, i, II(I, C"„',t' ~C",-/, ~')

+ 2a [(m+M ——,')~C", /~~
' —(m+M+ 2)~ C,~/2~

'

—C'",'„2C',"„(m+M+-,'II, I m+M --,'&] .
This result is relatively simple. It shows that the
angular dependance is the same for the two parts of
K ff The shif ts given by ' are those of the level s
of any cubic doublet, the values of K(m, M), A, ,
and A5 being determined in each case by using the
spin Hamiltonian (3) and Eq. (7), respectively. In
the case of Ho ' in SrCl~, we can observe the shifts
inside two doublets I'7 and I"6. The corresponding
values for the A's are, ignoring I', and I"', levels
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where li, I'q, m) (m =+ —,', + —', ) is the basis for the
I"8 multiplet which is such that

( I';, m
~
Z,

~
j, I'„m ) e 0 only if t =j (m = + -,.' ),

and the 8,{I',P.) are defined by

5481 Cm-1f7

L 18
5472

8;(I'„,6)=Q s, (i, 1, , ——,
'

~
V(l, I'„)

xo{1,1„,8)i I", , —,'),
I3;{1 ~, 0) = Q s, (i, I'q, ~

~

V(/, I'qg)

(12)

C8
3

C8
2

The problem of finding the relaxation time due
to the direct process is more complex. First, we
must evaluate all the matrix elements of X,«be-
tween the 16 states of each doublet. This is easy
in principle using Eqs. (8) and (9), but very tedious.
Bernstein and Franceschetti' have recently made
this calculation for Ho" in Cap~. Second, we must
solve the system of 16 rate equations in order to
get the evolution of the populations after the equilib-
rium has been destroyed. As the various transi-
tion probabilities are of the same order of magni-
tude for reasonable magnetic field, there is no

simple way to solve this system as was the case
for Tm ' in CaF~. %e have not tried to overcome
this problem.

III. EXPERIMENTAL RESULTS

A. Samples and apparatus

The SrC1~-doped crystals studied were obtained
from the Advanced Technology Center, Inc. of
Dallas, from Bill, and from Chapelle. Most of the
uniaxial stress results were obtained with those
provided by Chapelle because their very good quality

allowed higher pressures to be used. All the crys-
tals were received with the holmium in the tri-
valent state. The conversion to Hog' was achieved
by the well known technique of solid electrolysis. "'
For the uniaxia]. stress experiments, the sampleR
were cut as cylinders with axes parallel to the

(100), (110), and (111)directions, respectively.
The experimental arrangement was described in

a previous paper. " It consists of a cylindrical
X-band cavity with an adjustable coupling and a
mechanical system to apply the stress to the crys-
tal. This system comprises a stainless-steel rod
which transm'(. s the compression via a steel sphere
to a sandwich consisting of the specimen placed
between two quartz cylinders whose faces are well

27.8
— —24.6

Iy —0

FIG. 1. Crystal-field splitting of the I&&~2 and I~&~2
levels of Ho ' in. SrCl2 from optical spectroscopy (Ref. 8).

polished. Under pressure, the system is self
aligning and a good homogeneity of stress in the
sample is obtained. In order to maintain a leak-
tight system, the stainless-steel rod was operated
through a bellows at the head of the cryostat. This
arrangement lowered the effect of so].id friction on
the transmission of the applied force. This force
is vertical, and the magnetic field can be orientated
in any direction in the horizontal plane.

8. Remarks on the spectroscopy

The 1&5l s ground term of the Ho~' ion is split by
the cubic crystal field into various multiplets, as
shown in Fig. 1. The strong hyperfine coupling
and the applied magnetic field lift the degeneracy
of these multiplets. Figure 2 shows the levels for
the ground l"~ doublet. The EPR of this doublet has
been studied in great detail by Sabisky7 and Szofran
et al. " They have shown that the simple form (8)
for the spin Hamiltonian is not sufficient for the
interpretation of the spectra. Second-order contri-
butions of Hamiltonian (2), as expressed by the first
term of Eq. (4), must be included. They give ad-
ditional terms in the spin Hamiltonian, The spectra
observed at 870 MHz (Szofran et al. ), at 9000 MHz
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FIG. 2. Energy levels of the ground I'7 doublet as a
function of the magnetic field. The arrows show the two
transitions observed at 9300 Mhz, the low-field line and
the high-field line.

(Sabisky and this work), a.t 27000 MHz (Sabisky),
and at 36000 MHz (this work) can be interpreted
with

X =g)U, ~ H ~ S+AI ~ 8 —g„'P„H ~ I, (13)

with 8 = —,', I = —', , g = 6, 751, A = 0. 1478 cm ', and
g„'=46+ 3.

The detailed study of the resonance in the I', ex-
cited doublet is less easy because the lines are
broader and of lower intensity. The levels have a
disposition analogous to those of I', (see Fig. 2),
but the negative signs of g and A make the level

I
——,', 2 ) the highest and the I —,', ~7 ) the lowest. The

nearly isotropic spectrum observed at 9000 MHz

by Sabisky and ourselves can be interpreted by the
spin Hamiltonian (13) with S= 2, I=&, g = —5. 91,
A = —0. 133 cm ', andg„'= 420+ 30, the large value
of g„' being a result of the proximity of the I"8 qua-

druplet. Weakliem and Kiss (8) have studied the
optical spectroscopy of Ho~' in SrCl~. Their re-
sults give the position of the various crystal-field
levels indicated in Fig. 1. One can then deduce the
values of the parameter x and of the energy scale
W' introduced by I ea, Leask, and Wolf:"

A(4, I'«)= —1360 cm ', A. (6, I'&) =692 cm ' .
(14)

C. Uniaxial-stress results

Because of the strong hyperfine coupling, it is
only possible to observe two lines for each doublet
at X band. We shall label 1"; » and I"; L r (i = 7, 6)
the high-field and the low-field lines, respectively,
for each doublet (see Fig. 2). Although the signs
of g and A are opposite for the two doublets, the
I'; „~ lines are associated with the transitions
II I';, —,', —2' )—ll I';, ——,', —27 ) and the I', » lines to

ever the doublet concerned.
The influence of the stress on the position of the

lines is illustrated in Fig. 3. The shifts of the I'6
lines are enhanced owing to the proximity of the
18 multiplet, and thus, fortunately, the great width
of these lines does not mask the shift. The non-
broadening of the lines when the force is applied is
an indication of the good uniformity of the strains
inside the sample.

The results of systematic measurements of the
shifts of the lines are given in Figs. 4 and 5. Ex-
cept for very small forces, the shifts are linearly
related to the applied force. The origin of the ap-
parent nonlinearity at low stress is certainly due
to some residual solid friction in the apparatus.
When the force is applied along a. (100) or a, (111)
direction, the shifts are isotropic and are given by

H

x = —0. 396, %=0.739 cm ' .
We can thus use the eigenstates tabulated in this

reference for x = —0.4. If we write the static-
crys.tal-field Hamiltonian as H

l=4, 6

with the same definition for sI and O~(l, I'u, ) as for
KoL in EII. (1), we obtain, for the sta, tic-crystal-
field parameters,

FIG. 3. Typical results showing the uniaxial induced
shift. (a): High-field line I'& with the force along the
[111]direction; (b): High-field line I 6 with the force
along the [110]direction and the field along the [001]
direction.
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FIG. 6. Angular dependence of the shift for the high-
field I'6 line. The stress of about 250 kg/cm is along
the [110]direction; the magnetic field lies in. the (110)
plane. The points are experimental: the curve is the
theoretical variation deduced from Eq. (10) (see Sec.
IVA).

FIG. 4. Dependence of the shifts versus the applied
stress. (a): High-field I'6 line with P II f110] and H II [001];
(b): High-field I'6 line with P II f111]; (c): low field 17
line with P II tl00]; (d): High-field I'7 line with P II )111].
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FIG. 5. Angular dependence of the shift for the high-
field 1 7 line, The stress of about 250 kg/cm~ is along
the [110]direction. : the magnetic field lies in the (110)
plane. The points are experimental, the curve is the
theoretical variation deduced from Eq. (10) (see Sec. IVA).

(4H/EP&&pp&)rp&IF ——5. 55X 1Q G cm /kg,
(r&jj/nP& III&)I'p &I F

—2. 6 x 1Q G cm /kg,

(~/I&P &„I&)rp„,= —1.6x 10 ' G cm'/kg .
(16)

The angular variation when the force is along a
(110) axis is shown in Fig. 6.

D. Relaxation-time measurements

We have measured the T, of the I", ground doublet
lines in liquid-helium temperature range at X-band

(AH/~&III&)I'I&IF = —5, 5X 10 G c111 /kg

(&H/~
& pp I & )r 1 II r = 2, 2 && 10 G cn& /kg

(~H/~&„, &)r „„=2.4x 10 ' G cm'/kg,

(r»H/&P&pp, &)I', I r ——0. 96&& 10 G CIII /kg

When the force is along a (110) axis, the shift &ie-

pends on the magnetic fieM orientation. The re-
sults for the high-field line are given on Fig. 5.

The measurements on the I'6 lines are less easy
owing to the weak intensity and the width of these
lines; we have thus fewer results than for the 1~
lines. Figure 4 shows that the variation of the
shift with the applied stress is again linear. The
near I"8 quadruplet creates a weak anisotropy for
the lines in the unstressed crystal which is never-
theless bigger than the shifts induced by the applied
force. The shifts themselves remain isotropic
when the force is parallel to a. (100) or a, (111)
axis. We find
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frequency with an apparatus previously described. "
The results obtained for the low-field line are shown
in Fig. V. They can be fitted by

1/T, = (76 + 2)T + (1.25 y 0. 2)x 10 e 35'4~ r

i (4. 5 y 0.3)x 10' e (17)

for the low-field line. For the high-field line the
result is the same except for the direct process
which goes as 61T. We must point out that for this
fitting we have left fixed the values of the arguments
of the exponential since we know the position of the
excited levels. There is a great margin of error
for the coefficients because the arguments are not
very different. It is even possible to have a good
fit with only one exponential term, the value of the
argument being interdemediary between the pre-
vious ones.

1OOC

xI-
O 500—
LLI

Z

200

~1; (axe(TaO s

E. Linewidth measurements 100

The linewidths had previously been measured by
Sabisky. ' We have only verified his results for a
few temperatures. Figure 8 gives Sabisky's re-
sults for the variation of the full-width-at-half-
maximum amplitude. We have decuded the trans-

0 I | I

4 12 20

TEMPER AT URE ( 'K )
28

FIG. 8. Temperature dependence of the full linewidth
at half-height for the I'6 and I'7 lines (from Sabisky's
thesis).

109

108

10

106-

verse relaxation time T~ from these results using
a procedure described elsewhere, ' in which the
line is supposed to be the convolution of Gaussian
and Lorentzian distributions. The former describe~
the low-temperature linewidth, the latter the ef-
fect of the lifetime of the states which vary with
temperature. The corresponding points are also
plotted in Fig. V. They can be fitted by

1/T2- 1.34x 10'(e"' —1) '

+ (9.5+0. 5)x 10"(e4"'-1)', (18)

&1O'-

10

10

10

0.2
I I

0.4
(OK)

0.6 0.8

FIG. 7. Temperature dependence of the relaxation
times T~ and T2 for the I'7 low-field line. The triangles
are the experimental values of 1/T1 obtained from satura-
tion-recovery technique. The ful. l circles are the values
of 1/T2 deduced from the linewidth gj.ven in Fig. 8. The
two curves represent Eqs. (17) and (l8).

where the value 1.34' 10 is deduced from the 1'6

linewidth and left fixed for the fitting. The prob-
lem of the relation between T, and T, , recently
discussed by Stapleton and his colleagues' ' for
other systems, will be commented upon in Sec.
IV H.

IV. DISCUSSION

A. Consistency of the experimental results

Formula (10) of Sec. II enables the angular varia-
tion of the shift when the force is applied along a
(110) direction to be predicted in terms of the shifts
observed for a particular stress orientation. We
have plotted in Figs. 5 and 6 the curves showing
this theoretical variation using the experimental
values given by Eqs. (15) and (16). From formula
(10), we can also show that for any direction of the
applied force
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10 ~= —23 cm (19d)

A3= —26. 7,
A3 = 357,

A5= —19.6,
A~=49. 1 .

C. Equations for the determination of the orbit-lattice
parameters

With these values for the A' s, Eqs. (11) and (12)
can be written in numerical form once the matrix
elements of the operators OJ are calculated. As
pointed out in Sec. IIIB, we use for this calcula-
tion the states of Lea, Leask, and Wolf" for x
= —0.4. The result is

a,(r„,e)= [-2.0sv(2, r„)—1.684v(4, I„)
+ 2. 34V(6, r,~)]x 10 '= —117 cm ',

B,(r,~, 0) = [- 3. 372V(2, rq, )+ l. 51V(4, r,~)

(19a)

—8. 392V(6, r,~, a) —3. 759V(6, r,~, b)]

&&10 = —98 cm ', (19b)

a, (r„,s) = [- 5. s 2s v(2, I' )+ 0. 532v(4, I' )

—13. 183V(6, r,~)]x 10 2 = —137 cm ',
(19c)

B (I",0)= t
—0. 55V(2, I' )+ 2. 371V(4, I' )

+ l. 129V(6, I', a) —0. 387V(6, I",b)]

&P LF —1.61. for I'6 lines .
The experimental values of these ratios are, re-

spectively, —2. 3+0.05 and —1.6+0. 05. The good
agreement both for these ratios and for the angular
dependence together with the linear variation of the
shift with respect to the stress shows the validity
of the hypothesis made in Sec. II, i. e. , neglect of
terms higher than 2 in perturbation theory.

8. Values of the dynamic-spin-Hamiltonian parameters

TheA', values of Eq. (11) can be deduced from
our experimental results if we express the strains
o(I', P) as a, function of the applied force by using
the elastic constants. Lauer et al. ' have measurec
the elastic constants by an ultrasonic method be-
tween 300 and 195 K. By extrapolation of their re-
sults to helium temperature with the same law as
that found by Huffman et al. for CaF~, we deduce

C» —C,z
= 5. 58x 10"dyn/cm',

C44= lx 10"dyn/cm

Other measurements, ' based on Brillouin scat-
tering experiments, have given

C» —C,2= 5. 14x 10"dyn/cm',

C « = 0. 8 x 10"dyn/cm

Using the average values of these two results, and

g~ = —, , a = 0.026 1 cm ', we deduce

where the V(l, I'„) are expressed in cm '.
Another equation can be obtained by expressing

the width of the I'61ines at zero temperature. For
this calculation we can, as a first approximation,
ignore the hyperfine structure and equate the width
&co to the sum of transition probabilities from the
two I"6 levels to the two I', levels. These transi-
tion probabilities involve only strains of the I"5~

type. The result is

&&u =Ct6M'(6, /h)', (20)

D. Point-charge model

The expressions for the static-crystal-field
parameters and for the V(I", P) within the point-
charge model have been given many times, un-
fortunately with a great variety of normalization.
We shall not add the new formula resulting from
the normalization adopted in writing Eq. (1), where
both the Oz (I, I', P) and the o(r, P ) are normalized
to unity. We have, however, verified their com-

with 8 = I/6mpv'5, where p is the density of SrC1,
(3.05 g/cm'), n an average speed of sound, &6 the
splitting between I'6 and I'~ doublets, and M a ma-
trix element of the orbit-lattice Hamiltonian ex-
pressed in terms of orbit-lattice parameters by

bf = t- 2. 634V(2, I „)+2. sv(4, r„)
—4. 022 V(6, r„,a) —1.04V(6, I'„,b)]x 10 ' .

(21)
If we take into account the hyperfine structure,

the value of &v is only slightly changed, the factor
6 being replaced by 5. 3. To deduce the value of
M from the experimental width, we have to evaluate
the average speed v. Using the average values of
the elastic constants and an averaging formula pre-
viously given, ' we find v = 2. 98x10' cm/sec. Baker
et a/. have made a. more rigorous calculation of
the coefficient 8 by taking into account the anisot-
ropy of the crystal. They have kindly put in their
program the elastic constants of SrCl, and found

that, for the I",~ modes (which are the only active
ones in the lifetime of the rs levels), the average
n is equal to 2. 16x 10 cm/sec (2. 8x 10 cm/sec
for the r,~ modes). Thus there is a factor of 5 on

~, i. e. , v 5 on M, depending on the method used
for the evaluation of v. We have chosen the value
obtained with the method of Baker et a/. , which
gives ~M ~

= 60 cm"'. By comparison with the value

given by the point-charge model, we adopt the value
M= —60cm ',

The five equations (19) and (21) are not sufficient
to determine the values of the seven parameters
V(l, I' ). To go further, we choose some particular
models and study their compatibility with our re-
sults.
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TABLE I. Values of the crystal-field parameters within
various models and of the corresponding B&(I' P) and M
appearing in Eqs. (19) and (21) (in cm I).

Model I Model II Model III Semiexperimentala

A(4, I"1 )

A(6, r„)
V(2, r3g)
v(4, r„)
v(6, r„)
v(2, r„)
v(4, r„)
V(6, r&e, a)
v(6, r„,o)
a, (r„,8)

a, (r„,0)
a, (r„,o)
M

—279
55

7090
617

—73
4730
1270
—67
—19.8

—156
—134
—364

+3, 4
—92

—1360
692

7090
3010

—912
4730
6196

—836
—248
—216

+13.5
—241
+ 112
+54

—1360
692

3545
3010

—912
2365
6196

—836
-248
—144

+93
—52, 5

+125
+ 116

—1360
692

6450
—970

—1350
4270

923
—836
—597

—146 (—117)
—37 (—98)

—168 (—137)
-8. 7 (-23)

—51 (-64)

~We have given. in this column the values of A (4, I'&~) and
A (6, I'«) deduced from optical spectroscopy results of Weak-
lieman. d Kiss (Ref. 8), the values of the V(l, I' ) obtain. ed from
our experiments within the electrostatic model described
in Sec. IVF (see also Table II), the values of the B&(I',P)
and M of Eqs. (19) and (21) obtained with these V(l, I'„),
and, in parenthesis, the values of the B&(I',P) and M de-
duced from the experimental shifts and lifetime using the
bulk elastic constants.

patibility with those previously published. Taking
into account the contribution of the first two shells
of neighbors, we give in Table I the values ob-
tained in the three following cases: (i) we use for
the (r") the values quoted by Sroubek et al. "and
without any screening effect; (ii) we deduce the
values of ee (r «)/R' and ee (r')/R', R being the
ion-ligand distance, from the experimental values
of A(4, I'&) and A(6, I', ), keeping the point-charge
va'-:.;e for second-order terms; (iii) the same method
.:.:;- m !ii) but with a screening coefficient of 0. 6
for the second-order terms. We can then calculate
the 8;(I'„,P) and M of Eqs. (19) and (21) and com-
pare the results with the experimental values (see
Table I). It is not without interest to point out that
the crudest model (I) gives the best agreement, as
was found by Sroubeck et al. in analogous systems
(see Sec. IVG).

second, fourth, and sixth order (noted t, , t«, t~)
and another to characterize the influence of the
second-order terms (the influence of the fourth-
and sixth-order terms is related to the static-crys-
tal-f ield values).

As for the I",~ strains, there is no change in the
ion-ligand distance; the exponents t, are not in-
volved. The V(4, I'„) and V(6, I',~) are related to
the static parameters by

V(4, 1„)=-2~A(4,1 ),

V(6, I"„)=--,'/ —", A(6, 1„),

V(2, I'3, ) being a "to determine" quantity. The
A(/, I'„) are given by Eq. (14). Equations (19a) and
(19c) give then two values for V(2, I',~) which must
be equal if the model is good. We find, in fact,
2660 and 5790 cm ', which are far from being
equal. We can get equal values by choosing for
(C„—C,z) a value 2. 1 times larger than the value
for the bulk material, V(2, I',~) then being equal to
9000 cm '. That the elastic constants could be
locally modified is not surprising, but the factor
of 2 seems not to be realistic (see Sec. IVG).

The three results obtained with the 1",~ strains
and the width of the I'6 lines are sufficient to cal-
culate the three exponents t, once the value of
V(2, I'„) is known, but in this case the validity of
the model is not tested. Using for V(2, 1, ) the
two values 2660 and 5790 cm ', we obtain, respec-
tively, t, =4. 9, t, = —2. 7, and t6=5. 2 and t, =0.21,
t4= —4. 2, and t6=-1. 2. Again these values are not
realistic, especially the sign of t4. As a compari-
son, Anderson et al. have found that the values
t4 =t6 =12 are in agreement with the variation of the
static-crystal-field parameters of Tm ' in CaF&,
Sr F, , BaF&, while Baker et al. ', after choosing
t4 = t6 = 7, obtain for t2, with the same systems,
values between 1.5 and 23, depending on the cor-
rections for local displacements and local elastic
constants they made (see Sec. IVG).

F. An electrostatic model
E. Newman model

Newman and his co-workers have developed a
model for the crystal field which appears to ex-
plain better than the previous models the experi-
mental values of the static crystal fields in low-
symmetry systems. ' The extension of this model
to the dynamic case has been discussed by Baker
et al. The essential assumption that the major
part of the ion-ligand interaction is covalent in
nature. It is then sufficient to consider only the
first neighbors. The number of quantities for the
parametrization is reduced to four: three for the
exponents of the R dependence of the terms of

Buisson and Borg have recently shown, using a
pure electrostatic (but not point-charge) model for
the interaction between the paramagnetic ion and
all the lattice ions, that only three independent
parameters are needed for the description of the
dynamic coupling. The essential hypothesis leading
to this result can be sketched as follows. All pos-
sible interactions, including overlap and exchange,
being taken into account for a self consistent de--
termination of the static charge distribution (which
need not be known but from which it is supposed
possible to calculate formally the energy of the
paramagnetic electron by pure electrostatic inter-



TABLE II. Results of the resolution of the 10 systems of equations (see Sec. IPF).
A: with the experimental values appearing in the second members of Eqs. (19) and
(21); 9: with these values respectively multiplied by 1.25, 0.4, 1.25, 0, 4, 0.82.

Equations
omitted

(17a), (17b)
(17b), (17c)
(17c), (17d)
(17d), (18)
(18), (17a)
(17a}, (17c)
(17c), (18)
(18), (17b)
(17b), (17d)
(17d), (17a}

p(2, I'3g)

6446
6092
6870
6991

13046
5365
6891
5540
5691

47152

V(4, I„)
—1426
—1376
—592

—4211
—921

—1273
—1203
—1496
—1779

—17610

—1623
—694

'

545
—1955
—4267

1211
123

—1260
—1333

—17291

y(2, I'„)
6478
6463
6450
6450
6498
6475
6449
6439
6445
6599

V(4, I"„)
—957
—955
—968
—981
—956
-957

958
—960
—972
—901

—1358
—1317
—1338
—1347
—1367
-1349
—1331
—1342
—1345
—1404

action), the perturbation caused by an uniaxial
stress can be described as a uniform deformation
of this charge distribution. The weakness of this
method is mostly in the neglect of the variation of
exchange and overlap induced by the stress, al-
though their contribution to the static crystal field
is taken into account. From this model, one can
obtain relations between the parameters V(I, 1' ).
Using these relations, given in Ref. 5, we ean
transform Eqs. (19) and (21) into five equations
with only three unknowns, say V(2, I'„), V(4, I',~),
V(6, I',~). To study the compatibility of these equa-
tions, we have solved all of the 10 possible systems
of three equations. The results are given in Table
II. To improve the agleernerlt, we have modified
the values of the 8;(1',P) and M which are propor-
tional to the elastic constants until the equations
become compatible. We give in Table II the modi-

fying factors and the results of solving the 10 cor-
responding systems. These values of the pararne-
ters V(/, I',~) and the other ones deduced using the
relations of Ref. 5 are also given in Table I, column

3, for comparison with the other models.

G. Conclusion on the various models

While the crudest model I (point charge with no

SllleMlllg) glVes StRtlC-Cl'ysfR1-field pRI'RIIletel'8 ln

complete disagreement with the experiments, it
gives values fol 'tile BI (I P) Rnd fol' M wllicll Rl'6

not too far, except for 86(1",~, 0), from the values
deduced from the measurements using the bulk
61Rstlc coIlstRllts (866 TRMe I). If, gives eve11 better
values than models II and III, usually considered to be
more realistic. This surprising result was already
observed for Ho" in Ca,F2 and Yb ' in Th02 by
Sroubeck et al. , who even obtained a very good
agreement. Baker a.nd Van Grmondt4 get for the
parameters A. s and A5 good or reasonable values
for Yb" in CaF2, Tma' in BaP3, less good for Tm~'

in Sr F~, and in complete disagreement with. ex-

periments only for Tm~' in CaF2. Although one
can find many systems for which this naive model
works, it is hard to imagine that the physics is
eox rectly described by it.

The two other models considered in Secs. IV K
and IVF are not "ab initio models" permitting cal-
culations of the orbit lattice parameters, but "pa-
rametrizing models" predicting some relations be-
tween various experimental observations. These
relations are not verified for the system studied
here, neither for one nor for the other. Before
deducing any conclusion, we must discuss two com-
plications not yet considered. The first results
from the fact that the strain around the paramag-
netic ion is different from the bulk strain calculated
from the applied force by the elastic constants of
the material. This problem of the local ela, stic
constants has recently been reexamined by Malk':f
and Ivanenko in a series of papers for CaF, -"t~jyc:

crystals doped with some rare-earth lons and by
Kesharwani and Agrawal~~ for CsCl-type crystals
doped with alkaline ions. The results of Malkin
and Ivanenko show that (C» —C,a) can be increased
up to 10/q and tha. t C«can be modified by a factor
between 1.35 and 0. 88, depending on the crystal
aQd the ion. Kesharwanl arid Agx'awal fouQd even
greater changes. The second complication results
from the existence, in CaF2-type structures and
with I',

~ strains, of displacements of F ions which
do Qot correspond to a uniform strain around the
Ca site. These "additionaI" displacements have
been pointed out for the first time and evaluated by
Malkin and Ivanenko. The mecha. nism of their
cx'cation is the following. The 1 5~ strains induce
an electric field at the noneentrosymmetrie site of
F ions, which polarizes these ions and thus develops
the displaeements. If one considers only the
(CaP, )' complex, these displacements correspond
to one set of even Dorm, al modes associated with

The normal modes of this complex have been
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studied by Huang and Inoue. Nine of them are
even, but only six, associated with I'» I', , I',"'
are usually considered the ones excitable by Reous-
tie waves or uniform strains. The three others,
Rssoc1Rted with I Sg q Rre the Rddltlonal dlsplRce-
ments just discussed. They have been ignored
until now for ealeulating relaxation rates and stress
induced shifts because, in crystals having CsCl
stxueture, they cannot be excited by a uniform
strain. In CRFz structure, on the contrary, we
have seen that they can. Of course, the values of
these displacements are not the same for the F ions
which are nearest neighbors of the rare-earth ion
and for the others. Evaluations made by Malkin
and Ivanenko for Yb * in CRFz show, for instance,
that the former are I8% and the latter 50% of the
"nor mal" stress-induced displacements.

We can try to take into account the existence of
local elastic constants and these additional dis-
placements by changing the values of the B& (I",P)
and of M of Eqs. (19) and (21), which we have de-
duced from the experiments using bulk elastic
constants. As with I' strains the additional dis-
placements do-not exist, we have only to change
the elastic constant Ci~ —Cia ~ We have seen, in
Sec. IV E, that this quantity must be multiplied by
2 for the Newman model to be compatible with our
1esults, Althougll. no estimations hRve been mRde
on SrCl~ crystal, this factor seems very high as
compared to the results on CRF&. Regarding the

fI" t ', h tt dt dd
the value of the additional displacements, as Baker
and Van Qrmondt did, fox' an agreement between our
experiments and the Newman model because we
have not an evaluation for the local elastic constants
nor an estimation of the values of the t; .

The electrostatic model discussed in Sec. IV F
is strongly affected by the additional displacements.
The theory developed in Ref. 5 can, however, be
modified to take them into account. Qne ean show
that the number of independent quantities becomes
five instead of three, the value of the displacement
being one of them. With only five bits of experi-
mental information, we have not a redundancy and
thus we cannot test the validity of the model, In
order to reduce to four the number of the unknowns,
we plan to obtain the value of these displacements
from the measurement of the electric field gradient
seen by the Cl ions in the strained crystal. Here,
we choose the following method: (i) we change the
value of B7(I"3~,8) and B6(I'«, 8) by the same factor
to take into account the existence of local elastic
constants; (il) we change the value of Bp(I'«, 0) and
B~(I"«,0) by another factor to take into account the
existence 0f local elastic constants and addltlonal
displacements; (iii) we change the value of M by a
factor different from the previous one (although only
I'6, strains are involved in the I'8 state's lifetime)

to eventually correct the averaging of the sound
velocity. These changes are made in order to get
an agreement with the model, i.e. , to describe the
orbit lattice coupling with only three parameters
(see Sec. IV F and Table II). The first factor„
1.25, is of correct order of magnitude. The sec-
ond, G. 4, is plausible as it reflects boih local
elastic constants and additional displacements. The
last, 0. 8, is more surprising, since, being twice
the previous one, it would mean that the value of the
averaged sound velocity we have chosen must be
reduced by a factor of' v 2 = 1.15. The values of
these factors show that the model is not unreason-
able. Nevertheless, its validity will not be tested
before the problems of local elastic constants and
of the RdditlonR1 displacements Rx'e solved.

H. Correlation between relaxation times and other
measurements

As pointed out at the end of Sec. II, we have not
tried to solve the complicated problem of finding
the relaxation times associated with the direct
process. From the calculations of Bernstein and
Franceschetti' made for Ho ' in CaF2, we can see
that a simplified treatment neglecting the hyperf inc
coupling would give bad results. The mixing in-
troduced by that coupling is at least as important
as that created by the Zeeman term. So, we can-
not compare our results for the direct process
with the stress results.

%1th the Qx'bRch px'ocess the situation 18 better.
We ought again to build a system of 16 rate equa-
tions, but, as the hyperfine coupling is not re-
sponsible for this process, we ean neglect it. We
have seen in Sec. IV C that the calculation of the
I'6 state's lifetime with the hyperfine coupling
changes the factor 6 of Eq. (18), obtained by
neglecting it, into 5.3. This change gives an order
of magnitude of the error resulting from this
neglect. With this approximation, it is easy to
show that T, and Tz for the ground I"7 doublet are
given by

(Z, +Z4)(3Z~+Z4)+ (Z, +Z5)(Z~+ 3Z~)
2K;+ 3K5+ 3K4

1/Tg = ~ &(u = 385 M f(&6)+f(b ~) (2Z~+ 3Z4+ 3ZS),
(23)

Zg = 83
~
B~(I'3g, 8)~, Z4 =8

4~ Bq(1'~„,0)
~

3,

Zs= @s~B&(1"«~o) '
~ f(~&) = (~&/~)'(&"'~""-1)

B,(1",~, 8) and B,(1'«, 0) have been defined in Sec.
Ii. B,(1'&, 0), which represents the effect of "ro-



416 J. C. VIAL AND R. BUISSON 12

tational modes, " is given by

B,(I', 0) =P s, (7, I", , ——,
'

~

V(l, I' )

Using the values given by Eq. (14) we obtain
B,(r4, 0) = 72 cm ' and

1/T, = 1.37x 10 (e ei —1) '

+ 10.6x 10'(e sf —I.) ',
1/T, = l. 54x 10'(e 6i"r —1) '

+ 11 x 1 p9(e rri~r —1) r

(24)

(25)

The problem of the relation between T, and T,
has recently been discussed by Stapleton and his
colleagues. ' ' For the Raman process, they found
experimentally T, /Ta-2 for Kramers systems, and

they used the relation T, = T~ for the correlation of
their results in the case of an Orbach process.
Equations (22) and (23) show that T& and Ta are
not equal and that they are even not propor-
tional. We can mention that, if we ignore the con-
tribution of the I"4, modes, the factors 10.6 and
11.0 become 5. 3 and 7.4, giving a ratio T, /T,
= 0. 7 for the part due to the I"8 quadruplet. Thus
the near equality which appears in Eqs. (24) and

(25} is only accidental. The comparison between
the semitheoretical values (24) and (25) and the
fitting of our experimental results by Eqs. (17)
and (18) shows a. good agreement for the part due

to the I'6 doublet and a less good one for the part
due to the I", quadruplet. The reason can lie in the

fact that, in the former part, the averaging of the
sound velocity has no influence since the calculated
values (24) and (25) are obtained from the I'6 line-
width, while in the latter part we use uniaxial
static stress results. Another reason can be the
fact that the contribution of the rotational modes
to the latter part has been calculated theoretically
from the relations established in Ref. 5 within an
electrostatic model. Finally, the difference by a

xO(l, 1 „,0)i I'„——,'),
and the 8& are the values of the quantity 0' of Eq.
(20) obtained by the avera. ging method of Ba.ker and
Van Ormondt (see Sec. IVC).

The values of B,(I'„,6), B,(r,~, p), and M, de-
duced from our uniaxial stress measurements and
from the I'6 linewidth, are given by Eqs. (19a),
(19b), and (21). The value of B,(r 4, 0) cannot be
obtained from any of our experiments. Its the-
oretical expression is

Bv(r4, 0) = [2.68V(4, r4 ) —7. 54V(6, r~)]x lp 2

In the model developed in Ref. 5 we have shown
that the parameters V(/, r4, ) are related to the
static-crystal-field parameters by

v(4, r„)=/—", a(4, r„), v(6, r„)=&7&(6,r„) .

factor of 2 between the T, and T, fitting laws for
the 1"8 contribution is in disagreement with the re-
sults (24) and (25) which show that the coefficients
ought to be nearly equal. Attempts to fit our results
for T~ with the same law as for T, plus a Raman
term were unsuccessful.

V. CONCLUSION

With the use of an effective spin Hamiltonian we
have established analytical expressions giving, for
any magnetic field and applied uniaxial stress
orientations, the shift of EPR lines associated to a
cubic doublet I'6 or I', when the hyperfine and Zee-
man couplings are of the same order of magnitude.
That was possible because a change in magnetic
field direction does not modify the eigenvalues,
but only the eigenstates of a cubic doublet. We
have measured the uniaxial induced shift of EPR
lines of Ho

' in SrCl~ for both the ground doublet
and the first excited doublet. These results plus
the lifetime of the excited doublet states give five
bits of experimental information and thus make pos-
sible a test for some models which propose a pa-
rametrization of the orbit-lattice coupling. None
of these are compatible with our results. The
reason lies probably in the existence of local elastic
constants near the paramagnetic ion and of partic-
ular atomic displacements typical of CaF2-type
structures. The measured relaxation times T] and

T, of the ground doublet are compared with the
values deduced from the static-stress experiments.
The small disagreement can be attributed either
to the method of averaging the sound velocity or to
the evaluation of the rotational I'4 modes.
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APPENDIX A

Normalized linear combinations used for the
cr(r„, p) are

cr (r,~, & ) = (1/v 6 )(2cr„—o„„—o„),
cr (r3„&)= (I/~~ )(o..—cr„),
cr(r,~+ 1) = v (i/2) [o„+o„+i(cr»+ o,„)],
cr(r,g, p) = (i/u 2 )(o„,+ cr,„),
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o(r~„X~) = (1/~2 )(o„+o.,),
o(r„,xz) = (1/W2 )(o,„+o„,),
o(r, xy) =o(r, O)/i = 1/W2 (o„,+o„) .

There are two forms for the I'5~ combinations. The
first, which is complex, is the best when we cal-
culate the matrix elements of the Hamiltonian (1);
the second which is real, is the best when we trans-
form the effective Hamiltonian (see Appendix B).
The I'4 combinations, used only in Sec. IVH for
calculating the Qrbach relaxation time, can be de-
duced from the I'z~ by substitution of 0;; —o&; for
o;&+a&& .

APPENDIX B

The Hamiltonian Kef f contains terms in II; S,. and
I; S; whose transformation properties under the ro-
tation 8 are

d -'n-'II, .S,nd =H,. g It,„S„,

d 'B 'I; S&S d = g R,.k R» Ik S»
a, l

where R;& are the matrix elements of the matrix R
associated with the rotation 6I'. If we let H; = p, ; H,

we can write X„,of Eil. (8) as

K,ii = Q g~piiIIA. I3; ~s; o(r, P)
n, S, 2

+ g aA Tf&~I, S, o (r„P),

the row matrix B S being defined by

~S V pS&I
$j

and the square matrix T by

p = (sin0 cosQ sin8 sing cos8),

( s'ni

—cosP

0 —sin8

cos0 cosQ sin0 cosp)
cos0 sing sin0 sing

the B and T matrix being given by

kl 2 ( )ki iJ +Pi
Zg

Let (8, P) be thepolaranglesof H with respect
to the cubic axis. Then

B"= (1/W6 )(o

B' 2 = (1/v 2 )(sin8 sin2$

= (1/v 2 )(- cos8 cosp
B'"' = (1/W2 ) (cos0 sing

B's"' = (1/W2 )(- sin8 cos2$
B's" = (1/v 2 )(- cos8 cosQ

B' '= (1/0 2 )(- cos0 sing

B"= (1/v 2 )(sin8

——,
' sin28

—,
' sin28 cos2$

cos28 sing

cos28 cosP

—,
' sin28 sin2$

sing

—cosQ

2 cos 8 —1),
sin 0 cos2$),
sin28 sing),

sin28 cosQ),

sin 8 sin2$),

0),
0),
o),

0

3sin 8 —1 —3 sin8 cos8T3q1
~ 0

1

vs
0 —3sin8 cos8 3 cos 8 —1

—cos2$ cos8 sin2$
1

W2
T"= —cos0 sin2$ cos 8 cos2$

~ ~~ ~sin8 sin2$ —,
' sin28 cos2$

sin8 sin2$

—,
' sin28 cos2$

sin~8 cos2$

0 sino cosi —cos9 cosy)
1T'" = ~ sin8 cosset& —sin28 sing cos28 sing

—cos8 cosP cos28 sing sin28 sing

—sin2$ —cos8 cos2$ —sin8 cos2$)
1 —cos8 cos2$ cos'0 sin2$ —,

' sin28 sin2$
2

—sin8 cos2p —,
' sin28 sin2$ sin 0 sin2$

—sin8 sing
1T'"' = — —sin8 sing —sin28 cos/

V2

cos8 sing cos28 cosQ

conc scni

cos20 cosP

sin28 cosQ

1
T '" = ~ sin8 cosP

—cos8 cosQ

—sin0 cosP cos8 cosP)
—sing

sing



J. C. VIAL AND H. . BUISSON

0
1

T '~ = — sin8 sin=
Wa I

—eos& simf&

—sin8 sing cos6 sing)
0

—cos6 —sin8

0 0

Laboratoire associe au Centre National de la Becherche
Scientifique.

D. J. Newman, Adv. Phys. 20, 197 (1971).
2Chao-Yuan Huang, Phys. Bev. 139, A241 {1965).
~M. Borg, B. Buisson, and C. Jacolin, Phys. Bev. B 1,

1e1v (1evo).
4J. M. Baker and D. Van Ormondt, J. Phys. C 7, 2060

(1974).
~B. Buisson. , and M. Borg, Phys. Bev. B 1, 3577 (1970).
6J. M. Baker and G. Currel, Phys. Lett. A 28, 735

(1969), and Colloques Intemationaux du C.¹R.S. No.
180, Vol. 2, (C. N. B.S. , 1969),

7E. S. Sabisky, Phys, Bev. 141, 352 (1966), and Ph. D.
thesis (University of Pennsylvania, 1965) (unpublished).

H. A. Weakliem, and Z. J. Kiss, Phys. Bev. 157, 277
(196v).

~A. Abragam, J. F. Jacquinot, M. Chapellier, and M.
Goldman, J. Phys. C 5, 2629 {1972).
E. B. Bernstein, an.d D. B. Fran. ceschetti, Phys. Bev.
9, 3678 (1974).
H. Guggenheim, and J„V. Kane, Appl. Phys. Lett. 4,
1V2 (1964).

2F. K. Fong, J. Chem. Phys. 41, 1511 (1964).
3A. G. Dan. ilov, J. C. Vial, and A. Manoogian, Phys.
Bev. 8, 3124 (1973).

4F. B. Szofram, J. L. Smith, and G. Seidel, Phys.
Lett. 42, 363 (1973).

~K. B. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys.
Chem. Solids 23, 1381 (1962).

6Le Si Dang, B. Buisson, and F. I. B. Williams, J.
Phys. 35, 49 (1974).
B. L. Marchand, an.d H. J. Stapleton, Phys, Bev. 9,
14 O.ev4).

8W. T. Gray, and H. J. Stapleton, Phys. Bev. B 9, 2863
(1974).

~H. V. Lauer, K. A. Solberg, D. H. Khon. ner, and W.
E. Bron, phys. Lett. A 35, 219 (1971).
D. B. Huffman and M. H. Norwood, Phys, Bev. 117,
voe1 (196o).

~~Y. Luspin. (private communication).
J. C. Vial, thesis (University of Grenoble, 1973) (un-
published}.
Z. Sroubek, M. Tachlkl, P. H„Zlmmermannq and B,
Orbach, Phys. Bev. 165, 435 {1968).

~4C. H. Anderson, in Cxystats smith the I'/uolte Stmc-
tuve, edited by W. Hayes (Oxford U. P. , London. , 1974).

25Z. I. Ivanenko, and B. Z. Malkin, Fiz. Tverd. Tela
ll, 1859 (1969) [Sov. Phys. -Solid State 11, 1498 (1970)];
B. Z. Malkin, Z. I. Ivanenko, and I. B. Aizenberg,
Fiz. Tverd. Tela 12, 1873 (1970) fSov. Phys. -Solid
State 12„1491 (1971)]; B. Z. Malkin, Fiz. Tverd.
Tela ll, 1208 (1969) [Sov. Phys. Solid State l1, 981
{1970)].

6K. M. Kesharwani and B. K. Agrawal, Phys. Bev. B
9, 3630 (1974}.
C. Y. Huang and M. Inoue, J. Phys. Chem. Solids 25,
88e (1964).


