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Attenuation of surface yolaritons by surface roughness*
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This paper presents a theoretical description of the attenuation of surface polaritons by roughness on the
surface. In the presence of surface roughness, and in a frequency region where the dielectric constant is
negative, the surface polariton is attenuated by two processes. It may lose energy by radiating into the
vacuum, or by scattering into other surface-polariton states. Through application of a formalism developed

recently to describe roughness-induced scattering and absorption of a plane electromagnetic wave incident on
a surface, we obtain expressions for the contribution to the attenuation rate of the surface polariton from the
two processes described above. We examine the relative importance of the two processes for surface polaritons
on semiconductor surfaces, and on a nearly-free-electron metal at infrared frequencies.

I. INTRODUCTION

In a variety of materials, there are frequency
regions where the dielectric constant is negative.
This is the case in any insulating crystal with an
infrared-active transverse-optical phonon, in the
frequency region between the transverse- and the
longitudinal-optical phonon at zero wave vector.
Another example is provided by the nearly-free-
electron metal, where the imaginary part of g is
small and the real part negative, for frequencies
below the bulk-plasma frequency, but well above
the conduction- electron relaxation frequency.

When the dielectric constant & is real and nega-
tive, it is by now well known that surface electro-
magnetic waves (surface polaritons) may propagate
down the surface. The electromagnetic field of
the surface polariton decays to zero exponentially
with distance, as one moves away from the surface
either into the vacuum above the material or into
the material itself.

In the infrared frequency region, a number of
experimental studies of surface polaritons have
been reported in the recent literature. By means
of a method such as the attenuated-internal-reflec-
tion technique, the dispersion relation and line-
width of the surface polariton may be studied.
Also, the mean free path of infrared frequency
surface polaritons on metal surfaces can be very
long. As a consequence it is possible by use of a
prism coupler to launch a surface polariton, and
detect it after it has propagated along the surface
a distance the order of a centimeter. 3

As the polariton propagates down a perfectly
smooth surface, it is attenuated by the dissipative
processes present in the bulk of the material. An
expression for the attenuation length may be ob-
tained by inserting the complex dielectric constant
into the dispersion relation, and extracting from
it the imaginary part of the wave vector k„of the
surface polariton. The attenuation lengths ob-
tained by this means are in accord with the data.

One may inquire about the possible importance
of scattering processes and dissipation mechanisms
specific to the surface region of the crystal in lim-
iting the mean free path of surface polaritons.
The purpose of the present paper is to describe a
theoretical study of the contribution to the line-
width and attenuation length from one such process,
the attenuation produced by surface roughness.
Although samples used in experiments in the opti-
cal and infrared range of the spectrum may have
carefully prepared surfaces, many preparation
techniques leave residual roughness on the surface,
on the scale of a few hundred angstroms. Thus,
it will be useful to assess the effect of this residual
roughness in a quantitative manner.

If one considers an isotropic dielectric material
with real dielectric constant e, then the surface
polariton may be attenuated by two processes, in
the presence of roughness. The wave may radiate
energy into the vacuum, or it may be scattered by
the roughness into other surface-polariton states.
In this paper, we obtain expressions for the con-
tribution to the mean free path from each mech-
anism, and we examine their relative importance.
We do this for surface polaritons in the infrared
on semiconductor surfaces, and for surface polari-
tons on a nearly-free-electron metal in the infra-
red.

In this work, we employ a modification of a meth-
od developed recently4 to describe the roughness-
induced scattering and absorption of a plane elec-
tromagnetic wave incident on a semi-infinite sam-
ple. At first glance, the present calculation seems
a straightforward application of the formalism de-
veloped in Ref. 4. (Hereafter, we refer to Ref. 4
as Paper l. ) However, there is one modification
in the approach that must be made, if the theory
is to be applied to a situation where the surface-
polariton mean free path is very long. We com-
ment briefly on this point here.

In I, the roughness-induced scattering and ab-
sorption of a plane electromagnetic wave incident
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on the surface of a semi-infinite crystal with com-
plex dielectric constant was examined. The sur-
face of the crystal was presumed in the xy plane,
and the incident wave illuminated a rectangular
area on the surface with dimension L„xL,. At
non-normal incidence, the surface roughness pro-
duced a flow of energy parallel to the surface and
localized to its near vicinity, in the x direction,
where the xz plane is the plane of incidence. A
certain fraction f„of the incident flux is stored in
this energy flow. If the real part &' ' of the dielec-
tric constant is yresumed negative, and the imag-
inarypart E' ' small, then the dominant contribution
to this energy flow has its origin in roughness-in-
duced coupling of the incident radiation to surface
polaritons. In I, we found f„ inversely proportional
to L„, but also inversely proportional to &' ' as
&'2) - 0. Thus, the method used in I cannot be ap-
plied to the casew'here e' '-0 without producing an
unphysically large energy flow parallel to the sur-
face. Unfortunately, in the present payer, we wish
to consider the case g' ' =0, sjnce particularly sim-,
ple expressions obtain in this case, and& ' is very
small compared to &

' in many instances of interest
in the infrared region of the spectrum.

In I, it was pointed out that the expression for
f„obtained there is proportional to l„(a&)/ L„,

where l,~(to) is the mean free path of the surface
polariton with frequency +, the frequency of the
incident radiation. We argued in I that the rough-
ness-induced interaction between the incident ra-
diation and the surface yolariton had the nature of
a phase-matched interaction, where the surface
roughness upshifts the wave-vector component of
the incident radiation parallel to the surface to
match that of the surface polariton. Then for
finite &' ', the mean free path of the surface polar-
iton plays the role of the coherence length, and f,
is proportional to l»(e) as a consequence. As
argued in I, it is then clear that the result for f„
is correct only when a~ ) is large enough that
l„(&o)&L,. When I„(&a)&L„L„itself becomes the
coherence length, and in the expression for f„, the
factor of l~(~)/L„should be replaced by a factor
the order of unity.

The discussion in I centered on surface-rough-
ness effects in the ultraviolet region of the spec-
trum, where the inequality I ~(a&) &I,„is appropriate
in the usual experimental situation. However, as
remarked above, we wish to consider the limit

' e' '= Ohere, where f„(v)becomes infinite on the
perfectly smooth surface. While we use here the
general formalism developed in I, a different method
of evaluating the Poynting vector from the scattered
field is required. In the discussion presented below,
we use a method suitable for the limit &~2) = 0.

With this method, we have derived a result for
the quantity f„defined in I valid when e ~~~ -=0 [and

l~((o) is infinite], and we find that when l~(&s)»L„,
the factor of l„(ur)/L„ is to be replaced by —,'.
Thus, the conjecture in I about the result for f„in
the limit &'2' 0 is found to be correct.

II. DERIVATION OF THE EXPRESSION FOR THE
ATTENUATION LENGTH OF SURFACE POLARITONS

IN THE PRESENCE OF SURFACE ROUGHNESS

In this section, we apply the approach of I to the
derivation of the mean free path of surface polari-
tons in the presence of surface roughness. The
basic formalism we use has been developed and
described in I. As a consequence, we focus here
only on those features of the derivation unique to
the present problem. The notation we employ is
identical to that in I, and we shall refer the reader
there for explicit expressions for certain quanti-
ties which enter the discussion below.

We consider an isotropic dielectric material
with surface parallel to the xy plane, and which
lies in the region z &0. The dielectric constant
0= E' '+ie ' is frequency dependent. We have in
mind a frequency region where c ' is negative and
e' ' very small, as remarked in the Introduction.
In fact, by the time we arrive at our final expres-
sions, we shall have taken the limit &@' 0.

The surface of the dielectric is rough, and the
height z of a point on the surface above the xy
plane is given by the relation z = g(x, y). We pre
sume the average value of g vanishes, and the root-
mean-square value of P(x, y) will be denoted by
5, i.e. , 5 = (g (x, y)), where the angular brackets
denote an average over the surface.

We shall presume that g(x, y) is nonzero only
mithin a rectangular region of the surface with lin-
ear dimensions L„and L,. The reason why me al-
low g(x, y) to be nonzero only over a finite region
of the surface is that we wish to limit the time any
particular portion of the incident surface polariton
samples the roughness. This mill ensure that as- 0, all scattering cross sections remain finite.
We take the incident surface polariton to propagate
parallel to the x axis, mith wave vector k,.',.

' and

frequency +. The frequency and wave vector of the
surface polariton are related through the dispersion
relation

2y (0)2
ll

(d E'+ 1

The geometry is illustrated in Fig. 1.
The formalism developed in I provides an ex-

pression for the contribution to the amplitude of
the scattered electric field E~" first order in the
roughness amplitude l'(x, y). This is the electro-
magnetic analog of the first Born approximation of
quantum- mechanical scattering theory.

We first consider the form of the scattered field
in the vacuum outside the crystal. The formalism
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where the field amplitudes 8„'0&(k„kIO&+ I +) are re-
lated to the amplitudes E+&(kiI u& I +) just above (+)
and just below (-) the surface:

g„' '(k kP tulk)= gs „(k„)E„&(k,',
& col+}., (2. 9)

FIG. l. Geometry employed in the surface-polariton
attentuation-length calculation. The wave vector k[)
of the incident wave is parallel to the x axis.

in I provides an expression for the scattered elec-
tric field at point x in the vacuum above the crystal
that may be written

~g K ~jl ~

We also have

i(4&= J~'* e"""&('„" (2. 5)

The vector quantity X(k„k„', &o) is defined as fol-
lows. We define a matrix 8(k„) given by

0
S(k(,) =—

i

—k„k„o""( O" Ok)
(2. 6)

Then we have

g(kllkll ~)=z g (kllkl~l ~)&g g(kll) ~ (2 '7)
ps

The discussion in I employed an expression for
».„(ki,kI ', &u) which in terms of the quantities de-
fined t'here may be written

, ( &i
I", )=—+[i„.(kn I+)&."'(kk"'~l+)

2 p

+g„„.(ki, ~l ) &„' (k„k,', +I )l~ (2. 8)

40
E@&(x, (o)= —

1 ~ (e- I) d'kyrie'"'"

&k(kii-kiI ')» (k(WP', &) ~

The scattered electric field has the same frequency
as the incident surface polariton. The quantity
& is the (complex) dielectric constant of the mate-
rial, k„ is a two-dimensional wave vector in the
plane of the surface, and

k=k„,+@kg, (2. 8)

where

In the present paper, we utilize an expression
for X, (k„kI ', ~) which differs from that used in I,
and displayed in Eq. (2. 8) above. We shall use
instead of the expression in Eq. (2. 8) the form

&„(k„kP&,~)=g g„„(k„~I+)S„"&(k„k& & ~l ).
(2. 10)

Before we proceed, we exyiain the reason for this
choice.

The derivation in I involved one tricky mathe-
matical point. We evaluated the scattered fields
by expanding the dielectric constant

e(x, y, z)= 8(z —t;(x, y))+ ee(&(x, y) —z) (2. 11a)

of the system in powers of g(x, y), with only the
first term retained in the expansion:

e(x, y, z)= e(z)+ e8(-z)+t;(x, y)5(z)(g —1).
(2. 11b)

The term proportional to g(x, y) was treated as a
small perturbation in Maxwell's equations.
Through use of appropriate Green's functions,
Maxwell's equations were rewritten in integral
form, and the scattered field was calculated to
first order in f(x, y). This leads to the evaluation
of integrals of the form

dz'd (kii~ Izz')5(z')E,' '(k I '(o lz') (2 12)

where E~o&(k&& '&viz') is the vth Cartesian compo-
nent of the incident electromagnetic field and

d„„(k„&o(zz') an element of a Green's-function ar-
ray which, when considered a function of z', obeys
the same boundary conditions as E„' '(k,', '& Iz').

As long as v in Eq. (2. 12) refers to x or y (the
two directions parallel to the surface), the product
of functions which multiply 5(z') is continuous
across the boundary z'=0, and the integral may be
evaluated in an unambiguous manner. However,
when v=z, the function d„„(k„(o(gg')E„'(k&I 'tung')
suffers a jump discontinuity at z'= 0, where the
argument of 5(z') vanishes. In I, the integral was
evaluated as

gd, „.(k„~ lzo+)E &'&(k,&i'&~ lo+)

+d„„(ki~lzo-)E&"(kI"~lo-)], (2. 18a)

a prescription readily derived by regarding the
5 function in Eq. (2. 12) as the limit of the appro-
priate Gaussian. This procedure leads to Eq.
(2. 8) for X,(k,g,", &, ~).

It has been pointed out '6 that when one compares
the prediction of the method in I with results ob-
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tained by other methods, there are differences
for one case, the scattering of p-polarized radia-
tion at non-normal incidence into final states of
p polarization. The discrepancy has its origin in
the terms in Eq. (2. 12) with v =z, where the dis-
continuity occurs in the prefactor of 5(z). In the
formulas for pp scattering, where the method in
I produces the term —,'(1+ z ) sin8, . sin80 [see Eq.
(2. 72) of I], the other approaches lead to the term
6 sin8, sin80.

The perturbation method of I calculates the
scattered fields as if they were produced by cer-
tain perturbed surface currents in the surface re-
gion. Juranek has examined the question of how

such surface currents may be placed and adjusted
in strength so the radiated fields produced agree
with those computed by matching boundary condi-
tions across the perturbed surface. 6' ' Juranek
argues that (in the notation of I) the perturbed sur-
face currents should be placed in infinitesimal
distance above the crystal in the vacuum, and that
the vth Cartesian component of the current should
have a strength proportional to g(x, y)(e —1)
xE (0)(k (0)(g

[ )
The prescription of Juranek may be built into

the method of I by taking for the integral in Eq.
(2. 12) the value

d~„(k„(0~z0+)E„' '(k, ', '&ui0-) . (2. 13b)

When this is done, it is straightforward to see the
factor of —,'(1+ e ) is replaced everywhere by e, and
the results for pp scattering produced by the meth-
od of I then agree with those of the boundary-match-
ing method.

We adopt the prescription of Juranek here. When
this is done, the expression for X (k„k,', ', ~) be-
comes

&„(k,k( ', ~) = g i„(k,i~ f
+) h ("(k k'i '&

I
-)
(2. 14)

The results obtained below employ this form.
In I, the expression for E"'(x, &o) was derived

for the case where the incident wave is a plane
electromagnetic wave incident on the sample from
above. The results can be applied equally well to
the case where the incident wave is a surface polar-
iton simply by inserting into Eq. (2. 9) appropriate
expressions for E(0'(k„'(0) —).

In I, we formed an expression for the Poynting
vector directly from Eq. (2. 2), and then obtained
expressions for the various cross sections of in-
terest. Here we shall use a different procedure.
We evaluate the expression for the scattered field
directly from Eq. (2. 2), in the asymptotic region
[x) ~. Then from the scattered fields, we obtain
the Poynting vector.

Before we proceed, one must note that two dis-
tinct domains of kg exist. When k„& (0/c, the quan-

tity k, is real. This portion of the k~, integral in
Eq. (2. 2) describes the field radiated away from
the surface into the vacuum. When k„&~/c, k, is
pure imaginary. As described in I, one chooses
the root for which Im(k, ) &0. This portion of the
k,

~
integration describes electromagnetic fields

localized to the surface, and which propagate par-
allel to it. It is these fields which give rise to the
energy flow parallel to the surface discussed in
Sec. I. To evaluate the asymptotic behavior of the
field far from the region where g(x, y) o0, we con-
sider each of these contributions separately.

(a) The region kg & (d/c: In this region, k is real,
and we write

d k„= ((0/c) cos8sin8d8dy . (2. 15)

Crudely speaking, the coefficient of e' ' in Eq.
(2. 2) measures the amplitude of the plane wave of
wave vector k which radiates away from the sur-
face. A detector placed far from the region where

g(x, y) y0 should detect only the contribution to
E~~(x„&o) directed from this region toward the de-
tector. Formally, one may see this is so by eval-
uating the integral in Eq. (2. 2) by the method of
steepest descents in the limit ) x ) ~, after the
transformation in Eq. (2. 15). The basis for this
is the observation that if we let 4=k ~ x, then for
fixed 8, and y„we have

84 8C =0
88 8yasz+s ' ~sz "s

(2. 16)

Then for 8 near 8, and y near y„we have

C = kx ——,'kx [(p, —y) sin'8, + (8, —8)'] . (2. 17)

In the limit )x (
-~, we may evaluate the inte-

gral by using Eq. (2. 1V) in Eq. (2. 2), and then re-
moving all factors which vary smoothly with 8 and

y from the integral, after they are evaluated at
8, and y, . Then (again as ~x( -~), the limits on

the 8 and y integration may be extended to +~.
Upon noting that

i

�+00
2 ~dye( '" "~' = ((, ((/n)'+ (2. 18)

for the scattered electric field in the vacuum we
find

k, = k sin8 cosy,
k =ksin8siny,

k, = k cos8,
while the orientation of the vector x is described
by the angles 8, and y, of a spherical coordinate
system.

When k„«o/c, the integral over d k„may be re-
placed by one over 8 and y through use of the re-
lation
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$ Qx'

x f (k«kii ) cos8 x (2. 19)

In Eq. (2. 13), the vector k« is to be evaluated
on the presumption that k is directed toward the
point of observation x.

It is a short exercise to show the Poynting vec-
tor is given by

& le —1l —
&o& Io

5 2S=, 4 k X(k„k«, &o)
512m' c

x lg(k, -k,&'&)I'"', '.x' (2. 20)

Let (d EN'/dpdt)dQ be the energy per unit time
radiated into the vacuum, into the solid-angle
range dQ. From the expression for the Poynting

vector, we find

d2E'"& &6( &- 1)2
d ddt 512m'c5

x
I

& (k k'" ~) I'l&(k —k"') I'-"8. .
(2. 21)

This result may be used to reproduce the re-
sults displayed in Eqs. (2. 70)-(2. 72) of I. Here
we cast it in a form that will prove suitable to the
discussion of the attenuation length of surface yo-
laritons by evaluating X„(k«kP', &o) for the case
where the quantities E,' '(k,'~ '&o l-) and E,' '(kI '&pl-)
are nonzero, but E& '(kI '&pl-)-=0. This corre-
sponds to the incident-wave configuration illus-
trated in Fig. 1. If we evaluate X„(k«kI ', &o) ex-
plicitly for the case where the dielectric constant
is real and negative, and insert the result into Eq.
(2. 14), then after some algebra along lines very
similar to that in I, we find

~-~( + 'l' '.
I 0 — '" I' '( ' +""" '"~'E&&("& ~" '+ l'lsi"'E

dndt 32m'c' cos 8, f k„—k„'
) eI cos28, + sin 8,

+sissir (r«r'r(Sr, 'rrs(r-)(s) (2. 22)

In Eq. (2. 22), the term proportional to sino',
has its origin in roughness-induced radiation to a
final state of s polarization, and the other term in
the large parentheses in radiation to a final state
of P polarization.

Before we obtain the contribution to the attenua-
tion length of the surface yolariton by roughness-
induced radiation into the vacuum, we turn to an
evaluation of the asymptotic form of the scattered
field in the region k„&&d/c, where the scattered
field is localized to the near vicinity of the sur-
face.

(b) The regime k „. & &djc: In this region, l'o, is
pure imaginary, and the scattered fields are lo-
calized near the surface. Qutside the crystal,
we choose the square root in Eq. (2. 4) so that

k, =ipp, (2. 23)

x X (k«k~I &o)t;(k«ki~ ) (2 24)

We shall again use the method of steepest des-
cent to evaluate the integral. However, we pro-
ceed differently than before. We suppose z fixed,
and examine the limit )x„) ~. For a given value

with Pp &0. Then the expression for the scattered
field becomes

(8 ~~6' —12(
~ ~O

E &«&(x &o)—
16m c II

of k« the quantity e'""'""Po' f (k«) describes a sur-
face wave which yropagates in the direction k, l

parallel to the surface. A detector placed in the
direction x„very far from the region where
g(x, y) «& 0 will collect waves with k« in the direc-
tion of xl,. We obtain the contribution of these
waves to the scattered field in the limit (xll (

by the method of steepest descents, after the re-
placement of k« ~ x«by k«x«(1 —8 /2), where as
Ixl, ) -~, only very small values of 8 are impor-
tant. An integration over 8 may then be carried
out by the use of Eq. (2. 18). By this means we
find as lxfll-~ that

&o (e —1) 1
( i ) gp ply 8

(
~ )1/8

x dk k e X(k«kiI i &o)r(kii kii )
i&) /c

(2. 25)

In Eq. (2. 25), it is to be understood that k„ is
directed toward the direction of x„, i. e. , k„=kllxll.

It is a short exercise to obtain the form of
X(k«k~~ &0) When s&(k«k~[ &o) is written out ex-
plicitly, there are contributions with the quantity
k& —ek, in the denominator, where k&= —(e &o jc
—k„) with Im(k, ) &0. It is these terms which
are of interest here. The reason is that the quan-
tity (k& —ek, ) has a pole at the wave vector of the
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surface polariton, when considered a function of
k

~l
One sees this by noting that

1 kg+ akg

kg —Ag k~ —& kg

k'g+ 6'k~ 2 (0 E'

The remaining terms in X(k„k,', ', &u) are propor-
tional to (k, —k,) '. There are no poles of this
denominator in the k„plane. We retain only the
terms in x(k„kP (0) proportional to (k~ —sk,)
From the argu'ments below, it will be clear that
the neglected terms do not contribute to the scat-
tered field, as (x„[-~. +le then find

4(kii&P', &)= (k~/kuP, (2. 2Va)

X,(k„k,',",&o)= (k„/k„)X,

&,(kiikP', &)= i(kii/po) &,

(2. 2Vb)

(2. 2Vc)

where

0 k~k g~ kg2
&o k, —ieP, k„

~ e@~@)(k( )(g
~ ) ~ (2. 28)

k)) PLANE

r

C

SURFACE POLARITON POLE

The integral over kg which appears in Eg. (2. 25)
may be evaluated through use of the contour in Fig.
2. The integral we seek is along the real axis in
the kg plane, from &o/c to infinity. In Fig. 2, there
is no contribution from the circular arc, so the
integral in Eq. (2. 25) is given by the contribution
from the surface-polariton pole, along with that
along the vertical segment from kI 47/c 'to kp (0/c
+ i~. In the limit e( '- 0, the contribution from the
surface-polariton pole has the form e'~~~"~~/x„

which is a radiation field in two dimensions. The
contribution from the vertical segment falls off
rapidly with x„(proportional to x„ for large x„) and
does not contribute to the radiation field. Thus, we
retain only the contribution from the surface-polar-

iton pole. When this is done, and we allow the di-
electric constant to become real and negative, we
find

E"'(x (o)= x —+y -x+az —
~

—e ~~ ~~s —p z-kxk„k„P,»'„l3
(2. 29)

@(a& ~(l k(0)) Po P1 ~

(2772)1/8 I II

( e ( ]

%'e find

d E (0 k„Pg g h(0&
2 (sy &) 2 2

dp, dt 32m'Q (I» ~
—1)

x i —'cosy, E"'(k+'&o~ —)
ll

2

+ ~e~Z,"'(P„"(u~ —) (2.32)

In Eq. (2. 32), we have the energy flow stored in
the portion of the surface-polariton field which ex-
tends into the vacuum above the crystal. There is
also a contribution from the portion of the surface-
polariton field which extends into the medium. This
second contribution is readily evaluated by the
methods described above, and we do not present the
details here. Indeed, the electric field in the me-
dium may be obtained directly from Eg. (2. 29) by
noting that tangential components of E and normal
components of D are conserved across the surface.
In the medium, when the dielectric constant is
negative, the Poynting vector is antiparallel to k„.'
One has

d 28(eu &)

dPs dt
1 d 2@(sy&)

I z l dy, dt
(2. 33)

1 x E (0) k(0)+ + ~ E (0) k(0)
II

(2. 30)
In Eq. (2. 30), we have written k, = - iPq. The

wave vector k„ is in the direction of the observation
direction xp (k, ~

xpk~~), and its magnitude is found
from Eg. (2. 1); i.e. , kg is the wave vector of the
surface polariton created in the scattering process.

Now let the total energy per unit time carried by
the surface-polariton field in the vacuum above the
crystal in the angular range between p, and p, + dp,
be denoted by (d E~'~ '/dp, dt)dp, . The time aver-
age of the Poynting vector in the vacuum above the
crystal is parallel to k„. If we denote its magnitude
by 8&, then

d 2E(sp &)
—Xlt

~

dZ 8& ~ (2. 31)

PIG. 2. Contour employed to evaluate the contribu-
tion to the scattered field from surface yolaritons.

Thus, the total rate at which energy flows in the
surface-polariton field is
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dPE(&0) t' 1 dPE(&))&)

dy, dt i la I d(t), dt
(2. 34)

After some rearrangement, the result reads

d9) dt 32w'c' (l~l -1)'" I

~i
d' „e' "'"'&&( „)&(0&)=5'r(Q„), (2. 39)

to the boundary of the rough portion of the surface.
We make little error by replacing (f(x„+r„)0(x„))
by g(r„)f(0)). We then write

)(
~
I( c ~'"cos9), E„")(k("(0~—)

(e (E(0)(k(0)~) ) (
(2.35)

where «Q„) is normalized so

(2. 40)

The expressions in Eqs. (2. 22) and (2.35) are
the principal results of the prese~t section. They
may be applied either to the case where the inci-
dent wave is a surface polariton, or to the case of
a p-polarized plane wave incident at non-normal
incidence.

As remarked in Sec. I, we have rederived the
quantity f„"discussed in paper I by the method of
the present section. The calculation (carried out
for s-polarized radiation at non-normal incidence)
is straightforward and we do not present the details
here Wh. en we compare the result with Eq. (4. 17&

of I, we find that when & is real, the factor of
I„((0)/I„ is replaced by 0, as remarked in Sec. I.

We now use Eqs. (2.22) and (2. 35) to deduce an
expression for the mean free path of a surfa. ce
polariton, in the presence of surface roughness.
For the incident polariton, one has

(2. 36)

where the direction of k,',
' is illustrated in Fig. 1.

It is a short exercise to show that the energy per
unit time stored in the incident wave is

dE0 Lry c (I&i —1) (ltI+1)
~

(p) (p)

dt 16'w (d I f I

(2 3~)
Finally, we need the form of I f(Q„) I for the case

where random roughness is present on the surface.
If we denote an ensemble average by angular brack-
ets, then

If the area L„I.„ is large, g(x„+r„)L(x,()) is indepen-
dent of x„save for a small fraction of the area close

dE(T ) I d@lo )

dt l dt
(2.42)

From Fig. I, one sees that L„ is the distance
traveled by the surface polariton as it passes over
the rough region of the surface. The ratio (dE(r)/
dt)/L„(dE( '/dt) is the energy lost per unit of dis-
tance traveled by the surface polariton. This is
the inverse of the mean free path of the wave.
From Eq. (2.3V), one sees that the quantity I is
the mean free path of the surface polariton. We
write

3. 1 1
~lB)+ ~(sy) i (2. 43)

where I/I(s) is the contribution to the attenuation
length from roughness-induced radiation into the
vacuum, and I/I"" is that from roughness-induced
scattering of the surface polariton into other sur-
face-polariton states.

Upon computing I/I by means of the prescription
just provided, we find

and. 5 = Q' )" is the root-mean-square height of the
surface roughness. Then we have

&I «4&l') =~.~,5'«~ & (2. 41)

VVe now have the ingredients to form an expres-
sion for the attenuation length of the surface polar-
iton. Upon integrating Eq. (2.22) over the appro-
priate portion of solid angle ((0, ranges from —)(

to + w while 8, ranges from 0 to m/2), and Eq. (2. 35)
over p, from —g to + m, we obtain an expression
for the total energy per unit time, dE' '/dt, radi-
ated by the surface polariton as it passes by the
rough patch on the surface. Upon use of Eqs.
(2.36)-(2.38), one obtains the relation

de I d8, cos 8, sin8, «k„-k(0)) sin q, +-
~ r, ~:0

(2.44)

2 6'(g' I& I'"
I(sp) &I 0 (I ~ I 1)0@ ~

x«k„- k(0)) sin'(pep, ) .
These are the final results of this section. The

analysis in Sec. IG is based on the expressions in
Eq. (2.44) and Eq. (2.45).
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t ((0) = fo— (8 1)

provided +v»1, where v, is the conduction-elec-
tron relaxation time, and surface polaritons on the
surface of a semiconductor characterized by the
dielectric constant

Q2
6 (Q)) = 60+ pTO-

(3.2)

In Eq. (3.1), ~~ is the electron-plasma frequency,
and in the infrared, &o «&o&. In Eq. (3.2), &@To is
the phonon frequency, and A~ =4vn e*a/p, , where
e* is the transverse effective charge, n the number

In this section, we examine some consequences
of the results obtained in Sec. II. We have in mind
the infrared frequency region, where surface polar-
itons may be launched and propagated over macro-
scopic distances, 3 or studied by either Raman
scattering" or by the attenuated total reflection
(ATE) method.

The two cases of interest are the properties of
surface polaritons on the nearly-free-electron
metal, which is described by the dielectric constant

Qp2

of unit cells per unit volume, and p, a reduced mass
of the ions.

The dispersion relation for the two cases is il-
lustrated in Fig. 3. The frequency u, in each
graph is found from the condition e(&o,) = —1 in each
case, as one sees from Eq. (2. 1).

There are two quantities of physical interest in
the present discussion. The attenuation length I
obtained in Sec. II is useful for estimating the ef-
fect of roughness on propagation-length studies such
as the one reported by Shoenwald et a/. As one
sees from Fig. 3, near ~, the surface dispersion
curve is flat, and the group velocity &re/&k„of the
mode small. Here the propagation length is too
short for direct observation by virtue of the small
group velocity. In this regime, however, one may
study the roughness-induced linewidth of the sur-
face-polariton mode either by Haman scattering or
by the ATH method. The roughness-induced lirie-
width may be characterized by the dimensionless
quantity Q, the number of oscillations of the mode
before its energy density decays to e of its initial
value. This quantity is given by

(3.3)

4

/
/

ayaa ~ ~ ~ ~ ~ ~ ~ ~ ~~QP

/ Lo

QJ/

where I is the attenuation length computed in Sec.
II, and v~ the group velocity of the mode.

To compute the attenuation lengths I~'~) and I' '

obtained in Sec. II requires the form of the surface-
roughness structur e factor g(Q))) defined in Eq.
(2. 89). If we make the ansatz that (i;(r„)i;(0)), has
the Gaussian form

«( „)~(0)&=5'8 ", (3 4)

then g(Q„) is given by

+(Q ) &@2 e-(6 /4)o„. (8. 5)

The length 8 is called the transverse correlation
length. While 5 is the rms height of the roughness,
8 is a measure of the average distance between
successive "peaks" or "valleys. '"

With the Gaussian form for g(Q„), the integration
over y, is readily performed in Eqs. (2.44} and

(2 ~ 45). For example, for I/l~") one finds

5'g2(O' l~l"2
Its))) &5 ( [ & [ I)91E

/

/
/

/

~[-'I,(&)-»,(&) -'-I, (&)|, (8.6)

PIG. 3. The dispersion relation for (a) surfacepolari-
tons on the surface of a semi-infinite nearly-free-electron
metal, and (b) surface polaritons in the surface of a semi-
conductor with a single infrared-active TO phonon. In
each case, the frequency co~ is found from the condition
F(QP~) =

1~@'
=ac) k

2 c' ()&I —1)

and 1„(g) is the modified Bessel function of order
n, and k„ the wave vector of the surface polariton
of frequency &u. If the Gaussian form of g(Q„} is
substituted into Eq. (2.44), the integral on y, may
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1 3 52~~
f(sy) 2 5 (Is I

1)Q/2 g( ) (3.6)

also be performed, but the integral on 8 must be
evaluated numerically.

In the infrared frequency range, however, a
simple approximation is valid in many circum-
stances. The wavelength of the surface polariton
will frequently be large compared to the transverse
correlation length 8. Then in Eqs. (2.44) and
(2.45), one will have a Ik„—k,',

2)
I «1, and g(k„—k,I5))

may be replaced by g(0). The angular integrations
in both Eqs. (2.44) and (2. 45) may then be evalu-
ated in closed form.

With g(k„—k,', ') replaced by g(0), for 1/l'" we
find

3g C' jet'/2 3 C', /2

4 5~ g(0) 458+ (3.14)

where the last form follows upon using the Gauss-
ianform for g(0). For the quantity Q, one has,
with v~=c, the result

(3.15)

(b) The case where Ie I is near unity: When le I

is near unity, as remarked above, one is in the re-
gime where the frequency w of the surface polari-
ton lies close to the asymptotic frequency ~, found
from the condition s(&o,) = —1. In this regime, we
have

We split 1/f ' into two parts, the contribution
1/&i") that comes from radiation into final states
of s polarization, and 1/l2'") that comes from radi-
ation into final states of p polarization. Then

g2 S j& j3/2 .

$(B) 6 5 [ I I 1]2 g(0) (3 9)

3 52(g5 g(0)f"" 2v c' (l~l-1)'"'
1 5 (o5 g(0)

f,'"' 6vc' (I 2 I —1)

1 1152&@5 g(0)
f,'") 302c5 (I e I —1)'

(S.16)

(S.17)

(3.16)

(3, 11)

1 1 52~5 g(0)
~)B) 6 5 j~ If/zp

1 7 52(o g(0)
I'"' 6 e' j~j'"' (3.13)

One sees that the most effective process for at-
tenuating the surface polariton is the roughness-
induced radiation into the vacuum above the sub-
strate. The attenuation length in this regime is
gi.ven by

g2 5 j& j3/2

22c5 [ls I -1]'g
312 I tan '[(I & I -1)"~])l~

(Isl -1)" 2 J'
(3.10)

To gain an appreciation of the relative impor-
tance of the different radiation processes in the
various characteristic frequency regimes, we con-
sider the limiting form of the results displayed
above in the two cases I c j»1 and I & j close to
unity in value (then 2 itself is close to —1 and the
frequency of the surface polariton lies close to the
asymptotic value ~, in Fig. 3).

(a) The case I e I »1: This limit applies to sur-
face polaritons on the metal-vacuum interface when
&u«&o~, and as one sees from Fig. 3(a), one has
(d = ck„here. It also applies to the semiconductor-
vacuum interface when ~ is close to wTO. Then,
we have in this limit

From these results, one sees that when q is
near -1, the surface polariton is damped predomi-
nately by the scattering of the wave into other sur-
face-polariton states, rather than roughness-in-
duced radiation into the vacuum. Calculations
based on the full formulas show that the surface
scattering process dominates the radiation damp-
ing for ja j & V.

When &u is near &o„ the attenuation length is nec-
essarily short, simply because the group velocity
is small and the surface polariton will not propa-
gate far even if the scattering is relatively weak.
A more useful measure is the quantity Q defined
above. For j a I near unity, and for surface polari-
tons on a substrate described by the dielectric func-
tion in Eq. (3.2), the group velocity v, of the sur-
face polariton is given by

v =— '
c(~a~ —1)'"

z, +1

and from Eq. (3.16) one has

c' (lel —1)5 e, +1
3(o' 5'g(0)

This result may also be written in the form

+1 1 1
3c e, —e5 5 g(0) k„'

(3.19)

(S.21)

where k„ is the wave vector of the surface polariton.
There are two criteria for the validity of the re-

sult in Eq. (2.21). One must have ck, ,
&) &u (this

ensures the condition' le I near unity is satisfied),
and one must also have k„C«1; i.e. , the wave-
length of the surface polariton must be long com-
pared to the transverse correlation length. In this



12 ATTENUATION OF SURFACE POLARITONS BY SURFACE. . . 4045

wave-vector regime, the scattering rate is found
to be a very strong function of the wave vector of
the surface polariton.

As remarked earlier, on the basis of a numerical
evaluation of the expressions above, we find the
dominant contribution to the roughness-induced
damping of the surface polariton comes from the
scattering processes which contribute to 1/l"", so
long as i&I &V. In this regime, for the case where
g(Q„) may be taken to be Gaussian, Eqs. (3.6) and
(3.7) provide expressions for 1/l"" valid for all
values of k„8. [Note that k)) 4PI'E I/c (!@I—1).]
Then for k„ct »1, the Gaussian roughness model
predicts that one should have

(3.22)

01

4 ~(o (g q, + 13

Q=3(g )
n ~& & &

)((&I () (3.23)

If the result is written in terms of the wave vec-
tor of the surface polariton, then

(S.24)

1 g, +1

displayed in Eq. (S.24) depends on the assumption
that g(Q„) is a Gaussian.

We conclude with some comments about the im-
plications of the results given above.

First consider the effect of surface roughness
on the macroscopic attenuation lengths measured
by Shoenwald, Burstein, and Elson. In these ex-
periments, a CGz laser was used as a source of
10.6- p, m radiation, and a surface polariton was
launched on a metallic substrate through use of a
prism coupler. Attenuation lengths the order of
1 cm were measured for the wave, and the mea-
sured attenuation length was found in semiquantita-
tive agreement with that by computing the imagi-
nary part of k„ from Eq. (2. 1), with the complex
dielectric constant of the substrate inserted on the

We remind the reader that the result in Eq.
(3.24) requires for its validity the conditions
c'kII && (0 and also k„8 » 1 to be satisfied.

It is important to note that one expects the re-
sults in Eqs. (3.8)-(3.10) to be generally valid, as
long as k„Q «1. This is independent of the assump-
tion that g(Q„) has the Gaussian form. Quite gener-
ally, when ck„» &u, if g(Q„) has its maximum at
Q„=O one may show that for large k„ the quantity
Q becomes inversely proportional to k„, as one
sees in Eq. (3.24). However, the coefficient of the
combination

right-hand side.
One can inquire how sensitive this very long at-

tenuation length is to the presence of roughness on
the surface. It is reasonable to describe the sub-
strate by the model dielectric constant in Eq. (3.1),
and under the experimental conditions»& co~ one
has I & I »1. Thus the roughness contribution to the
attenuation rate should have its origin primarily in
roughness-induced radiation into the vacuum above
the crystal. The contribution to the attenuation
length from roughness is then given by Eq. (3.14),
provided that III' «1 for the wave. For a well-
polished surface, the condition k„a «1 should be
well satisfied at 10.6 p, m. If we set 8 = 5, a rea-
sonable approximation for grit-polished surfaces,
the roughness-induced attenuation rate will be 1
cm ' if 5=2500 A. Thus, if the surfaces used in
the propagation experiments are optically smooth,
the attenuation length should not be affected seri-
ously by the residual surface roughness. However,
this estimate does suggest that it will be necessary
to use surfaces of good optical quality for the work,
since the attenuation constant can be degraded con-
siderably by larger values of 5. Indeed, for all the
substrates studied (Cu, Ag, and Au), the measured
attenuation constant was greater than that calculated
by the procedure described above by a factor that
ranged from 20% to a factor of 2. The estimate
above suggests that the discrepancy could readily
arise from residual surface roughness.

In the recent literature, surface polaritons on
semiconductor surfaces have been studied by the
method of Raman scattering, and by the ATR
method.

Of these two methods, the Raman technique af-
fords the possibility of direct comparison with the
results presented here. ' This method studies the
properties of surface polaritons on a surface un-
perturbed by a grating or nearby prism coupler.
A wide range of wave vectors may also be probed.
In the study of surface polaritons by Raman scat-
tering, one has a well-defined wave vector k„as-
sociated with each scattering angle, and in princi-
ple only in a single mode contributes to the spec-
trum. While it has been demonstrated that in the
backscattering geometry, the linewidth of the bulk
TO and bulk LO phonons is sensitive to imperfec-
tions near the surface, ' such data are difficult to
analyze quantitatively because the Raman signal
contains contributions from bulk modes with a
range of wave-vector components k, normal to the
surface. We hope that in the near future, Raman
studies of the surface-polariton linewidth on sur-
faces with controlled amounts of roughness may be
carried out. Numerical estimates based on Eq.
(3.21) suggest that one can readily make the rough-
ness-induced contribution to the linewidth quite
appreciable.
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The present results do not apply to the study of
the width of the surface-polariton dip observed by
the ATR method, since we ignore the effect of the
prism coupler on the fields above the substrate.
For example, in the presence of a prism with index
of refraction n~, the energy in the scattered waves

with &u/c & k„& (&o/c)n~ will be radiated through the
prism coupler, while the description presented
here ignores this possibility. This radiation has
been studied in detail in a recent paper by Otto and
Bodeshein, ' who have extracted information from
it on the nature of g(Q„) for aluminum film.
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