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Electromagnetic wave propagation at the interface between two conductorse
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We predict a new plasmon-polariton mode —supported by a biconducting interface in a certain frequency
"window" (co&, co,). The limiting frequencies are defined by e&(co,) = 0 and e&(eo,)+ e2(co,) = 0, where e;(co),
i = 1,2, are the dielectric functions of the two media. If the Drude approximation for e;(co) is applicable then
co, = (eL, co', +a~,co2)/ (el, + eL2), where co; and ~L; are the plasma frequencies and lattice dielectric constants of
the conductors. These "interface plasmons" may propagate at a metal-metal, or semiconductor-semiconductor,
or metal-semiconductor interface. The dispersion, damping, and polarization of the modes are analyzed in the
retardation region. Optical methods of excitation and detection are discussed.

Recent years have seen a boom of publications'
on surface polaritons. The study of these electro-
magnetic excitations was, however, al1 but limited
to dielectric-dielectric, or dielectric-conductor
interfaces. The first to consider a conductor-con-
ductor interface were Stern and Ferrell in 1960.
They predicted that two free-electron plasmas
bounding one another and characterized by plasma
frequencies. &, and co„will resonate at the interface
at a frequency (to', +toss)'t //2. This result was de-
ducted from very simple considerations, neglecting
retardation on one hand and nonlocal or quantum
effects on the other hand. Six years later Kunz
confirmed the above prediction by measuring the
energy loss of electrons shot through Mg-Al foils
in contact. There have been very few4' subse-
quent developments, and with one execption, ' these
are not concerned with the retardation or polariton
region X &c/&os. This region, however, seems to
be very promising for the study of interfaces,
e.g. , electron density profiles.

We consider a plane interface of two semi-infi-
nite conducting media. Each is characterized by
an isotropic homogeneous and local dielectric func-
tion «, (&o), i = 1,2. We mean by "homogeneous" that
the electron-density profile at the interface has the
form of a step function, and by "local" that et(&o)
does not depend explicitly on the wave vector q.
The z axis is normal to the interface, and the y
axis is along the direction of propagation of the
wave in the plane of the interface. Then the wave
fields in each medium may be described by plane
waves of the form exptt'(q, y+q~ -tdf)j, i= 1, 2. In
each medium, qs+qst = st(to)td /c . From the usual
boundary conditions at the interface, we find q„/
q, s

——e, (to)/es(co). The solutions of these three
equations are

2 2 2

i=1 20gf

For the time being, we take Imst(to)=0, i. e. , we
ignore damping effects. For an interface mode,
one must have real propagation along the interface
(real q„) and exponential decay away from it (imag-
inary q„). It is then clear from Etls. (1) that in-
terface waves may propagate only in a region of
frequencies where the dielectric functions of the
two media have opposite signs and their sum is a
negative number. We may choose

e (to) '0, es(td) 'o, e (to) '
I es(to) I. (2)

As a simple illustration, we assume that st(&o) are
monotonically increasing functions (see Fig. 1).
The zeroes of these two functions, co, and &2, define
the bulk plasma frequencies of the two conductors.
From the conditions (2) and inspection of Fig. 1,
we may conclude that a bt'conducting interface sup-
ports a pfasmon polariton -mode sn a frequency
"zoindosv'+ defined by arz & ~ & ~„where ~, is givenby

FIG. 1. Hypothetical dielectric functions for two con-
ducting media. The conditions for existence of interface
polaritons [Eqs. (2)] are satisfied only in the region ~&
& cu & cu, (heavy line). The point co~ is chosen so that the
two parts of the dashed line are equal. Damping effects
are ignored.
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FIG. 2. Dispersion relation of a plasmon polariton at
the interface between two conducting media (damping
neglected). The frequencies (z& and &~ delineate the
propagation "window. " The dashed line is the dispersion
relation for bulk transverse waves in medium 1. The
inlay displays the effect of damping in the neighborhood
of ~&. Numerical values correspond to a Mg-Al inter-
face at room temperature: ~&/co2=0. 7, v&/cu) =0.0065,
vt/&et =0.0059, szt/ezt =1. The frequency and wave vec-
tor are normalized to cv& and u&&sz& /c, respectively.

where 20'=&o, +&os+c Q and Q=(s~, +sz, ) q„.
This function is plotted in Fig. 2 (solid line). The
limiting frequencies of the polariton mode are +,
and ~„as one may expect from the foregoing dis-

. cussion. For sufficiently large q„, the behavior is
quite similar to the plasmon dispersion at a con-
ductor-dielectric interface. ' Qn the other hand,
for small q„ the behavior is completely different:
instead of a linear dependence & ~ q„, we have a
frequency gap followed by a parabolic dependence
of u on q„. As a matter of fact, an expansion of
Eq. (6) shows that initially the dispersion relation
of the surface wave follows that of a bulk transverse
electromagnetic wave in medium 1 (dashed line).
Numerical values in Figs. 2 and 3 correspond to a
Mg-Al interface; these materials are known to
satisfy quite well the Drude theory of conductivity.

If the collision frequencies are finite (v, w 0), then
q„and q„[Eqs. (1)]become complex. Two quali-
tative changes in the dispersion relation will ap-
pear. Qne is a sharp backbending of the dispersion
curve at a wave vector q„~2. 1 a&gc =16x10' cm '
(not shown in Fig. 1). An effect of the same nature
was found by Arakawa et al. in experiments on a
silver-air interface. Their results were subse-
quently analyzed by Alexander et al.

Another effect of the damping appears at very
small q, (inlay of Fig. 1). As Re q„approaches

e,(~,) + ~,(&u,) = 0.
We will now limit the discussion to a simple

model based on the Drude theory of conductivity.
The dielectric functions are

&1(R)= Czar(1 —(01/[(d((0+tv))]]~ 1 = 1 (2» (4)

where ~„v„and g~, are the plasma frequencies,
collision frequencies, and optical lattice dielectric
constants, respectively, of the two media. If we
neglect damping (v, =0), thenit follows from Eq. (3)
that the limiting frequency of the interface plasmon
is given by

(SL1~1+ MLS+2)/(KL1+ SLS)~
3 3 2

In the special case that medium 1 is a dielectric
(&u, =0), and medium 2 a metal (sos =1), we get &c,

=cps/(1+hz, )' . U both media are metals {s»=szs
=1), Eq. (6) reduces to n1, =(d,'+ d,')'ia/v 2. Both
special cases were first derived by Stern and
Ferreii. s Thus Eq. (6) is the interface plasmon
frequency that one would calculate neglecting re-
tardation, as mell as nonlocal and quantum effects.

The dispersion relation &u = &a(q, ) may be readily
found from Eqs. (1) and (4). With v, = 0, the re-
sult is

~2 g2 (fI4 ~2~2 ~2csq2) 1/2 (6)
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FIG. 3. Exponential decay distances into the two
media (damping neglected). Inlay shows "cutoff" of de-
cay distance in medium 1 due to damping effects. For
numerical values of theyarameters, seecaptionto Fig. 2.
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zero, ~ does not tend to the limit ~„but keeps
decreasing. At ~ = „ the real part of q, has a finite
value equal to Imq„. For co & co„damping effects
predominate (Req„&lmq, ). Therefore we expect
that under the right experimental conditions, a
wave-number gap in the spectrum will appear. For
a Mg-Al interface, this gap is of the order of G. G4

&ua/e ~0.2 x 10 cm
In Fig. 3, we plot the exponential decay distances

into the two conductors defined by ) 2 Imq,
&

l
-'. If

damping is neglected, the decay distance into me-
dium 1 is infinite at the "threshold" frequency ~, .
In real media this distance is limited; for the Mg-
Al interface, we find a penetration of -1 mm into
the Mg metal at its own plasma frequency (see in-
lay). The decay distance into medium 2, on the
other hand, is quite independent of v, and is given
by 0. 5I ea(&u&) l

'~
e/m& in the limit (o +, . As the

frequency approaches ~„both decay distances dis-
play minima (not shown in Fig. 3), which are re-
lated to the backbending of the dispersion curve.

The "propagation distance" of surface waves is
defined' as (2Imq„) '. For bimetallic interfaces,
this distance does not exceed a few pm at room
temperature. Nevertheless, the fact that Imq,
«Req, (for almost the entire frequency range of
our propagation "window") ensures a well-defined
electromagnetic excitation.

The interface yolariton at a biconducting inter-
face has a TM polarization, which is also the case
for a conductor-dielectric interface. Thus the
electromagnetic field is specified by the compo-
nents H„, E„and E,. It is not difficult to show
that

An interesting situation arises at +2 ~,. In medi-
um 1, the electric field is approximately trans-
verse (E,-O), while in medium 2 it is approximately
longitudinal (E,~ —0). The longitudinal component
E, itself, however, must be very small, so as to
satisfy the requirement of continuity across the
boundary. In the limit w -~„neglecting damping,
we have E„/E„=+i, i. e. , circular polarization in
the y-z plane.

The experimental methods of Qtto and Kretsch-
mann' seem to be most suitable for the excitation
and detection of polaritons at biconducting inter-
faces. In the Otto geometry, medium 1 (of the
lower-plasma frequency) has to be "sandwiched"
between the prism and medium 2, i.e. , medium 1
replaces the "air gay. " In the Kretschmann geom-
etry, ' medium 2 (of the higher-plasma frequency)
is "sandwiched" between the prism and medium 1.
We expect that the interface plasmon-polariton
mode predicted in this article (Fig. 2) may be
readily verified experimentally for metal-metaL,
or metal-semiconductor, or semiconductor-semi-
conductor interfaces. For a bimetallic interface,
the spectral region of interest is in general the
visible or the ultraviolet. For example, the limit-
ing wavelengths (corresponding to ~, and ~,) of the
propagation "window" for a Mg-Al interface are X,
= 117G A and &, = 94O A. For a metal-semiconduc-
tor interface, the spectral region depends on the
amount of doping and temperature of the semicon-
ductor. For instance, in the case of a Mg-InSb
interface with a concentration of -10 carries/cm
in the InSb, the limiting wavelengths are X, -11 pm
and X, -O. 5 p, m. An intriguing possibility is the
case of an interface composed of two semiconduc-
tors of the same type (e.g. , InSb on both sides),
differing however in the amount of concentration
of the charge carriers. If the two concentrations
are close to each other, then ~, -cu„and the "win-
dow" mill be very narrow, resulting in very little
dispersion (u&

- const).
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Note added in Proof: The values chosen for v, /&u,

and v2/&ua (see caption to Fig. 2) correspond to the
dc resistivities of Mg and Al. At optical frequencies
these parameters may be roughly ten times larger.
Therefore, our results for the damping effects
should hold only qualitatively for a Mg-Al interface.
Indeed, one may expect that in an optical experi-
ment"0 these effects will be much more pronounced.
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Mexico (CONACYT) exchange program.
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