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Extended spectroscopy with high-resolution scanning ellipsometry
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The extrapolation of dielectric-function data taken over the near ir-uv spectral region by high-resolution
wavelength-scanning ellipsometry is investigated. The possibility of determining the amplitudes of a number of
oscillators outside the measurement interval by application of the Kramers-Kronig integral allows
spectroscopic information to be determined in experimentally inaccessable spectral regions. Several examples
are given.

The analytic continuation theorem of complex
variables states that any holomorphic (analytic)
function whose real and imaginary parts are known
along any line segment may be calculated over the
entire complex plane. ' Since the complex dielec-
tric function e(E) = e, (E)+i@2(E)is analytic in the
upper half-plane, and since its real and imaginary
parts can be measured directly over a part of the
real energy axis by ellipsometry, 3 the problem of
obtaining the detailed behavior of q at all energies
from finite-range ellipsometric data reduces es-
sentially to one of experimental accuracy. Here,
we investigate the possibility of extrapolating &2

beyond experimentally accessible energy ranges.
Using representative data obtained with a high-
precision wavelength-scanning ellipsometer re-
cently developed by us, we show that the possibil-
ity of determining the amplitudes of up to six os-
cillators by a suitable application of the Kramers-
Kronig integral' allows useful information to be
determined outside of experimentally accessible
ranges.

The idea of using the measured dispersion of the
index of refraction in regions of transparency to
characterize absorption properties at higher en-
ergies is well known. In its simplest form, it
provides the basis of the Phillips-Van Vechten
theory of chemical bonding~ and has been used in
other applications in solids~ as well. Oscillator
strengths of atoms and molecules in the gas phase
have been calculated by fitting one or more Sell-
meyer oscillators, ' calculating moment integrals,
evaluating Pads approximants, ' or generating
continued-factorization series" from dispersion
data.

Dispersion applications are a special limiting
situation for which g~ is known to be zero and the
measurement of n = &, is sufficient to entirely de-
termine ~. If ~, w0, the situation is not as straight-
forward. Nevertheless, information can still be
obtained beyond experimental limits. Beaglehole'
has used the observed discrepancies between the
measured and calculated values of &, for Cu and
Au to estimate the limiting values of g~ at low and
high energies. Methods have also been developed
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where 6' indicates that the principal part is taken.
If g, and qz are known over a finite energy range
E, & E &E&, then Eq. (1) can be written
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Equations (2) represent a constraint upon e2 out-
side the experimentally accessible energy range.
The integral in the right-hand side of Eq. (2a)
simply extracts from s, (E) the effect of the ab-
sorption processes occurring in the measurement
interval. This enables us to define the effective
real part s~(E) which arises entirely from absorp-
tion processes outside the measurement interval.
The right-hand side of Eq. (2a) can be calculated
from ellipsometric data, or can be obtained di-
rectly from refractive index data if e~(E) =0 over
this xange. It is clear that any extrapolation
methods "can be applied to Eq. (2b) since e', (E)
has been corrected by the Qnite-range transfor-
mation for the effect of g...

to fit oscillator functions to the ref lectivity alone
of absorbing systems over a finite energy range. '
But ref lectivity fitting is not suitable for continua-
tion purposes, since the ref lectivity is only the
real part of an analytic function, and to calculate
the imaginary part (by a Kramers-Kronig trans-
formation) one needs the information desired.

Here, we show that it is possible to determine
systematically the amplitudes of a number of os-
cillators from ellipsometric data and thus to ob-
tain more detailed information about spectral re-
sponse in experimentally inaccessible regions.
To do this, we exploit the connection between Qy

and &~, expressed by the Kramers-Kronig integral,
to reduce the absorbing-system case to a disper-
sion-type situation as follows.

The Kramers-Kronig integral can be written
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For our purposes here, we shall extrapolate fg
by means of an oscillator-fitting procedure. We
represent &~ outside the accessible range by a
series of finite-width constant-amplitude oscilla-
tors such that for any n=1, 2, ... , N,

A„ for E„«E«E„',
(3

0 elsewhere.

We choose the limits E„and E„' of the nth osciQa-
tor and seek to determine the values of A„ that
best represent e,(E) in the accessible range. Al-
though the limits E„and E„' canbechosenarbitrari-
ly, the most physical approach is to set E'„=E„j,
except for excluding the accessible range. Sub-
stituting Eq. (3) into Eqs. (2) gives

70
fL

20—

r

I
/

I
«qP

c —Sb

{12ev)

6 8

E(GV )

Et2 E2
A„—ln

7T

FIG. 2. Five-oscillator extension of &2(E) for an opti-
cally thick polycrystalline Sb fQm, based on extrapola-
bon of eQipsometric data over the range 1.8-5.0 eV.

For simplicity, we calculate the A„by evaluat-
ing Eq. (4) for N values E= EJ, equally spaced
within the interval (E, +0.01 eV) to (Ez —0.0l eV).
The 0.01 eV shifts are included to eliminate sin-
gularities in the logarithm for the two terms in Eq.
(4) adjacent to the measurement interval. Equa-
tion (4) then leads to N simultaneous linear equa-
tions in N unknowns, which can be solved for the
coefficients A„.

The oscillator-fitting procedure attempts to rep-
resent the functional dependence of e', (E) from E,
& E & E& by an expansion of dispersion curves of the
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FIG. 1. Six-oscillator extension of C2(E) for Au, base~
on extrapolation of enipsometric data over the range
1.65-2.50 eV as the heavy solid lines. For comparison
purposes, the measured data from 1.5 to 6.0 eV are
shown as the dashed lines.

functional form given by the right-hand side of Eq.
(4). If any two of the trial oscillators have dis-
persion curves that are too similar, then it is not
possible to clearly distinguish between them. In
practical terms, the coefficient matrix defined by
the right-hand side of Eq. (4) then becomes nearly
singular, and the coefficients A„are determined by
small differences between large numbers. This
occurs for example if two oscillators are chosen
to represent absorption Bt energies E„&3E&, for
which the dispersion curves are nearly constant
over the measurement interval, or if too many os-
cillators are chosen too close together. Under
these conditions, it is possible to obtain nonphysi-
cal solutions for which some of the A„are negative.
We have found that this effect currently leads to
practical limits of E„.&=0, E'„.„=—2E&, and N=6.

The oscillator-fitting procedure also places rel-
atively stringent requirements on the accuracy of
the values of g', (E&) in Eq. (4). We found that a
)large source of inaccuracy in evaluating Eq. (4)
when q~w 0 occurs in calculating the Kramers-
Kronig integral. The usual method of direct ap-
plication of Simpson's rule is inaccurate by as
much as several percent. This is beyond accept-
able tolerences of about 0. I/q, a. limit which we
have observed by applying the method to theoret-
ical exact lineshapes. Simpson's rule in effect
integrates in closed form the best-fit parabola to
the integrated taken three points at a time. We
eliminated the inaccuracy by fitting the parabola to
the data, g2, instead of the entire integrand, be-
fore perf orming the closed-form integration. '

As a test of the extrapolation procedure, we show
in Fig. 1 the energy dependence of the extension of
&2 calculated by fitting the measured dielectric
function of a thick Au film over the relatively nar-
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FIG. 3. Fivemscillator extension of &2(E) for an op-

tically thick amorphous Sb film, based on extrapolation
of ellipsometric data over the range 1.8-5.0 eV.

row energy range 1.65-2. 50 eV, indicated by the
solid lines. The data were actually taken from 1.5
to 6.0 eV, as indicated by the dashed lines. e,
shows a rapid increase aver the narrow range.
Thus, ei shows the onset of the strong absorption
edge at 2. 5 eV, due to d-band Fexmi-level transi-
tions, well before its actual appearance in ga. A

useful extrapolation yrocedure should be able to
extract not only the approximate location, but also
the magnitude of this edge in && from the && data
below 2. 5 eV. As can be seen from Fig. 1, the
general behavior of c above 2. 5 eV is indeed
given quite well by the extrapolation procedure.
The extended dielectric function shows a decrease
at higher energies, in agreement with the data
measured over the wider interval.

%8 consider next the extrapolation of the spec-
tra shown in Figs. 2 and 3 for yolycrystalline and
amoryhous Sb films, respectively. 's Elliysometrie
data were taken from 1.8 to 5.0 eV, and &~ was
extended with 5 oscillators to cover the range 0 to
12 eV. The negative but rising variation. of g, with
E from 1.8 to 5.0 eV in Fig. 2 indicates qualita-

tively that the polycrystalline Sb film is metallic
(actually semimetallic), so that most of the oscil-
lator strength should occur below l. 8 eV. The
quantitative extrapolation demonstrates this clear-
ly. The extended part of gz rises to very large
values as E-O, and little oscillator strength re-
mains above 5 eV. The general features of this
spectrum are in very good agreement with the
n, k data of Cardona and Greenaway, '9 who ob-
tained the opticalfunctions of crystalline Sb from a
Kramers-Kronig analysis of reQectance data from
1 to 20 eV.

By contrast, the positive but falling variation of
g, with E from l. 8 to 5.0 eV for the amoryhous Sb
film in Fig. 3 indicates qualitatively that this film
is a semiconductor, with a substantially greater
amount of oscillator strength remaining above 5
eV than for the yolycrystalline film. Quantitative
verification is obtained by the extrapolation pro-
cedure, which shows in addition that the peak in g~

seen in the measurement interval near 2. V eV is
in fact the absolute maximum of the g~ spectrum.
The oscillator strength is seen to drop off sharply
below 1.4 eV, a conclusion not obvious from a
visual insyection of g, . This result is consistent
with transmission measurements, which show an
absorption threshold for this material in the near
r is

Ne have used the extrapolation procedure to ex-
tend elliysometrically measured dielectric func-
tion data for thin films, such as native oxides, as
well as for bulk samples as discussed here. %'8

are currently investigating other calculation meth-
ods to extrapolate dielectric function data in
greater detail. It is clear that extrapolation tech-
niques cannot hope to achieve resolution attainable
with direct measurements. But these methods
should be useful for the many physical systems,
such as liquid-solid or gas-solid interfaces, which
have a window only in the visible or near-uv spectral
region, or which are not compatible with the high-
vacuum environment needed for vacuum-uv mea-
surements.

I am grateful to J. J. Hauser and S. H. temple
for their cooperation in the use of the data prior
to publication.
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