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The proper way to take the classical limit of the Heisenberg model is demonstrated, It is shown that

a mixing of quantum-mechanical and classical formulas can give unphysical results. Some examples

show the need for the proper way to take the classical limit. The validity of various conclusions

concerning the temperature dependence of the spin-wave damping arrived at from the first few

frequency moments is also discussed for the classical Heisenberg linear chain.

I. INTRODUCTION

Recent experiments have brought new interest
into the study of Heisenberg models. The discov-
ery of astonishingly sharp spin waves in both fer-
romagnetically' and antiferromagnetically'3 cou-
pled one-dimensional linear chains has called for a
microscopical explanation, Many theories are in-
voked to give an account of the spin waves, and
some utilize exact static results for the classical
Heisenberg model. This can be attained by tak-
ing a "classical" limit of the ordinary quantum-
mechanical Heisenberg model. In the one-di-
mensional case, all the classical static properties
can, in principle, be calculated exactly. ' It is
thus very tempting to base dynamical theories for
quantum-mechanical Heisenberg linear chains on
the static classical quantities. However, in doing
this it is important to have the precise connection
between the classical and quantum-mechanical
models. One reason is that apparent contradictions
may show up, if the precise connection is not held
clear. Another, more important reason is that a
mixing of classical and quantum-mechanical re-
sults may give rise to completely unphysical re-
sults. To be fully consistent, one should of course
confine oneself to a completely classical calcula-
tion. But this naturally raises the question, to
which extent the classical model describes the
quantum-mechanical one. It is well known, e.g. ,
that the specific heat of the classical model does
not go to zero with temperature, which gives rise
to a logarithmic singularity in the entropy. This is
an unphysical feature and means that the classical
model is a poor approximation to the quantum-
mechanical model at low temperatures, when ther-
modynamic properties are of interest. When dy-
namics is considered, the problem is more in-
volved. The quantum corrections to the classical
dynamics have been the subject of some recent
papers. "

The aim of this paper is to first give a very
simpleminded and straightforward derivation of the
classical limiting procedure. We will not go into

fundamental questions concerning, e.g. , the clas-
sical angular momentum in relation to the quantum-
mechanical one, or the existence of the thermody-
namic limit in the classical case, and its connec-
tion to the quantum-mechanical. thermodynamic lim-
it. Such subtleties seem to be sufficiently investi-
gated' ' ' that we can restrict ourselves to a clari-
fying demonstration only. The demonstration re-
veals the importance of taking the basic dynamical
equation. into account, because otherwise the spec-
ification of the limit procedure is incomplete. The
result is not original, but the derivation gives the
proper detailed background for the discussion in
Sec. III, where first the danger in improper mixing
of classical and quantum-mechanical results is
clarified, and then some mystifying statements
from the literature are enlightened through the
use of the proper classical limit. Section IV, fi-
nally, discusses spin-wave damping in classical.
linear Heisenberg chains, using exact static spin-
cor re l.ation functions.

II. CLASSICAL LIMIT

The classical Heisenberg model is given by the
Hamiltonian

a, =- -—+ &„(R- H') M(R) M(R'),
RR'

where M(R) is a classical angular-momentum vec-
tor of length m at the lattice site R, J„(R—R') is
the classical quantity corre. sponding to the quan-
tum-mechanical exchange integral, and the sum
runs over all pairs of lattice points. By definition,
J„(0) equals zero. Furthermore, J„.,(R) is taken
to be nonzero only for nearest-neighboring l.attice
site s.

The classical angular-momentum vectors satisfy
the relations

M(H). M(R) =m'

[iv~ "(R), ivy'(R') J
= 0,
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H~M= ——+ h J(R —R )S(R) ~ S(R ),2 RR
(4)

where J(R) is the exchange integral, and the spin
operator S(R) at lattice site R satisfies

S(R) S(R) = S(S+1), (s)

where the square bracket denotes a commutator.
The corresponding quantum-mechanical Heisen-

berg Hamiltonian is

Eq. (7) be written

= —Z h J(R —R')m [S(S+1)]~9t

&& s„(R t) && s„(Rt),
and this should be compared with the classical
equation of motion

= —Z J,] (R —R )M(R t) && M(Rt) .
R'

(i 2)

[S "(R),S'(R')] =iS (R)S; -„. , (6)
The subsidiary condition for obtaining the classical
limit reads

s„(R) ~ s.,(R) = m',

[s,",(R),s.', (R')] =im[S(S y 1)]"'s,',(R)5„- „,~-(10)

Comparison of the last two equations with Eqs.
(2)-(3) yields that when S- ~, the operator s„(R)
tends to the classical angular momentum M(R).
The Hamiltonians become identical if S-~ and

0 such that

tf S(S+1)J/m -J„.
A complementary prescription for obtaining the
classical limit appears, when also the basic dy-
namical equation is taken into account.

The Heisenberg equation of motion for the time-
dependent spin operator s„(Rt) can by the use of

and cyclic permutations of Eq. (6).
&he quantity 88(R) is the quantum-mechanical

angular momentum corresponding to M(R). " No te
that in the quantum-mechanical case the thermo-
dynamic functions and all the static correlation
functions are completely determined at any temper-
ature T by the three quantities S, 62J, and

P = 1/hsT.
To see the connection to the classical Heisen-

berg model, we introduce

s.,(R) = [S(S+1)]-'"m S(R) (7)

into Eqs. (4)-(6), and get

g h'J(R —R')s.,(R) s.,(R'), (6)
RR'

h[S(S+1)]' Jm '- J„, (14)

when S-~, N-O.
Combining Eqs. (11) and (14), we find that the

prescription for taking the classical limit properly
18

III. ILLUSTRATIVE EXAMPLES

A. Mixing of the quantum-mechanical and classical models

It may readily be demonstrated that an insertion
of exact results for the classical Heisenberg model
into exact equations for the quantum mechanical
model can give unphysical results. We consider
the quantity

C(qt) = [NS(S+ 1)] ' (S;(t) ~ S;(0)), (is)

where S,(t) is the spatial Fourier transform of
S(Rt), N is the number of lattice points, and the
angular brackets denote thermal average. From
Eqs. (4), (6), and (12) it is straightforward to de-
rive

zone

i q = —Q [J(q') —J(q —q')] C(q'0) (16)
e

and

S ~& I 0& J Jcl r

subject to the condition

h[S(S+1)]"'-m .
We note that this makes the right-hand side of Eq.
(10) tend towards zero.

2
zone

E ]z]t)) —z]t)-t)')]]JEST')-z(t) ~ t)')]]AB(s ))]'(s;*S=,.s;*.s';.;.. ~ ( )+( . ))Q ql7il I

(17)

where J(q) is the spatial Fourier transform of J(R),
and the sums run over the N points in the first
Brillouin zone. The spin correlation functions in
the right-hand sides of Eqs. (16) and (17) cannot be

)

l

calculated exactly, except for the classical linear
Heisenberg chain. For this we have, e.g. ,

C„(q0)= (Nm ) (M~(0) ~ M ~(0) )
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= (1 —u~„)/(1+ u'„—2u„cosqa),

where a is the lattice spacing, and

u„=coth(Pm~J, )) —(Pm J„)

(18) and

B~C (qt) = 4Ju(1 —cosqa)/P i
o

We insert the classical results into Eqs. (16) and
(17) with the transcription m2J'„- 5 2JS(S+1) [cf.
Eq. (11)], and find the approximate relations

where

u= coth[ ph'S(S+1)J] —[phaS(Sy 1)J] ' . (22)
. sc(qt) = 2kJu(1 —cosqa)

~=o

(20)
We now consider the difference

s'c(qiI
~

. ec(q~)
~

)'
to ~~ to

which on using Eqs. (20)-(21) and the transcribed Eq. (18) becomes

& =4JuP '(1 —cosqa) (1+u' —2ucosqa)(1 —u ) [1 —Ph'Ju(l —cosqa) (1+u —2u cosqa) (1 -u ) ] .

(23)

(24)

For a nonzero q the square bracket in Eq. (24) be-
comes negative, when T is less than a temperature
of the order h J[S(S+1)]'~2/ks.

However, ~ is nothing but the mean square de-
viation in the frequency with the temporal Fourier
transform C(qv) as the (unnormalized) distribution;

f QPC (q(d) d(d f &d C(q(d) dM

f C(q(u) d(u f C(q(u) d(u
(25)

As C(qv) is non-negative, b must be non-negative.
The unphysical negative value obtained from Eq.
(24) is due to the fact that we have used the classi-
cal forms for the static spin correlation functions
in an otherwise quantum-mechanical calculation.
This means that a mixing of quantum-mechanical
and classical equations must be made with great
care. We note that in the proper classical limit
the unphysical behavior disappears, as is seen
from

&,g =4J,)u„(1 —cosqa)

x(1+u„—2u„cosqa)/P(1 -u2„), (26)

which is non-negative.
Some physical insight into the occurrence of the

negative mean square deviation in frequency can be
gained from a consideration of a linear harmonic
lattice. For this system approximations similar to
those used above yield the same unphysical result.
For the linear harmonic lattice the defect is due to
the neglect of the quantum-mechanical zero-point
fluctuations in the use of classical results. The
classical structure factor, which has a form sim-
ilar to Eq. (18) but with a different definition of u„,
tends to zero with T at a finite q. This is not the
case for the quantum-mechanical structure factor
due to zero-point fluctuations. A too small struc-

B. Spin waves and the classical correlation function

In Ref. 10 it is stated that undamped spin-waves
seem to be incompatible with the exact classical
correlation function. It is reminded that for the
antiferromagnetic chain at low temperatures

C„(q, 0) (A'+ q*') ',
where

q+ =~/a —q

(27)

Z = (1 -u.,)/au'. ," .

ture factor will enhance the magnitude of the sec-
ond term in the mean square deviation in frequency
relative to the first [cf. Eq. (25)]. Thus the mix-
ing of quantum-mechanical and classical formulas
leads to a negative mean square deviation in fre-
quency at low enough temperature.

For the linear Heisenberg chain the situation
must be similar. When we use the classical spin
pair correlation function we neglect quantum-me-
chanical fluctuations and they are important. These
fluctuations are of purely quantum-mechanical or-
igin, and are not connected with the large thermal
fluctuations, which exist in the classical model as
well, and in both models are sufficiently large to
prevent a magnetic transition at any finite tempera-
ture.

Mathematically the negativeness of ~~ is due to
the fact that the approximative Eq. (21) is a fully
classical result, whereas Eq. (20) is the quantum-
mechanical result to order 8; The classical corre-
lation function is even in t, and thus its first deriva-
tive vanishes at t=0. This does not happen in Eq.
(20) unless 5 is set to zero, i. e. , the proper clas-
sical limit is taken.
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Thus for nonzero temperatures C„(v/a, 0) is finite.
On the other hand, assuming sharp spin waves,

it is found in a quantum-mechanical calculation~o
that

[m']-' (s;s, )
= 275282(1 —cosqa) coth( —,

'
PS+,)/5v, , (28)

Pn']-'(S', S,)- (Pm'Z„)-' (1+cosqa)-' . (31)

The right-hand sides of Eqs. (30) and (31) are iden-
tical, and thus there is no incompatibility at all for
those wave vectors, where sharp spin waves can be
expected.

The result in Sec. II also explains the apparent
contradiction in Ref. 11. There 6=1 and it is
stated that the approximation

Se, = 2JS S sin@a . (29)

Ec(nation (28) diverges~ when q 7//0 at any temper-
ature. Thus an incompatibility exists, and in Ref.
10 a wave-vector dependent renormalization of the
spin-wave energy is invoked as a rescue.

But, as is easily seen, the incompatibility stems
from the use of sharp spin waves at q = m/a, which
is in contrast to what is expected. If we keep q
away from m/a, we can show that the exact classi-
cal correlation function and the classical limit of the
the spin-wave correlation function agree at low
temperatures. For q & m/a we find from Eqs. (18)
and (19) (with u„changed to -u„ for the antiferro-
magnet)

C g (Ptg eT g) (1 +cosqQ)

when T- 0. From Eqs. (28) and (29) we find in the
classical limit 8'-0, 8- ~, 4-Z„, K[8(S'il)]'~2-~ that

., p(o - pLJS pm J,g
~ ~ (36)

1"(q, T)~ T, (38)

or to the temperature raised to the three-halves
power':

F(q y) o- y3/2 (s9)

being true for temperatures 7 &Z„m'/ks. Note that
the quantity &P~ has the dimension inverse angular
momentum, which is made explicit in Ec{. (36).

IV. COMMENTS ON SPIN-WAVES DAMAGING IN

CLASSICAL LINEAR CHAINS

In this section we shall comment upon some ear-
lier results concerning spin-wave damping and the
range of wave vectors, where spin waves exist.
These results are based on exact frequency mo-
ments for the classical linear Heisenberg
chains.

A very simple-minded way to describe spin waves
in the ferromagnetic case is to make an ansatz for
the frequency distribution C(q, z) containing two
symmetrically placed Gaussian-shaped peaks. The
two parameters in the an+at@ are determined from
two known frequency moments. If the second and
fourth moments are used, the peak width, i. e. , the
spin-wave damping, comes out proportional to the
square root of the temperature;

I'(q, T) ~ 7' ~' . (37)

The spectral function found in this way contains no
central peak, not even for small wave vectors, in
contrast to what is expected. More elaborate
theories take this into account, in that they predict
a single diffusion peak at long wavelengths. For
wave vectors larger than a certain critical value
q, one obtains two spin-waves peaks with a width
proportional either to the temperature,

coth(& P&u)- 2/P&u (32) The temperature dependence for q, is either lin-
ear"

is exact for a classical system. This means that
all relevant frequencies satisfy

& pe«l . (33)

But it is also stated that a classical system exhib-
its spin-waves, and that their frequencies satisfy

2 pcs 1 {s4)

hcoth(& PKu)- 2/Per, (36)

which obviously is exact, when 5-0. On the other
hand we find for spin-wave frequencies, using Eq.
(29) and the classical limit,

contradicting Eq. (33).
The contradiction disappears if 8',is inserted and

the classical limit is taken properly. Eq. (32) is
then changed to

or of the form ' 2

q
o- T ll2

(41)

The results in Eqs. (37)-(41) are confusingly dif-
ferent. The reason for the differences is of course
that any procedure based only on static quantities
to deter"nine dynamical properties must include an
a priori assumption concerning the shape of the
spectral function. This assumption is often hidden
in the mathematical approximations, which makes
it difficult to judge the validity of the results. At
present we do not know which of the results in Eqs.
(37)-(41) are most correct.

The same comments can be made for the anti-
fexromagnetic case. Here, too, one finds very dif-
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ferent results for the width of the spin-wave peaks
depending on the particular choice of procedure.

The above results show the necessity of having

pr oper justUications for one' s scheme of extract-
ing dynamics from the low-order frequency mo-
ments. Evidently, more attention has to be paid
to this point.
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