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Equation of state of a classical electron layer*~
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The equation of state of a dilute two-dimensional classical electron gas is calculated by the virial

expansion in the ring approximation. F«r corrections to ideal-gas behavior are obtained exactly; the
central result, in terms of the small parameter e' = 4mpe'/(k~ 7)', is P/pk~T —1 = e' ln(2e)/4
—(1 —y/2)e'/4 —e" ln'(c/2)/4 + (1/2 —y)e' in&/2 + O(e'), where y is Euler's constant. The
lowest-order correction agrees with a Debye-Huckel calculation, which is also presented,

I. INTRODUCTION

The prediction and discovery of electron states
bound above the free surface of liquid helium and
other materials' have stimulated work on two-
dimensional charged systems. Most previous at-
tention has focused on the low-temperature region
(also experimentally realizable by inversion layers
in some semiconductors)" where the effects of
quantum degeneracy are important. However, it
has been pointed out that use of helium and (more
favorably) neon bases may give the opportunity to
observe surface states at such low dilution and high
temperatures that the system behaves classical-
ly. ' A calculation of the equation of state of a
classical charged layer thus becomes desirable',
such a calculation is presented here for a sheet of
mobile charges imbedded in a uniform rigid neu-
tralizing background.

Experience with the three-dimensional electron
ga.s has revealed that systematic perturbation ex-
pansions for the equation of state contain terms
which diverge because of the long-range nature of
the interaction. ' ' Infinite sequences of such di-
vergent terms must be identified and summed to
obtain convergent results; in consequence, the
equation of state acquires nonanalytic dependence
upon the expansion parameter. The lowest-order
and simplest such sequence is the set of ring in-
tegrals. Our calculation is restricted to the ring
integrals, whose evaluation allows a number of
terms in the equation of state to be determined ex-
actly.

This paper is divided into three parts. In Sec.
II we determine the pressure via a linearized
Debye-Huckel calculation of the screening; in three
dimensions, this yields the correct equation of
state to lowest order, but in two dimensions, a di-
vergence is found unless a physically plausible cut-
off is inserted; this underscores the need for a
more careful calculation. In Sec. III we introduce
the virial expansion and ring integrals, and trans-
fer the calculation to Fourier space. We confirm
the Debye-Huckel result and obtain a number of
higher corrections, and show that refinements of

the ring approximation yield corrections of higher
order than ours. Section IV ends the paper with a
discussion of the physical basis of our results.

II. DEBYE-HUCKEL CALCULATION

We shall find the thermodynamic potentia, l by de-
termining the work done to assemble the screening
charge around each electron. "'" Because the elec-
trons are distinguishable particles in the classical
limit, a given electron is regarded as a test charge
inserted into the system. We begin by calculating
the screened potential. If the mean electron density
is p, the density p(x) around a single electron is
well approximated by the relation

with boundary conditions for the surface charge
density,

=4ve5(r)+4vPe ps(r, 0). (2. 2)

We make the expansion

p(r, e) = dk f(k)e~" Jo(kr), (2.3)

where Jo denotes a Bessel function. Substituting
this expression into (2.2), we obtain

dk (k + k ~)f(k ) J,(kr) = —(e/r) 5(r ), -(2. 4)

wherein we have defined the Debye wave number

kD =—2wPe~p. (2. 5)

where cp is the electrostatic potential of the test
charge and the charge distribution screening it.
The potential g satisfies Poisson's equation; linear-
ized in y, this equation becomes

v'(p =4me5(r) 5(z)+4mPe'p(p(r, e)5(e). (2. 1)

The layer lies in the plane z =0, and r denotes the
radial coordinate in the xy plane. The solution of
(2. 1) is a solution of Laplace's equation

12



12 EQUATION OF STATE OF A CLASSICAL ELECTRON LAYER

Inverting the Bessel transform, we find

—e
k)= 1+k'/k '

y(r, e) = —e
dP

g

1 k /

(2. 8)

This yields'

p(r, 0) = —(e/r)(1 —2mkor—[Ho(knr) —Fo(kyar)]],
(2. 7)

where B0 and Y0 are Struve and Neumann functions.
The charge density obtained from (2. 2) is

The correction is nonanalytic in the density and

coupling constant, as we expected for a long-range
force. We recall, however, that in three dimen-
sions, no cutoffs must be introduced into the lin-
earized Debye-Huckel theory to obtain the correct
equation of state. ' '" The validity of (2. 12) should
be confirmed by a more formal calculation; fur-
thermore, such a calculation is needed to deter-
mine corrections of higher order.

III. VIRIAL EXPANSION

The virial expansion for the equation of state is'o

o(r) = —e5(r) —(eke/2') f- 1+ ,'wk—nr

(2. 8)
PP/P 1=-—g P P,

g m+1

The representation

2 df
Ho(~) I'o(~) =

o i/o e largx
l

m o (1+()

1

A(m —1)! d rj'''d r2 2

(3 1)

dkI 1o d(r) = ekD
k k

do(kr).
0 + D

(2. 9)

The potential p„,„d of the induced charge diverges
logarithmically near the origin, and (2. 8) shows
that the divergence is due to an infinite positive-
induced charge density there. Since the density of
the positive background is bounded in our model,
the divergence arises because the linearized Pois-
son Eq. (2. 1) is invalid near the test charge, for
the induced charge density becomes greater than
the density of the background. The distance r, at
which this happens may be estimated from (2. 8),
i. e. , pe=o(r, ); r, serves as a cutoff in (2. 9). We
have

r, =ko/p= Pe (kor, « 1),
( )

cp„,„o(0)= eke
l In(kyar, ) = —2mPe'pin(P e'p)

Identifying -de as the isothermal change in the
Helmholtz free energy, we find that the contribu-
tion of the screening charge to the thermodynamic
potential is

may be used to show that the total surface charge
vanishes, indicating that the test charge is com-
pletely screened at large distances. '

The work done by the system when each of the N
electrons has its charge increased by —de is

dW= Nde co„,„o(0),

P, = lim — d r, d ro f,2.
2

A

The Mayer f functions are

=A-,'(m —1)! o [f(k)]
(2m)

(m &2), (3.2)

f(k) = d'r e ' '"f(r).

The numerical factor multiplying the integral
comes from a summation over topologically equiv-
alent graphs. The virial expansion becomes

with V(r) = e2/r The su.m over S in (3. 1) denotes
a sum over all star configurations with ~ labeled
points. The neutralizing background makes the
first-order term in the coupling constant e van-
ish for a Coulomb system, and hence, this term
has already been subtracted in the above expansion.

We restrict ourselves to the ring graphs, so that
each labeled point is connected by f functions to
only two other labeled points (for m &2). The inte-
grations are transferred to Fourier space and a
standard calculation yields

—AP= p de(- 2mpeop) ln(poe4p)

= —~p(Pe'p"')»(Pe'p )

The equation of state becomes

(2. 11) x [pf(k)] ' —'p d'rf '(r). - (3.3)

PP/p —1= w(Pe p'~ ) ln(Pe p'~ ) (2. 1.2)

We have confidence in the correction only to lead-
ing order; thus, we have retained no second-order
terms (proportional to e4).

Adding the term

d2&
0 = ——,

'
p d'r [f(r)]'+ ,'P 2 [f(k)—],

and performing the summations, we obtain the
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equation of state

PP I d k pf(k)(„), ~~(~)+&~I(-tf() )I)

We determine f(k) with an integration by parts
and the formulas

x""J„(x)dx = a"'J„„(a),
+ —', p d'r( ,'[f(-r)] —f'(r)j.

Evaluating the second integral gives

(3.4)
dxx '(. " "J (x) =2J'(2a' ')Z (2a' ')

(3.8)

PP 1 9
1 —p —S- mph e ln2,2 4

p 2p ~p

d~k
(In[1- pf(k)]+ pf(k)) .

(3. 5)

where K„ is a modified Bessel function of the sec-
ond kind,

f(k) = —(4mPe /k) J,((2mPe~k)'~ ~)z, ((2mPe~k)' ~ ).
(3. I)

A simple change of variables and integration by parts bring S to the form

S=p&' dx x J, x E, x —x J, x K& x x +26 Jp x Ky x =pc I &,
0

where the dimensionless plasma parameter & is defined by

e' 47(p=—P'e' = k~~/7(p.

(3. 8)

(3.9)

The quantity e is small for a dilute system at high temperature; the virial expansion is seen to be actually
an expansion in terms of the dimensionless parameter g.

When the coupling constant e vanishes, the integral in (3. 8) has a logarithmic singularity due to the di-
vergence of the integrand at the origin, By gauging the strength of this singularity, one can confirm that
the leading correction to the equation of state is given correctly by the Debye-Huckel result. We do not
pause to do this but continue directly to a more systematic and accurate evaluation.

We subtract from and add to f(s) another integral which has the same divergence in e as f(e) itself; the
new integral is chosen to be expressible in terms of tabulated functions, We obtain

S= gpss dx ((
—-g —2pe dxx I 2 gJ z —

() g + ps dx Jg(x)zg(x)d—[J)(x)zg(x)]
xe-", " [J',(x)Z,(x)]' —,'e-", " d

0 x +e p x +2e JgxZgx x +6 0 PX

00 X'+pi' dxz(x)E(x)„(J(x)K(w)j—, , ; -() .
0 AX x +2e Jg x Z)(x

(3. 10)

The last three integrals above remain convergent if we set g to zero in the integrands; doing so gives S to
order e'. We also can display terms of higher order by expanding the denominator [x'+2e'J, (x)Z, (x)] ' in
powers of (x'+s')-',

8=- ape dx g g-2ps ~[J)(x)Z,(x)] —-'e ")-2e
"dx [Jg(x)Z, (x)]' - —,'e-"

X +g Q X 0 X X +6

"dx [J,(x)Z, (x)]'[1-2J,(x)Z)(x)], "dx [J,(x)Z,(x)]'[1-2J (x)Z (x)]))

p x (x +6) 26'
Q X (x+e)23 + ~ ~ ~

N w 00

R d (( ()+Pg 4Xelg X Eg X Jg XZ) X 2& ~X ~)X+g & eT) XggX X +g y ~ (3.11)

+ [-', ——,'y]pe' Ine+ O(pe'),

which leads to the equation of state

PP/p —1;—,'e In(2e) —4(1 —ly)e'

(3. 12)

——,'e' In'(-,'e)+-,'(-,'- y)e Inn+ O(e ), (3. 13)

We evaluate this expansion to all orders lower than
p& . The integrations are performed in the Appen-
dix, yielding

8=-,'pe Ine+[&y+In2- —,']p& ——,'pe ln (—,'e)

where y=0. 577 is Euler's constant. This corrob-
orates the Debye-Huckel result obtained previous-
ly.

Finally, we show that the terms in the virial ex-
pansion which we neglected are of order g . In the
first step beyond the ring approximation, another
infinite sequence of divergent terms, the water-
melon graphs, must be summed. ' ' It follows
directly from the results of Ref. 19 that the change
in S produced by incorporating the watermelon in-
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tegrals is

SS= —p' d'x(Ie"'"' —1 —h(x)] e-'~" —-'h'(x)]

d k;f,.„. pf (k)
(2w)2 1 —pf(k)

'

(3.14)

We make the approximation f(k) = —PV(k), finding

h(x) = (k~/4p)[H, (k~) —Yo(k~x)], (3. iS)

and it follows directly that

b.S = O(pe'). (3. 16)

We are justified in evaluating only the ring inte-
grals for the analysis of terms of lower order than

4

IV. DISCUSSION

We now discuss the physical basis of our re-
sults. From Eq. (3.4) it is evident that the virial
series in p for the pressure diverges ever more
strongly term by term; at long wavelengths, a con-
vergent result is secured only by summing the
series, thereby taking account of screening of the
Coulomb interaction at large distances. In addi-
tion, we note that expanding the Mayer function to
lowest order in the coupling constant e, i. e, ,

f(~) =- &V(~),

f (k) = - PV(k) = lim f (k), V(k) = 2me~/k,
A~P

(4. 1)

makes the momentum integral in (3.4) diverge at
short wavelengths, mirroring the formal diver-
gence in the Debye-Huckel calculation; as we antic-
ipated in the Debye-Huckel case, retaining the
full Mayer function cuts off the divergence at
k '= Pe', where the Landau length Pe' is roughly
the classical distance of closest approach of two
electrons of energy AJ3T. However, for the three-
dimensional electron gas, no divergence appears
in the Debye-Huckel treatment, and the approxi-
mation in Eq. (4. 1) correctly describes the lead-
ing deviation from ideal-gas behavior.

Since the electron layer is assumed dilute and
at high temperature, we have treated it by the
methods of classical statistics. But for an elec-
tron assembly there is a unit of energy, the rydberg
(1 Ry = —,me'I '), which becomes infinitely large in
the strict classical limit S-O. That the rydberg
sets a high-energy scale in terms of Planck's con-
stant indicates that the system behaves quantum
mechanically at sufficiently large temperatures. ' '"

The characteristic length for quantum correla-
tions in the layer is the thermal wavelength
X,„=(2vrPI~/m)'~2 Below th. is distance, the picture
of the particles as classical point scatterers is no
longer valid, and they must be described quantum
mechanically ' '; thus, the thermal wavelength is

PP/p —1 = —,'e' in(ex),

x =-(2~Pa'p/m)"',
(4. 2)

which is the result of a previous calculation by
Fetter. '

The work of Ref. 9 is expressed in the language
of finite-temperature quantum-field theory; when
the sequence of Feynman diagrams chosen there
is evaluated for the three-dimensional electron
gas, to leading order it corresponds to the classi-
cal ring approximation with the simplification of
Eq. (4. 1)." Just as the approximation (4. 1) leads
to a divergence in two dimensions, so the corre-
sponding set of Feynman diagrams must diverge
when the classical limit 8-0 is taken; and indeed,
the pressure in (4. 2) is divergent in this limit.
To obtain the classical limit by field-theoretical
techniques, it is necessary to incorporate ladder-
like diagrams describing the interaction of the
electrons at short distances; the rearrangement of
the Feynman perturbation series which reduces
to the classical Mayer cluster expansion is given
by Smith. '~

For many-electron surface states above neon, a
characteristic temperature is T =10 'K and 4~7
=10 4 Ry; we conclude by stressing the observa-
tion' that these states may give the possibility of
observing a classical two-dimensional electron
gas,
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APPENDIX

We evaluate the integrals appearing in S, con-
sidering only terms of order lower than p&4. Our
first integral is expressible in terms of tabulated
functions, ~3

an alternative choice for a short-distance cutoff
in the Debye-Huckel calculation. For temperatures
much smaller than a rydberg (and much larger than
the Fermi temperature), the Landau length Pe is
large compared to a thermal wavelength; the elec-
trons are rarely close enough for quantum effects
to be significant, and a classical treatment like
ours is valid. When the temperature is raised far
above a rydberg, the thermal wavelength becomes
much larger than the classical distance of closest
approach, and quantum correlations dominate the
short-distance behavior of the system. Setting
r, =X,„ in Eq. (2. 10) of our Debye-Huckei treat-
ment yields
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Xdx, , = —Ci(e) cosa —Si(e) sins,
X +6

Ci(x) = y+ lnx+ J~ dt (cost —1)/t
0

(y is Euler's constant = 0. 57),

( )2s 1 2k-1

2 ~ (2k —1)I'(2k) '

Therefore

J Xe
dX» =-ln&-r+

0 X +E

(Al)

X P(—,'(q d. p)) (p'(q'),

J 2&, i& I'(q+p)1'(q -p)
cosh'qx I'(2q)

(«q) l«pl) ~

A little algebra yields

dX

p X

)th

~i (m+2)(m+1)m

Next, we consider

+-,'e' inc+0(e'). -1 "x
= 2 I'(—'t&)+ —,

' dx dy
o "o

r Do

I = —([Z, (x)Z, (x)]'- —,
' e "}

~
Q X

= lim
dX

6~0 0

ss

dz
X = —I'(—

&l) ——ln2 + Is,
&p 1 8

(A5)

We recognizethe other piece of I as a l" function,
and we have

&& ([Z, (x)Z, (x)]'--,'e-"}. (A2)
I= Iss ——', 1n2+lim[2 I'(—,'5) ——,

' I'(t))].
6 0

(AG)

We set up this limiting form so that each term of
the integral, not just their difference, is well de-
fined before the limit is taken. In what follows,
5 will be treated as an infinitesimal, and terms
of order 5 will be dropped even before formally
passing to the limit.

The integration involving the Bessel functions
may be carried out by use of the identities»4

Evaluating the limit, we find the result

—&[~i(x)Ai(x)]' —de "}=2 y--'hi2+ i's.
X

Our next integral is straightforward,

d
dxZ, ( )xK, ( )x[J,(x)E,(x)—] = 8 .

(AV)

(A8)

( —)"I'(2m+3)~ I'(m +1)I'(m +3)[ I"(m +2)]'

X (L, X)2ttt+2

K,'(s)= f tt, (2ssssht)dt,
0

and integrals

f K~(x)x' 'dx=2' 'I'(-,'(q -p))
0

(A8)

The functions of e defined by the remaining in-
tegrals need not be determined exactly; we desire
only their leading behavior in &, and it suffices to
examine the integrals in the neighborhood of the
origin. The variable of integration x is confined
to the region 0 —x —6, where the dummy parameter
5 is chosen so that 0««&5«1; this is justifiable
since the gas is assumed dilute and at high tem-
perature. Using small-argument expansions for
the Bessel functions appearing in the integrals,
we obtain

4pe — '
2

'
2

——,'&&pe' () ps ln (2e)+ —,'(p —By)pe inc+0(pe ),
p X X +6

(A9)

4pe' dx [Z, (x)Z, ( )]'[1—24, (x)K, ( )]
~Po x (x +s:)2 2 2

= —spe inc+ O(pe (A10)

"dx [Z, (x)SC, (x)]'[1 —u;(x)Ii, (x)]'
x (x'+ ~2)2

(A11)

tr (&o

—2p& ) dx[J&(x)Ki(x)] —[Zi(x)K&(x)] (x +e ) = 2 pe ln (2&)+ —,'(y ——,')pe inc+0(pe ),
dX

(A12)
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J'g x Kg x 1 —2' x Kg x —Jg x Kg x
-2pc = O(p~'In'~) .

0 (x'+ e')' (A13)

The integrals which vanish to order & indicate the point atwhichto cutoff the expansionof [x~+2&~g, (x)A;(x)]
in terms of (xi+ a~) '.
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