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Thermodynamics and phase separation of dense fully ionized hydrogen-helium fluid mixtures
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The free energy of a hydrogen-helium fluid mixture is evaluated for the temperatures and densities appropriate
to the deep interior of a giant planet such as Jupiter. The electrons are assumed to be fully pressure ionized
and degenerate. In this regime, an appropriate first approximation to the ionic distribution functions can be
found by assuming hard-sphere interactions. Corrections to this approximation are incorporated by means of
the perturbation theory of Anderson and Chandler. approximations for the three-body interactions and the
nonlinear response of the electron gas to the ions are included. We predict that a hydrogen-helium mixture,
containing 10% by number of helium ions, separates into hydrogen-rich and helium-rich phases below about
8000'K, at the pressures relevant to Jupiter (". ".0 Mbar). We also predict that the alloy occupies less
volume per ion than the separated phases. The equation of state and other thermodynamic derivatives are
tabulated. The implications of these results are mentioned.

I. INTRODUCTION

The mass and radius of a giant planet such as
Jupiter can only be explained by assuming that the
main constituent is hydrogen. ~ This suggest that
Jupiter may have solar composition such that about
one atom in ten is helium. Moreover, Jupiter
emits about twice as much radiation as it receives
from the sun. 2 This indicates an internal heat
source and is consistent with a temperature in the
deep interior that exceeds the melting point of
metallic hydrogen or of helium. ~ It has also been
suggested that the helium may have only limited
solubility in the hydrogen. ~'4 Clearly, detailed
models of the giant planets require an understand-
ing of the thermodynamics and phase diagram of
dense hydrogen-helium fluids. In this paper, the
relevant properties of such a system are calcu-
lated. We assume that all the electrons are pres-
sure ionized although our calculations have at least
approximate validity at the lower pressure relevant
to Jupiter.

The only previous relevant calculations are the
incomplete Monte Carlo studies by Hubbard. '6
The lengthy computational time of those calculations
is avoided here by choosing an appropriate trial so-
lution for the ionic distribution functions and then
by using a perturbation theory (the optimized ran-
dom-phase approximation of Anderson. arid Chand-
ler7} to closely approximate the real ionic distribu-
tion. At the densities and temperatures of interest
(1~ p 510 g/cm', 10'- &&5&&10 'K), the ion-ion
interaction (in the presence of screening electrons)
is characterized by a repulsive core and a weak
long-range part, so the appropriate trial solutions
are the distribution functions for hard spheres. At
higher densities or temperatures, a different ap-
proximation scheme (or the Monte Carlo method)
is more appropriate.

Our calculation contains features not present in

Hubbard's calculations. We have used a more real-
istic dielectric function, and corrections have been
made for the quantum mechanics of the ions, the
three-body interactions, the nonlinear response of
the electron gas to the ions, and the finite temper-
ature corrections to the electron gas. Some of the
thermodynamic properties are significantly affected
by these corrections. Nevertheless, our results are
similar to those of Hubbard in most instances. We
do make an important new prediction: the existence
of a miscibility gap in the hydrogen-helium alloy.
We also predict that there is a small but non-negli, -
gible volume nonadditivity (i.e. , the alloy occupies
less volume per ion than the separated phases).
The detailed astrophysical implications will be dis-
cussed elsewhere; they are only briefly mentioned
in the present paper.

In Sec. II, the free-energy calculation is de-
scribed. In Sec. III, the thermodynamic properties
are discussed. In Sec. IV, the phase separation is
described and in Sec. V, the validity of our calcu-
lation is assessed.

II. FREE ENERGY

Consider a binary system in which a fraction x
of the nuclei have charge Z=2, and a fraction 1 —x
have charge S= 1. The compensating electron gas
has an average density Z N=(&~mr, a~0} ~ where N is
the ion number density, the effective valence is
Z* =1+x, a0=0. 529&&10 8 cm, and r, is the electron
spacing parameter (r, lin Jupi-ter). The free en-
ergy is written

F=F,g +E„,+E~ + E~ s+ AF int + E@

We now discuss the meaning and evaluation of each
term.

The free energy of a uniform electron gas F„can
be expressed as the sum of a zero-temperature
contribution and a small finite-temperature correc-
tion since we assume
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where

y&
-x(1 —x)(l —n) (1+n)/d

yo = x(l —x) n(1 —n}o[(1—x) n+o]/xd

y +[(1—x) n'+ x]'/d',
d = (1 —x) no+ x,

volume occupied by hard spheres
total volume

diameter of hydrogen hard spheres
diameter of helium hard spheres

and M„M2 are the hydrogen and helium ionic
masses, respectively. E„is the free energy of
an ideal gas mixture. (A hard-sphere mixture
deviates from an ideal gas to the extent that g is
nonzero. ) For pi & 0.45, a classical liquid is ex-
pected to solidify. " The predictions of Eq. (5) are
almost indistinguishable from hard-sphere Monte
Carlo calculations, in contrast to the alternative
formula of Lebowitz. ~4 The parameters q and n

where T and TJ; are the actual and Fermi tempera-
tures, respectively. The zero-temperature con-
tribution is

E, = (2. 21/+ —0. 916/&,

—0.115+0.031 lnp, ) Z Ry/ion, (3)

where an interpolation approximation has been used
for the correlation energy. ' (Any small inaccuracy
in the correlation energy has negligible effect on
the final results. ) The only finite-temperature
correction that we have retained is the kinetic en-
ergy term~a

bE,«= —4 (&om )o~'p, (ko T)o Z Ry/ion, (4)

where koT is in Rydbergs (ks =6.34x10~ Ry/'K).
The other corrections can be shown to be negligible
at the temperatures of interest. "

As a first approximation, we assume that the
ions, with their comoving screening clouds of elec-
trons, interact like hard spheres. Consequently,
we have, in addition to electrostatic energy contri-
butions, the free energy I'h, of an equivalent neutral
hard-sphere liquid. This has been approximately
calculated by Mansoori et al. ~:

F«« = Eg«+ 4T[ «(1 —yi +yp +yo) + (3yp +2y&)/(1 —pi)

+ «(1 yg y«3 y, )/(1 —pl) + (yo —1)ln(1 —pi)]

are not known in advance and are to be determined
variationally.

We next evaluate the Madelung energy E~ which
is the electrostatic energy of point ions immersed
in a uniform electron gas

kf 2Ng

„~g42 cfr 4r
+XV S ~p )lr —r I

(6)

where the integrals extend over the entire volume
0 and (~ ~ ~ ) denotes an ensemble average. In (6),
r„refers to a nucleus. of charge S& at position r„.
It can then be shown that

E« = —Q Wp(1 —x) Zg [egg(k) —1']
2~ «~o ~

(6)
and N„N~ are the partial number densities of the bvo
ionic species. We approximate S&& by the Percus-
Yevick hard-sphere result found by Ashcroft and
I.angreth. Ross and Scale 6 have shown that in
this approximation, the summation in (7) can be
evaluated exactly. We give the rather complicated
result here because of an error in their paper:

" 5[(i+ )d']"' .(1+2pi)

+2 Z,Z«x(l —x) G~+Zo x Goo Ry/ion,
1+Q 2

Ggg = [pig —2piq+ 10—4pi)pi«

+ (10/n)(qpo —'i, ) + (qp —2 g, —4g, go)/n ]

Ggo = 15(pi« —pl, ) (1/n —1)2n/(1+ n) —30(l+ pi)

+ (2n/1+ n) [ppg —2'gg+ 1 0- g4)pp i+207)«.
+ 10(pip«+ pl+2)/n

+ (pip —2'go+ 10—4pi)pi«+ 20pii)/no],

q, =(1—x)n'pi/d, pi, =xg/d

and G„ is obtained from G„by replacing 1/n by
n and g, by g2. Corrections to the hard-sphere ap-
proximation are contained in &E„„discussed be-
low.

We next consider the "band-structure" energy
E», resulting from the nonuniformity of the elec-
tron gas. In general, it is possible to expand
p,',o(k}, the Fourier transform of the electron-den-

+2ZiZS x"'(1 -x)'"3fg(k)+Zo x[3«p(k) —19
( f)

(Z, = 1, Zo = 2 for H-He), where the partial structure
factors S;p(k) are defined as
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sity change induced by the ions of species i, in
powers of the electron-ion interaction. ~~

p*,'„(k)=g e*""'*

V'(k) = (87(Z;//P) i

where SmZ, /k is in Ry ao.
We have retained terms up to third order in the

electron-ion interaction, so that E~z —E»+E'
where

k'"'=„„„P Z p[.'". "(k}P'(-k}p...(-k}).
&~5=42 (12)

Note that in Eqs. (7) and (12), the zeroth Fourier
components are omitted from the summation since
they are exactly compensated by the divergent
electron-electron interaction energy.

The lowest order term in p'„~(k) is the linear re-
sponse result~7'ao

p'„',"(k}=—
( k

—}.)V'(k} p'...(k}, (13)

where e(k) is the static dielectric function. In our
calculations, the Hubbard approximation has been
used. 2o This is a more realistic form for the lin-
ear response than the Lindhard expression used in
the Monte Carlo studies. ' Corrections for the
dynamic response of the electron gas appear to be
negligible~' and have not been included.

From the definitions of the partial structure fac-
tors, it can then be shown that 3

Z&» =- [Z2(1 ~) S„(a)+2Z,Z, ~&~'
w o

x (1 —x)"'S„(y)+Z,' xS»(y)]

1x —1
~

dk Ry/ion,

where 0 is in units of +o, This contribution is eval-
uated numerically using the hard-sphere structure
factors.

The theory for E"' is not given in detail here,
since it is an obvious generalization of the results
for crystalline metals. ~7 ~9 (For example, the only
change to equation 4. 8 of Lloyd and Sholl~7 is the
insertion of ensemble averages. ) The appropriate
generalization of Eq. (90) of Hammerberg and Ash-

p&:(k) = g pt.'".'(k)
n=f

=)(,(k) &'(k) p', „(k)+ Q Q y, (k, q) V'(k
i=))2

+ q) p~„(k + q) &'(- q) p,'„(-q) + higher order,
10

where

croft 9 is

16 4 t/
dgdt~ 8"(- $)

7T 977 g g g

x II'(& —&g) II"(&g)&"'(h, &,) ~g„(h, h, )
where

r,„((,(,}.=(~„,Q ekp[ikk,
m~ ti~P

k(—(.r'+(( —(~}.8+(~ ~ r~}}).
(16)

W'($) = [Zq/$ a($)], g = k/2k+, kz is the Fermi wave
vector, and H" » is the three-vertex function defined
by Hammerberg and Ashcroft. Since m, n, P do
not have to be different in the summation for 7.';,~,
it is clear that E'3' contains not only three-body in-
teractions, but also corrections to two-body inter-
actions and (structure independent) corrections to
the screening of single ions. The evaluation of T;»
can only be approximate since there is no accurate
theory for three-body correlation functions. We
have chosen a convolution approximation (see Ap-
pendix A).

We have not evaluated the fourth-order contribu-
tion to the band-structure energy, but some semi-
quantitative assertions can be made. First, it is
clear from the work of Hammerberg and Ashcroft'
that there are additional complications at fourth
order that can only be encompassed by the use of
finite-temperature perturbation theory. Second,
their formal results can be easily extended to liq-
uids and liquid mixtures. In particular, the terms
which they ascribe to the nonsphericity of the Fermi
surface in the solid, are nonzero (and comparable
in magnitude) in the liquid phase. It seems that the
substantial cancellation of fourth-order terms that
they found for crystalline metallic hydrogen, per-
sists in the liquid. The cancellation is also sub-
stantial for helium, since the dominant fourth-or-
der contributions have similar Z dependence. Thus
it is hoped that our omission of E'4" is not a serious
deficiency.

In the above calculations, we have used an effec-
tive ion-ion interaction, the accuracy of which is
limited only by uncertainties in the dielectric func-
tion of the electron gas. We have not, however,
evaluated the ionic configuration appropriate to
that interaction. This is corrected by the optim-
ized random-phase approximation method of Ander-
sen and Chandler (see Appendix B). To second
order in the electron-ion interaction.

&E„,= + ln det I+NS k~T

-NTrS P/ks T]d'k, (17)

where det means determinant, Tr means trace, 1
is the unit 2x 2 matrix; and S, (t} are the 2x 2 ma-
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TABLE I. Parameter c = (I/Nks)(dP/dT)„„as a func-
tion of r„~,T, and x.

x T 0. 0 0.1 0. 2 0.4 0. 6 0. 8 l. 0

4000 1.07 1.12
7000 I, 24 l. 30

12 000 1.22 l. 25
20 000 l.23 1.25
30 000 1.25 1.30

1.18 1.4O

1.41 1, 67
1.30 1.39
l.27 1.32
l.31 l. 35

1.60 1.46
1,86 l. 78
1.52 1.69
1.41 1.47
1,44 1.47

1,30
I.70
l.83
1.55
1, 55

0, 9 4000 I.01 1.04
7000 1.12 1.16

12 000 1.17 l. 23
20 000 1.17 1.19
30 000 1.19 1.21

l. 05 1.02
1.19 1.32
l. 28 l.46
1.24 1.32
1.25 1.33

0, 83 0. 77 0. 69
l.43 1.51 l.48
I.56 1.59 l. 65
1.40 1,49 1.60
l.40 l. 45 1.59

0, 7 4000
7000

12 000
20 000
30 QDG

0.65 0.60
l. 03 l. 05
I.14 l.18
1.18 l. 24
I.20 1.25

0. 57 0. 59
1.10 l. 12
l. 25 I.37
l.30 1.36
l. 30 1.35

0.61 0, 64 0. 65
1,12 1.09 1.08
1.48 1.54 1.56
1.41 1.47 l.50
1.40 l. 44 1.47

trices, the elements of which are

S;, = S;,(It),

P;,. = (x, x,.)'~' (p;,-(k),

where x&, x,. are the number fractions of ion species
i and j, and y;, (k) is the Fourier transform of the
optimized potential U, ,(r), given by

—Its TC,,(r), r& R,,U;~(r)—
veft(r)

where A;& is the minimum hard-sphere separation
and v', ,'(r) is the effective ion-ion interaction, the
Fourier transform of which is 4m et/lP&(k). The
functions C;,.(r) are chosen variationany

[VAF „,/VC, ,(r)) = O, (20)

A quadratic function of z was found to be adequate
for approximating each C,,(r)

Finally, we have included the lowest-order high-
temperature quantum correction

ha% X)X

24k'~T] ~ ~ q M)) g

1/M„=-,' (1/M, +1/M, ),
where g;&(r) is the pair correlation function
for ion species i and j, and M; is the mass of
ion species i. This result was first derived by
Wigner 3 and is the effect of including the uncer-
tainty principle for the ions to lowest order in )ts/
Ma~ok~T. Unlike I'z the next term in the Wigner
expansion depends on whether the ions are bosons
or fermions, but it can be shown to be negligible
(-10 s Ry) for our present purposes.

Notice that I @ does not scale as r,3~2, the result
that one might expect for zero-point motion. 4 The
Wigner expansion is rapidly convergent provided

TABLE II. Parameter y=(dlnT/dlnp)s „as a function
of r~, x~T and x.

r, T O. O O. 1 O. 2

1.2 4000 0.61 0.62 0.62
7000 0.61 0. 62 0.66

12 000 G. 61 Q. 61 0.65
20 000 0. 63 0. 64 0.64
30000 0.64 0. 64 0. 65

0.4 0.6 0. 8

0. 65 0.66 O. 61
0.67 0.68 0. 61
Q. 65 0.66 Q. 65
0.65 0, 66 0.65
Q. 65 0, 66 0. 65

1.0

Q. 55
0.56
Q. 65
0. 65
0, 65

0. 9 4000 O. 58 0. 58 Q. 59
7000 O. 60 G. 61 Q. 60

12000 Q. 63 0.63 0.62
20 000 0.64 0. 63 Q. 63
30 000 Q. 64 Q. 63 0.63

0. 58
G. 59
0. 62
0.63
Q. 63

0. 55 0„53
0„60 0. 6I
0.62 0. 63
0. 64 Q. 63
Q. 64 Q. 63

0. 53
0.61
0, 62
0.63
0. 63

0.7 4000 0. 56
7000 O. 59

12 000 0.63
20 000 0.63
30 000 0.63

O. 56 0.55
0. 60 0, 59
0.62 0. 62
0.64 0.63
0. 64 0.64

0. 55 0. 55
0. 59 0. 59
0. 62 0.62
Q. 63 0. 63
G. 63 0. 64

0. 53
0. 56
0. 62
0, 63
0.63

0. 53
0. 56
0.63
0. 64
0.63

IIs/Mo ksT«1,

where 0 is roughly the range of the strongly repul-
sive part of the effective interaction. Detailed
calculations indicate &,& 1500 'K is a sufficient
condition for I'@ to represent accurately the quan-
tum correction.

III. THERMODYNAMIC PROPERTIES

cv/I s-c/y,
where

The free energy given by Etl. (1) was evaluated
as a function of density, temperature, and relative
concentration. The procedure is to minimize I'~
+E„+E's'+E+'+Eo as a function of r) and n. (The
best choice for n is found to be insensitive to all
other parameters and varied between 0.73 and 0. VV

only. ) The remaining contributions to E are then
added. Since 4I'„, effectively corrects the hard-
sphere approximation, to second order in the elec-
tron-ion interaction, the minimization procedure
would be unnecessary, were it not for E'3'. If E"'
is excluded, then the total E is indeed very weakly
dependent on q and n and this encourages confi-
dence in our calculation. The minimization proce-
dure is justified by a result of the thermodynamic
perturbation theory which states that the exact free
energy is bounded above by the free energy calcu-
lated using the hard-sphere model. 35

Rather than tabulate E, we have tabulated various
derivatives that are particularly useful in con-
structing planetary models (see Tables I-III). Note
that the heat capacity per nucleus, at constant vol-
ume, can be determined from Tables I and 'I since
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TABLE ID. Entropy & (in ks/nucleus) at r, = 0, s.
(For extrapolation to other densities, use Table D. )

3500
6000
9000

12 500
17 500
25 000
35 000

0. 0 0.1 0, 2

4.3 4. 8 5.15
5.25 5, 75 6, 1
6.0 6. 55 6. 95
6.6 7.2 7, 6
7.25 7. 85 8.3
7. 95 8. 55 9.0
8. 55 9.2 9.65

0 4 0

5.6 5.
6.5 6.
7, 45 7.
8.2
8. 9 9.
9.65 10.

10.35 10.

6 0.8

9 6..0
75 6.85
75 7.85
6 8.75
4 . 9 6
15 10.45
85 11,25

1.0
5. 75
6. 55
7. 55
8, 6
9. 5

10, 45
ll, 25

The equation of state P(V, T, x) has not been tabu-
lated but has been fitted to a polynomial in x and

r, for T=6000' K. (Pressures at other tempera-
tures can be found by using Table I. )

P = (51.6/r', ) f 1+a(x) r, + b(x)r, +c(x) r',] Mbar

~(x) = - 0. 654- 0.200x+ x(1 —x)

x (- 0. 182+0.370x —0.288x'),

5(x}= 0.085 —0.054x+ x(1- x)

&&(- 0. 086 —0. 530x+0. 573x )

c(x)= —0.008+ 0.028x+ x(1 —x)

x (0.077+ 0.254x —0. 321x )
This interpolation formula is accurate to 0. 3%%uo for
0.6 & r, & l. 3. For x = 0 (metallic hydrogen) our
results for I' are in good agreement with previous
workers. For example, at r, =1.0 we obtained
I'=21.8 Mbar whereas Hubbard and Slattery~ ob-
tained 22. 0 Mbar. This agreement is not surpris-
ing, since the pressure is determined mainly by
E,„and E„, terms that are common to both treat-
ments. (For example, E' ~ contributes only 0. 35/
2 Mbar to P for hydrogen )We. believe that our
equation of state is the best available for liquid
metallic hydrogen and is probably accurate to bet-
ter than 1%. The accuracy for x&0 is more diffi-
cult to assess, since the perturbation expansion is
much less valid for helium (as we discuss in the
final section. }

The parameter c (Table I) would be 1.0 for an
ideal gas and 1.5 for a high-temperature Debye
solid. The actual behavior is more complicated
than either of these limiting cases. For example,
c is reduced by the quantum corrections at low T,
but increased by the free energy of the electron gas
at high &. The Monte Carlo results' are too incom-
plete for a detailed comparison. To give a sample
comparison: at &=0, &,= l. 0; they obtained 1.49 at
4200'K, 1.42 at 630Q'K, 1.32 at 10500'K and

IV. PHASE SEPARATION

There are two ways of testing for incomplete
miscibility in a fluid mixture calculation. One way

0.06

8(x,P)

0.04

0.02

0.4 0.6 0.8 l.o

FIG. 1. Extent of volume nonadditivity [Eq. (25)] at
T =10 'K and for various pressures.

1.16 at 31500'K. Our results for the same tem-
peratures are 1.04, 1.15, 1.18, and 1.21, respec-
tively.

The parameter y (Table II) wouM be k for an ideal
monatomic gas and 0. 5 for a high-temperature
Debye solid (neglecting screening}. The actual val-
ue usually lies between these limiting cases. For
comparison, the Monte Carlo result for &=0, r,
=1.0 was y =0.64, for 4&10 + 7.' &3x].04'K.

The specific entropy (Table III) differs surprising-
ly little from the Monte Carlo results. For exam-
ple, at x=0. 143, p=5 g/cm' Hubbard" finds T
=23400'K for 8=8.4 ks/nucleus. Our results pre-
dict T= 20500'K. (For a fully adiabatic, homoge-
neous Jupiter, this would be roughly the central
temperature of the planet. )

Our calculations enable us to assess accurately
the "volume additivity" approximation that has often
been made. I.et Q(x, P) be the volume per ion.
We can always write

[],+5(x, P)jQ(x, P)=x&(1, P)+(1—x)Q(0, P), (25)

where 5(x, P) is a measure of the deviation from
volume additivity in the alloy. Figure 1 shows that
& is significantly nonzero. in contrast to Thomas-
Fermi theory where it is natural to assume 6 =0.~7

This nonadditivity is not attributable to any partic-
ul.ar term in the free energy. It is comparable to
(but usually somewhat larger than) the nonadditivity
observed in liquid alloys in the laboratory. "

This result indicates a small modification to
models for giant planets. For example, a model
constructed using the exact equation of state and
x= 0. 1, wouM require x=0. 12 if volume additivity
were assumed. Correct allowance for nonadditivity
slightly reduces the amount of helium required in
giant planet models.
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0.01

G 0
Ry/ ion

,0

-0.02

is to look for divergent behavior in the long-wave-
length limit of a partial structure factor, corre-
sponding to the onset of macroscopic concentration
fluctuations. This method has been applied by
Stroud to the alkali metals with some success,
but his mean-field approach would predict corn-
plete miscibility in the H-He system. The more
exact calculation described below indicates tha. t
this must be a failure of the mean-field approxima-
tion. (Our inability to find divergent behavior in-
dicates a lack of self-consistency in our calcula-
tion. It is hoped that this inadequacy is serious
only near the critical point. )

The second test is to evaluate the Gibbs energy
G(P, 7, x) and then determine whether &2G/9 x & 0
in any region of (P, &, x) space. Such regions are
unstable towards phase separation. This method
has been used to predict, with considerable suc-
cess, the miscibilities and phase separation curves
for several alkali metal mixtures.

Figure 2 shows the Gibbs energy of mixing, de-
fined as

sG(P, T, x) =G(P, T, x) xG(P, T,—1)
—(1 —x) G(P, T, 0) . (26)

At low temperatures, the unstable region is easily
discernable. Near the critical temperature, a
careful common tangent construction must be made
(see the curve at 9000'K, for example). Since EG
is much smaller than G, it is clear that even small
errors can dramatically affect an estimate of &„
the critical temperature. Nevertheless, there is
little doubt that the unstable region exists for T

12000-

9000

6000

3000-

0.4 0.6
x (no. fraction of He)

I

0.8 1.0

& VOOO'K.

In Figure 3, we show the phase separation curves
constructed from several plots like Figure 2. (Not
shown are the results at P =200 Mbar, for which
T, =10000'K, ) The regions near T, are interpola-
tions and may be inaccurate. Away from 7.'= T„
the curves are likely to be accurate to about +20%%uo.

The results may also be incorrect at low tempera-
tures (T&2000'K) where solid phases may exist.
We found no evidence in the calculations for the
more complicated phase diagrams that are per-
mitted by the Gibbs phase rule. 3

The results indicate that a H-He mixture of solar
composition (x= 0. 1) separates into hydrogen-rich
and helium-rich phases at temperatures less than
about 8000'K and pressures in the range 4-200
Mbar. It is not surprising that this phase transi-
tion did not clearly manifest itself in Hubbard's
Monte Carlo calculations, because of the small
number of particles he used. s~ The immiscibility
is not attributable to any particular contribution
to E.

The effect of separation in a pl'anet such as Ju-
piter is to retard the cooling rate and evolution. '
This will be discussed elsewhere.

FIG. 3. Phase separation curves for various pressures.
The phase-excluded region (miscibility gap) is below the
curve in each case.

-0.04—

FIG. 2. Gibbs energy of mixing EG, as a function of
T and x at I'=8 Mbar.

V. DISCUSSION

We have assumed throughout that it is valid to
consider the helium as fully pressure ionized, even
atafew megabars pressure. There may be serious
objections to this.

It should be emphasized, however, that the valid-
ity of our approach has nothing to do with the pres-
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sure at which pure solid helium becomes metallic.
We have evaluated the band structure of face-cen-
tered-cubic helium using plane waves as a basis
set for the electronic wave functions. We obtain a
transition pressure of 70 Mbar, similar to the re-
sult of Trubitsyn. " However, a calculation of the
band gaps to third order in the electron-ion inter-
action is accurate even at 10 Mbar. This is a more
relevant criterion, since our calculation of I' relies
on the convergence of a plane wave expansion and
not on the existence of metallic conduction in the
helium fluid. We have also used the methods out-
lined in this paper to calculate the free energy of
molecular hydrogen at r, &1.7 to an accuracy com-
parable to that achieved using semiemprical H3-83
pair potentials. We mention this to emphasize the
power of the perturbation technique used.

Contrary to what has been stated in the litera-
ture, 3 there is no good reason for supposing that
helium becomes less soluble at pressures lower
than those considered in this paper. Indeed, the
screened interaction between a neutral helium atom
and a proton has a large attractive region, which
suggests miscibility. " In contrast, the solubility
of helium in alkali metals at near-zero pressure
is very low" because of the repulsive electron-
helium pseudopotential. '6 As the pressure in-
creases and the wavelength of a conduction electron
becomes comparable to the size of a helium atom,
the pseudopotential becomes less repulsive and the
solubility increases. It is not correct to compare
the H-He system with any large r, system (such as
Na-He} that is accessible in the laboratory.

In this paper, we have shown how a judicious mix-
ture of perturbation techniques enables us to evalu-
ate the thermodynamics of a nonideal system that
was previously thought to require Monte Carlo tech-
niques. It is likely that other, similar systems
will yield to a comparable analysis. One candidate
is the Ha-He mixture that is present at lower pres-
sures (& 5 2 Mbar) in the giant planets.

ACKNOWLEDGMENTS

The author is particularly indebted to the advice
and comments of N. W. Ashcroft, and also grate-
fully acknowledges discussions with Vf. B. Hubbard,
J. A. Krumhansl, M. Ross, and E. E. Salpeter.

APPENDIX A: EVALUATION OF Tg)k(q, , q2)

The calculation of E'3' requires an approxima-
tion for

Too(qg, qm)

= ~~ Q exp([-q, . r„'+(q, —q, ) ~ r„rq, ~ r')).
(Al)

For simplicity, we consider a pure liquid so that
the subscripts i, j, k can be omitted. There are

numerous papers in the theory of liquid metals
in which T(q„qz) is approximated by T,(q„qm},
where

T.(q„q )=S(-q&)S(q&-q )S(q ), (A2)

x[g' "(rq, r4) —1]dr4, (A3)

where g' ' and g' ' are the two-body and three-body
correlation functions, respectively, and g„'s is the
Kirkwood superposition approximation

g)„'(r„r[,„r,) =g' '(r„r~)g' '(r~, r~) g' '(rm, r, ) . (A4)

To prove the equivalence of (A2} and (A3) we note
that by definition

exp(I[ —qg ' r + (qg —q[r) r„+q2 ~ rp]
myths P

rdsdtde pxi[- ~q~ r+(q, -qz) ~ s+qm ~ t]

x N'g"'(r, s, t), (A5)

where g means m, n, and P are all unequal in the
summation. The proof is then straightforward.

As discussed by Feenberg, 0 the convolution ap-
proximation is an exact solution of the hierarchy
equation that links g' ' and g' ', whereas the super-
position approximation is not. Moreover, the con-
volution approximation is a natural consequence of
diagrammatic analyses, such as that made by Abe. 4~

However, it does not necessarily satisfy the phys-
ical requirement, g' ' & 0, whereas the superposi-
tion approximation does. This could lead to seri-
ous errors for strongly repulsive potentials.

Nevertheless, we have used the convolution ap-
proximation since the superposition approximation
is very cumbersome in Fourier space:

& .(q„q.) = &.(q„q,) —[S(-q&) —11

[S(q, q, ) 1)[S(q,) —1]

+, fd)e[S()r)- ()

x[S(k)+q,) —1][S(k+qm) —1] . (A6)

and S(q) is the usual liquid structure factor. This
is often called the "geometric approximation. " As
discussed by Ballentine and Heine, '~ it treats clus-
ters of three atoms approximately, but is otherwise
exact. However, it can be readily demonstrated'9
that (A2) is identical to the well-known convolutfon
approximation in real space. This approximation
states that

g"'(r„r2, r, ) =gas(r„„r,) -[g '(r„rm) -1]
x [g '(r2, r&) —11[g""(r&, r&) —11

,N "[g"'(r„r,) —11[g'"(rm, r4}—11
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%e have made one test evaluation of E'3~ using T«
instead of &„ for g = Q. 3 and r, = l. 0 in pure hydro-
gen. The results agreed to within 10%%uo, although
&«and &, often differed by more than 10'. This
is also expected to be comparable to the error that
is incurred when either approximation is used,
rather than the "true" &(q~, q2) that would be deter-

mined by Monte Carlo or molecular-dynamics
techniques. For larger ri (closer packing), the
error may be larger, since it is observed in ma-
chiiie calculations that gKs~ deviates more from the
true g"' as g increases. ~'4'

The generalization of (A2) to mixtures is
straightforward (but not trivial). The result is

T .(q, q ) = [S;;(-q,) —&,] [S„(q,- q ) —&;.][S.;(@)—&, ]+(x,x;)"'[S,,(-q, ) —5„][S„(q,—q, ) —S„]

+(; .)"'IS;;(-q ) —~;;]IS.;(q ) —~;]+(;;)"'IS,(q, -q ) —~.][S (q )- ~„]
+ &;;(&;&a)"'S~a(q. ) + &;~(~;&y)"'S;a(qx —qa) + ~pa(«&g)"' S;g(- qg) —»~&.g&ga (AV)

where &;; is the Kronecker delta.

APPENDIX 8: OPTIMIZED-RANDOM-PHASF
APPROXIMATION (ORPA)

The first step is to approximate the real interac-
tion v"'(r) by a trial interaction v r(r) given by

The object of a liquid perturbation theory is to
approximate the true pair interaction by a very
simple interaction for which the corresponding ionic
configuration is well known. The free energy is
then expanded about the free energy of the well
understood reference system, in powersof thedif-
ference between the actual and reference interac-
tions. The OBPA was devised by Anderson and
Chandler ' so that this perturbation expansion
would rapidly converge. In briefly discussing our
application of this method, we restrict ourselves
to a pure system.

where & is the variationally determined hard-
sphere diameter. The error in E that is incurred
by this replacement is

C~ r exp —v'" r k~T dr,
r&Z

where Cr(r) is the direct correlation function,
evaluated by equation (B5) below. Since v" (r)
» &&~ when r& R, this error is found to be negli-

I.5—

g (r)

I.O-

FIG. 4. Pair correla-
tion functions for Z=1, g
=1.0 and T=4200 K. Solid
line, optimized hard
spheres; dashed line,
ORPA; dotted lines, Monte
Carlo [Hubbard (Ref. 5)].

l.5 2.0
r/rsoo
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gible (it corresponds to neglecting infrequent high-
energy collisions between ions).

The trial interaction is then decomposed into a
reference and a perturbation part

v r(r) = vn(r) +u(r),

lowest-order term

ks T "
NS(k)(s(k) NS(k)y(k)

167t N . ksT ksT

where cp(k)= f e'"' u(r)dr, provided
(B4)

~&R
vo(r) =

0, ~&R,
—ks Tc(r), r& R

u(r) =
ver f(r) x&R

(B3)

An exact calculation of I" for this interaction must
be independent of c(r), since it is defined in the
physically inaccessible region. However, the re-
sult of an approximate calculation does depend on
c(r) And. ersen and Chandler showed th taAF„„
the change in the free energy from a hard-sphere
system, can be accurately approximated by the

&AE'„~~/&c(r) =0, r& R . (B5)

They also showed that c(r) = Cr(r) —C~(r) for
y & R, where C„, is the hard-sphere direct corre-
lation function.

In our calculations IAI'„, I +A~T, but is large
enough to have a significant effect on the entropy,
as the Monte Carlo calculations by Ross45 would
have predicted.

In Fig. 4, a comparison is made of the pair
correlations for ORPA, hard spheres and Monte
Carlo. 5 The similarity of our ORPA result and the
machine simulation is very satisfactory.
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