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Theory of tunneling without transfer Hamiltonian: Relation between continuum and discrete
formahsms, and equivalence with elementary theory for noninteracting systems
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The relation of the tunneling theory developed by Feuchtwang to the similar theory due to Caroli et al. is
explained. Some previous assertions, concerning their discrete formulation of tunneling, reaffirmed in the
companion comment, by Caroli et al. are disproved. A general proof for the equivalence of the elementary
kinetic theory of tunneling and of the many-body formulation for a noninteracting system is given. The role of
boundary conditions imposed at interfaces in junctions is discussed, and some of the results of an earlier
analysis by Feuchtwang are shown to have a more general validity than suggested in the original work.

I. INTRODUCTION

Recently, we developed a tunneling theory for
many-particle systems which does not involve the
transfer Hamiltonian and elucidates its physical
significance. ~'2 The theory like a similar formalism
developed by Caroli e~ al. is an adaptation of a
novel transport theory due to Keldysh. Both
theories involve the determination of the full single-
particle Green's function for a composite system
in terms of Green's functions for appropriately de-
fined uncoupled subsystems which are in thermal
equilibrium. However, while Feuchtwang considers
the problem in the continuous (coordinate) repre-
sentation, Caroli et al. advocate a discrete repre-
sentation suggested to them by an extreme tight-
binding approximation. Formally, Feuchtwang
computes the inverse operator (Green's function)
for a differential equation, while Caroli et al. con-
sider the inverse of a difference equation. There
appears to be some question as to the precise re-
lationship of these two formulations to each other
and their relative advantages. ' This paper is
meant to (i) clarify these questions, and (ii) outline
a general proof of the equivalence of the many-
body theory and the elementary formulation of tun-
neling for noninteracting systems.

II. RELATION BETWEEN CONTINUOUS AND DISCRETE
FORMULATIONS OF TUNNELING

The conversion of the Schrodinger equation for
the tunneling of noninteracting particles into a
second-order difference equation is an instance of
a familiar procedure. This procedure has, how-
ever, limited utility except for the numerical inte-
gration of the Schrodinger (or any other differential)
equation. In fact, a standard procedure for the
analytic solution of difference equations is their
conversion into differentia1 equations. The proce-
dure followed by Caroli et al. can, in fact, be ap-
plied to the integro-differential equation repre-
senting the effective single-particle Schrodinger
equation for the interacting system when self-en-

ergy effects are allowed for in terms of an effective
nonlocal potential. However, the procedure is
manifestly cumbersome, and as we shall demon-
strate below, confusing even to the experts.

Caroli et al. provide an interesting but erroneous
argument for their preference for their formalism.
In their first paper they admit that they did not
know how to specify the conditions to be imposed
on the wave and Green's functions of the uncoupled
subsystems at the interfaces, ~ and that they thought
the problem could be avoided by casting it into
a Wannier-type representation. They indicate that
the actual Wannier-type states will be sensitive, to
the site's location relative to the interface but do
not pursue this point to the logical conclusion, that
the difference equations will exhibit a variation of
the coefficients with the site index. Such a varia-
tion is a standard procedure of incorporating bound-
ary conditions into difference equations. Thus the
choice to ignore the above variation constitutes an
arbiA ary though conceivably convenient boundary
condition.

In their second paper (C-II), and in their comment
on our recent work, Caroli et al. introduce a more
strictly mathematical argument. '7 Namely, they
assert that by the formal transcription of the
Schrodinger equation into a second-order difference
equation, they can avoid explicit discussion of the
boundary conditions at the interface. Furthermore,
the latter are presumed to be uniquely accounted
for by the "discrete secular equations. " This is
in contrast to our proof of the inherent freedom
in the choice of the homogenous boundary conditions
to be imposed on the wave and Green's functions of
the uncoupled subsystems at the interfaces. A
little reflection isolates the fallacy in this circular
argument: Caroli et al. 's difference equations are
unique and correspond to the "fixed boundary condi-
tion, "

g(x) = 0 at the interface, because they im-
plicitly chose to ignore all other admissible sets of
difference equations corresponding to the more
general class of boundary conditions we showed
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to be admissible in the continuous representation.
Having examined the presumed advantages of the

discrete formalism, we still have to check whether
the latter is equivalent to the continuous one. It
appears to us that the answer to this is a qualified
yes. Namely, having derived the correct result
in the continuous representation, one can always
properly define the limiting processes implied in
the discrete formalism to get agreement between
the two formalisms. However, the discrete for-
malism is by itself ambiguous enough to have mis-
lead even the authors themselves. This is evident
upon comparing the expressions for the energy
density of the tunneling current across a junction
as stated by Caroli e& al. in Eqs. (C-II. 40) and
(C-17.16):

82
(J(&u)) =—

~

&"
~
Im, g~(x, x '; ~)

X X X{)

XIm g& g Q 'Q) I Q) —& Q) ~

X=X -X{)

(C-rr. 40)

In their discussion of Eq. (C-If. 40), Caroli ef al.
categorically assert that "the properties of the
electrodes do not appear in the current via the
volume densities of state of the isolated (subsys-
tems) M and M'. " This statement, based on the
form of (C-11.40), is misleading. It depends, as
does the derivation of this equation, on the partic-
ular boundary conditions imposed at the interface
on the Green's functions for the uncoupled systems.
However, Eq. (C-II. 40) is correct, and agrees
with our result. 8 Turning to Eq. (C-IV. 16), we
have

(C-IV. 16)

Here Caroli ef al. define the symbols p, (&u) as the

local density of states at site n, the first site to
the left of the interface, p, =- (I/m)lmg~(x = n, x'
= n; v); p (&u) as the local density of states at
site a, the first site to the right of the interface
p, = - (1/w)1m'(x = a, x' = a', e). On the face of it,
the above equations are inconsistent. It is con-
ceivable that T be interpreted as an operator such
that
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However, this is surely a confusing notation, and
moreover, is not the interpretation emerging from
the discussion of Eq. (C-IV. 16) by Caroli e& &1.

The symbol T is evidently to be interpreted as an
operator since it always has to appear in products

III. RELATION OF THE MANY-BODY TO THE KINETIC
FORMULATION OF TUNNELING

In this section we present a general proof of the
equivalence of our many-body formalism and the
elementary kinetic (single-particle) formulation of
tunneling for a noninteracting system. The deriva-
tion also demonstrates that our expression for the
energy density of the tunneling current (J(&o)) does
not depend on the boundary conditions imposed on
the wave and Green's functions for the uncoupled
subsystems at the interfaces. To keep the algebra
to a minimum, we consider only an abrupt junction
with Hamiltonian

3:=e( x)3.', +e(x)z„, (2. 1)

where, e(x) is the unit step function. The analysis
extends without difficulty to the finite junction.

Let Q"'(x &u) g'"*(x &u)) and jtts'(x; &u),

g~+'*(x; ~)) be two pairs of linearly independent
solutions of the Schrodinger equation for the un-
coupled subsystems,

(k(u —X ) p (x (u) =0 y=1. ll (2. 2)

Let gP'(x; ~), P„' '(x; u&), respectively, satisfy
"outgoing wave" boundary conditions at x=+~.

A solution for the composite full system can be
written

such as Tg, or Tc&c&. ~ However, the interpreta-
tion of Tg is not necessarily unique: The reduction
of the Schrodinger equation to a difference equa-
tion in fact suggests that T be interpreted as
being proportional to the Laplacian, i.e. , T
- —(8 /2m) (d2/dx ). This interpretation agrees
with Duke's analysis of the transfer Hamiltonian
and with our interpretation of Bardeen's matrix
elements of the transfer Hamiltonian. ~3 However,
this does not agree with Eq. (1.1). To compound
this problem, Caroli et al. , spend considerable
effort in discussing their limiting procedure in
going from the discrete to the continuous representa-
tion. Nevertheless, they fail to give an explicit
(operational) interpretation of the operator T which,
in this limit, is formally singular.

In concluding thi, s analysis of the relation between
the discrete and continuous formalisms of tunneling,
we wish to stress the following two points: (a) The
two formalisms can be forced to agree. However,
the continuous representation has the advantage of
being more transparent. In case of (formal) dis-
agreement, it should be used to interpret the re-
sult of the discrete analysis. (b) An important
illustration of the above comment is the elucidation
of the relation between the local density of states
and the boundary conditions imposed at the surface
of a subsystem, which emerges from our analysis.
This point is further emphasized below.
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Hence the ratio of the flux transmitted to the right
to that incident from the left is

4'*(x; ~)—,[4'(x; ~)]-—[4' (x; ~))4'(x; ~)

(l(P. '(x; ~)—[4P, '*(x; ~)) ——[4V'(x; ~)] (C'L, '*(x; ~)
(2.4)

where, the continuity of the logarithmic derivative of (l( across the junction determines,

0"~(x ~)—[0'"(x ~))-—[4"~(x ~)]4("(x ~)
S

d d4"(x; ~)—„,[PF'(x; ~)) —~, [4"(x;~)) 0',"(x;~)
(2. 6)

It is now a simple matter to verify that

x;40 g x; ct)

L x~ R
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—((ii(x (u) —(j(( '(x (u)

(2.6)

4"(x;~) f ™(4s"(x;~) )
'(x (o) —g '(x (o)(1 (2

-2

dx ~ ' dx "
0'"(x ~) + ("'(x ~) (2. 'I)

In the elementary treatment of one dimensional
junctions, the current is written

I T(~) I '(f&(~) [1 —f, (~)]

in particular, we have

R'i(x, x'; &) =
& ~'(j(~"(x; &u) (ji'(x', &u), x( x'

(2. 11a)

+fs(~) l&-f&(~)]}2,. ,
cfQ)

(2. 6)
gi(x, x'; u))= ~ Wii(P'(x; (o) gii~(x'; (u), x&x'

(2. 111)

where, f„(~) is the Fermi function for the yth
subsystem.

We ~hall now demonstrate that [upon substitution
into Eq. (2. 8}]Eqs. (2. 6) and (2. 7) correspond to
Eqs. (113.24)(II3.26). The procedure to be fol-
lowed utilizes the Wronskian technique for the cal-
culation of one dimensional Green's functions, '
that is,

g(x, x', ~)=, [W(q(", q(2')]-'

xg'"(x; &u) (l("'(x &u) x( x', (2. 9a)

Z(x x' ~)= ~ [W(4(" 0"')] '

xg' '(x ~)(j(' '(x' &u) x&x' (2 9b)

is the solution of the inhomogeneous differential
equation

(kur -$C „)g(x, x', &o}= 5(x- x'); y = L, R, (2. 10)

provided (g'"(x; e)}is a pair of linearly independent
solutions of the homogeneous equation, Eq. (2. 2),
satisfying appropriate boundary conditions.
W(g"', g' ') is the Wronskianof these solutions and
is (for the Schrodinger equation) a constant. Thus,

where

W = — —i x; +—i x+ i xv
x-"0

(2. 12)

Here, (j(i(i'(x; ro) satisfies "outgoing wave" boundary
conditions at x=- ~, and

(2)&&"'(x' ~)+P 0"'(x ~—) =0 (2. 16)
ix=0

n, p are real constants. '6 Similarly,

g„(x, x'; &u)=, Wg(R(i'(x; &u)(l(„'~'(x', &o); x(x',
(2. 14a}

gR(x, x'; &u) =
~ Wg(|(R+'(x; &u) (t((~'(x', &u); x&x',

(2. 14b)
where now

~ = —((""(*'»(»—('"'(»; »)}('»" (»; »)

(2. 15)

c(g' '(x &u)+P —PR (x; u&) =0.
x-"0

(2. 16)

whereas (j(s( '(x; &u) satisfies "outgoing wave" bound-
ary conditions at x=, and
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Evidently, as long as p~o,

I g&(0, 0; ~)+gR(0, o; ~) I

' 0,"'(x; ~)l (2. 21)

t&)(1 & 2 ~ y&2 & 8 I y(1) y(2) -2

q(&)t +
p

q&2)I + y&1)t q(2)t

(2. 17)

Substituting Eqs. (2. 17)-(2.19) into Eq. (2. 6), we
obtain

Img~(0, 0; &d) Img„(0, 0; (o)

Ig (0, 0; +)+g (0, 0; (u){'
q&&) & y()) -2

ImgI (0& 0
&

&d) —Im &() p ()&I + 1 (2 18)

((2) y(2) -2

Img (0, 0; ~) =Im &2» —,&, +1, (2. 19)
R p

("'(o ~)=0=0'"(0 ~) (2. 23}

The preceding calculation is invalid when, in Eq.
(2. 16), P=O. That is, when,

where we denoted

—&,'*'(x; ~)I.—,= (l,'" (2.20)

Xn this case, and in fact whenever m &0, we can
show by a completely analogous calculation, omitted
here, that Eq. (2. 7) reduces to,
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,[lmg~(x, x ', &d)],[Imggx, x'; u&)]

ex~a ~xex, Img~(x, x'; (u)+,Img„(x, x', &d)

(2. 24)

Evidently, substituting Eqs. (2. 22) or (2. 24) into
Eq. (2. 8), we obtain, respectively, Eqs. (I3.24)
and (I3.26), reproduced below,

I

tions (2. 22) and (2. 25) or (2. 24) and (2. 26) apply
when we impose at the interface self-adjoint homo-
geneous boundary conditions;

—(~(0; &d)) =
I

&"(&d) I

' Img ~(0, 0; (u) Img"„(0, 0; ~)

&[f (~)-f (~)] (2. 25}

o.g~{x, x' & 0; ~)+ p —g~(x, x' & 0; &u) = 0,

and n, p=real

ngR(x, x' &0; &u)+ p —gs(x, x' &0; &d) =0. (2. 29)

92—{J(0 ~)) =
I
&"(ur)l', Img~(x x' (u)

&(Img R(x, x ', &u) [f);(&d) —f)&(&d)], (2. 26)

where

I A(~) I

' =
I g, (0, 0; ~)+g.(o, o; ~) I

', (2. 27)

I
A(&d) I

~=,[g~(x, x '; ((&)

+g)& (x) x (g ) (2. 28)

The point to note is that these results have now
been shown to have an additional generality: Equa-

provided that, respectively, P &0 or o«0. That
is, whenever both Eqs. (2. 25) and (2. 29) are
meaningful, they are equivalent. When Dirichlet
boundary conditions are imposed at the interface,
only Eqs. (2. 22) and (2. 25) apply; when Neuman
boundary conditions are imposed at the interface,
only Eqs. (2. 24) and (2. 26) apply. The preceding
supplements the more restricted previous demon-
stration of the equivalence of the many-body and
elementary formulations of tunneling for noninter-
acting systems. It also sheds further light on the
precise significance of the local densities of states
which figure prominently in a current modification
of the transfer-Hamiltonian formalism, ' ' as
well as in our own tunneling theory.

T. E. Feuchtwang, Phys. Rev. B 10, 4121(1970). Equa-
tions in this paper will be referred to by I followed by
the number of the equation.

T. %. Feuchtwang, Phys. Rev. B 11, 4135 (1974).
3C. Caroli, R. Combescot, R. Noziere, and D. Saint

James, Z. Phys. C 4 916 (1971); 4, 2599 (1971); 4,
2611 (1971); 5, 21 (1972). These papers will be re-
ferred to as CI, etc. Equations in these papers will

be referred to by indicating the paper with C-I, etc.
preceding the number of the equation.
L. V. Keldysh, Zh. Eksp. Theo. Fiz. 47, 1515 (1964)
[Sov. Phys. -JETP 20, 1018 (1965)].

C. Caroli et al. , preceding paper, Phys. Rev. B 12,
3977 (1975).

C. Caroli et al. , J. Phys. C 4, 916 (1971), Sec. (2. 1)
and, in particular, the two last sentences in this sec-



THEORY OF TUNNELING WITHOUT TRANSFER HAMILTONIAN. . .

tion.
~C-II, Sec. 1.
Recall that Caroli et al. require their uncoupled Green's
functions to vanish at the interface. Hence Eqs. (I-3.26),
(I-3.27) apply.

See C-IV, the discussion following (C-IV. 16). There
TA" is identified as an effective matrix element analo-
gous to that introduced by Applebaum and Brinkman,
Phys. Rev. 186, 464 (1969). The authors thus clearly
imply that T does not operate on the local density of
states. This point is further emphasized in the paper
by R. Combescot and G. Schreder, J. Phys. C 6, 1363
(1973) who apply the formalism of Caroli et al. to a
metal-semiconductor contact and conclude explicitly
that: "The change in the tunneling current ~ ~ ~ arises
only from the modification of the density of states of the
isolated semiconductor at the interface. "

~OThis is particularly obvious from the continuous repre-

sentation, T=lim, 0+5 /2m' .
~~See C-11, Sec. 2. In particular, Eqs. (C-II. 8),

(C-II.11), and Eqs. (3), (4) in Ref. 5.
C. B. Duke, Tunneling in Solid State Physics SupPl.
10 (Academic, New York, 1969), p. 212.

~3See Eqs. {I2.19) and (I2.21).
~48ee Sec. IV in I.
~5P. H. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw-Hill, New York, 1953), p. 529; see
also E. A. Kraut, fundamentals of Mathematical Phys-
ics (McGraw'-Hill, New York, 1967), p. 295.

~ Note that in order to assure that the uncoupled systems
are in thermal equilibrium, the homogeneous boundary
conditions have to be self-adjoint, i. e. , &, P have to be
real. This point has not been stated in Ref. 1.

~D. Penn, R. Gomer, and M. H. Cohen, Phys. Rev.
B 5, 768 (1972); Phys. Rev. Lett. 27, 26 (1971).

~ D. Penn, Phys. Rev. B 9, 844 (1974).


